ISSN: 09726268(Print); ISSN: 2395.3454 (online) An Open Access Online Journal

Archives Issues

Volume 24, Issue No 1, Mar 2025

Cover

Keywords:

Contents and other pages

Keywords:

Green Marketing Practices and Sustainability Performance of Manufacturing Firms: Evidence from Emerging Markets

This study investigates the relationship between green marketing practices and the sustainability performance of manufacturing firms in emerging markets. A self-administered questionnaire was used to collect data from 270 respondents, and the analysis was conducted using Smart PLS-SEM (version 4). The results demonstrate a significant positive relationship between green internal marketing and the overall sustainability performance of the firms. Specifically, green marketing communication was found to positively influence both environmental and social performance, although it did not have a significant effect on financial performance. Likewise, the adoption of green products substantially improved environmental performance but did not significantly impact financial or social performance. Additionally, the study supports a positive association between green strategy implementation and sustainability performance. These findings underscore the critical role of integrating green marketing practices into sustainability initiatives. The research provides valuable insights for managers and policymakers, emphasizing the need for a holistic approach to green marketing to enhance environmental and social outcomes, even if financial benefits are not immediately apparent. This study contributes to the growing body of knowledge on sustainable business practices and offers practical implications for achieving long-term sustainability in manufacturing firms.

Derrick Nukunu Akude, John Kwame Akuma, Emmanuel Addai Kwaning and Kojo Agyekum Asiama

Study of Biological Treatment of Rice Mill Wastewater Using Anaerobic Semicontinuous Reactors (ASCR)

Anaerobic digestion (AD) of industrial wastewater has drawn researchers’ attention due to biofuel’s recovery in the form of biomethane. This study introduced two anaerobic semi-continuous reactors (ASCR)- R1 and R2 for bioremediation of the rice mill wastewater (RMWW). The alkali treatment of the substrate in reactors R1 and R2 was done by dry NaOH and Ca(OH)2, respectively. Both reactors were loaded with 80% of the RMWW and 20% of the cow-dung-fed biogas plant sludge (BGPS) for 16 days of stabilization at mesophilic temperatures (18? to 42?). A small amount of jaggery and white rot fungi (Phanerochaete chrysosporium) were also added into both reactors for the bacterial growth and removal of the biorefractory organics (lignin and phenol) present in RMWW, respectively. The impact of variations in the hydraulic retention time (HRT) and organic loading rate (OLR) upon the anaerobic biodegradation of RMWW was studied in three operating phases (OP) I, II, and III. The highest BOD, COD, lignin, and phenol removal achieved in reactors R1 and R2 were 94%, 92%, 84%, and 82%, as well as 93%, 91%, 82%, and 80%, respectively, in OP I. The highest biomethane yield in both reactors was 0.005 L.g-1 COD in OP II. The results of the three operating phases reveal that a high HRT and low OLR give the maximum pollutant removal efficiency and the highest biomethane yield. The novelty of this research paper is the significant removal of the biorefractory organics lignin and phenol from the RMWW with the help of white rot fungi and specific bacterial strains Bacillus sp., Pseudomonas sp., Enterobacter sp., Actinomycetes sp. and Streptomycetes sp. present in the inoculum. The digestates from reactors were rich in macro and micronutrients viz., N, P, K, Cu, Zn, Fe, etc., essential for plant growth.

R. K. Singh and S. Bajpai

Synergistic Impact of Sonophotocatalytic Degradation of Acephate Over Ag@CeO2 Nanocomposite Catalysts

Noble metal decorated metal oxide composites have proved to have Surface plasmon resonance (SPR) as a notable approach for efficient light absorption. Herein present work, a new sonochemical method is proposed for in-situ synthesis of noble metal-based CeO2 composites for the sonophotocatalytic degradation of commercial Acephate solution. Pristine CeO2 and Ag@CeO2 with different Ag contents viz. 4, 6 and 8 wt. % were successfully synthesized by a facile in-situ sonochemical approach. The as-synthesized CeO2 and Ag@CeO2 nanocomposites were characterized by various physicochemical characterization techniques, including XRD, FTIR, UV-Vis spectroscopy, BET, and FESEM-EDS. Further, these CeO2 and Ag@CeO2 nanocomposites were employed for photocatalytic, sonocatalytic, and sonophotocatalytic degradation of commercial Acephate solution. Experimental results revealed that the photocatalytic and sonocatalytic processes follow a pseudo-first-order model, whereas the sonophotocatalytic process had a more substantial rate constant compared to the photocatalytic and sonocatalytic one. Further, the kinetics of the study were examined by the Langmuir-Hinshelwood model. Overall, the sonophotocatalytic degradation involving as-synthesized Ag@CeO2 with 6 wt. % Ag content has shown to be the most effective method for the effective degradation of a commercial acephate solution.

N. A. Deshmukh, P. D. Jolhe, S. Raut-Jadhav, S. P. Mardikar and M. P. Deosarkar

Forward Osmosis Process for Concentration of Treated Tannery Effluent

Forward Osmosis is a suitable pretreatment process for reverse osmosis for secondary-treated sewage reuse and secondary-treated industrial effluents. In this study, the FO process is investigated for concentrating synthetic secondary treated tannery effluents using 24 g.L-1 and 38 g.L-1 of NaCl solution as draw solution. Results showed that 38 g.L-1 NaCl solution when used, provided higher flux and lower flux decline ratio as compared to 24 g.L-1 NaCl solution. The solute rejection by FO membrane was more in FO experiments using 38 g.L-1 NaCl solution as DS as compared to 24 g.L-1 NaCl solution. Contact angle, Fourier transform infrared spectroscopy, and scanning electronic microscopy tests on pristine and chemically cleaned membranes indicated the change in membrane structure and the presence of foulants on the membrane surface, indicating insufficient chemical cleaning. Findings signify implications on the concentration of DS and the cleaning method adopted for concentrating treated tannery effluent efficaciously using the FO process.

S. U. Sayyad

A Review on Extended Producer Responsibility Schemes for Packaging Waste Management and Research Gaps in the Field

Recently, Extended Producer Responsibility (EPR) schemes have been considered as potential policies for solid waste management and many countries have applied them. Researchers, authorities, and producers need a comprehensive and up-to-date understanding of EPR. Therefore, this literature review aims to review the current research status of EPR implementation on packaging, to highlight actual experiences conducting EPR, and to find research gaps. Results indicate that during the last 5 years, there has been an increase in the amount of research on EPR in packaging and that packaging waste recycling under this scheme is the most considered activity. Additionally, the primary metrics used to assess the efficacy of EPRs are recycling and reducing packaging waste. According to the lessons learned, applying EPR to packaging should take stakeholder engagement, policy design, transparency, and incentive strategy into account. Additionally, knowing the economic effectiveness problems small- and medium-sized packaging companies face, the effectiveness of EPR methods on various materials and geographical areas, and the efficacy of monitoring methods are the main areas that need to be researched.

T. T. Y. Anh, S. Herat and K. Prasad

Modeling Landslide Hazard in the Eastern Himalayan Mountain Region of the Papumpare District of Arunachal Pradesh, India Using Multicriteria Decision-Making (MCDM) and Geospatial Techniques

Landslides are significant natural hazards that cause damage to the environment, life, and properties, mainly in hilly terrain. This research was mostly focused on generating a landslide susceptibility zone map of Papumpare District, Arunachal Pradesh, and classifying the region from high susceptibility to least susceptibility using AHP modeling techniques considering the landslide causative factors. The Analytical Hierarchy Process (AHP) is a multicriteria decision-making model (MCDM) in which each parameter is compared based on its role in triggering a landslide. A total of eight parameters were selected based on the factors that could affect the most, like Slope, Rainfall, Drainage Density, Lineament Density, Geomorphology, Soil, Geology, and Land use/Land cover. These layers were prepared using ArcGIS 10.8 software and ERDAS IMAGINE 2014. Based on the output, the region was classified into five zones of landslide susceptibility classes. Of these, the high-very-high landslides are mostly amassed near the steep and disturbed slopes due to earth-cutting, especially for building or construction of roads. Validation was done using the ROC curve (73.2%) suggesting good performance of the model. The outcome of this work will provide information for proper landslide hazard management and will help in formulating suitable mitigation strategies in the future.

Tilling Riming, Praduyt Dey, Santanu Kumar Patnaik and Manju Narzary

Recent Advances and Prospects of Microbial Biosurfactant-Mediated Remediation of Engine Oil Pollution: A Comprehensive Review

A major global concern is the widespread environmental destruction caused by hydrocarbons, especially from the dumping of spent engine oil. Hydrocarbons are a major source of pollution in the environment and have an impact on agriculture, aquatic life, and soil fertility. The necessity of resolving this issue is highlighted by the detrimental impact on soil biocenosis and the potential conversion of soils into technogenic deserts. Due to high costs and polluting byproducts, the conventional approach of treating contaminated soil, sediment, and water is unsustainable. However, bioremediation, which makes use of biological agents like fungi and bacteria, appears to be a more practical and affordable solution. Microbial biosurfactants present a possible solution for environmental restoration due to their less harmful nature compared to chemical surfactants. This review highlights the green and sustainable nature of microbial biosurfactants while examining their advancements, biotechnological potentials, and future possibilities for bioremediation. The review also looks at the genetic basis and economic viability of biosurfactants for bioremediation applications. Furthermore, the review emphasizes the need for more studies in overcoming the challenges of large-scale application of biological surfactants for bioremediation of pollution and environmental restoration. As partners in nature, these bacteria aid in the breakdown of hydrocarbons, highlighting the need for industry and the environment to coexist sustainably. As biosurfactants are less harmful to the environment than chemical surfactants, they are more in line with the global trend toward sustainable methods and the use of natural processes for ecological restoration.

Nafisa Mohammed Babayola and Martins A. Adefisoye

Adsorptive Remediation of Dyes Through A Novel Approach from Nanotechnology: A Comprehensive Review

Due to rapid industrial growth and the increased economic status of people, water sources across the globe are being significantly polluted with a wide array of effluents. Industrial, agronomic, and customary activities have led to the repeated infestation of water by discarded materials. Consequently, there is an urgent need for advanced technologies to effectively eradicate these impurities from wastewater. Among the various methods established for wastewater remediation, the adsorption process has gained remarkable significance due to its efficiency and effectiveness. The use of nano adsorbents (NADs) represents an emerging solution to these environmental issues. NADs possess exceptional physical and chemical characteristics, which enhance their applicability compared to traditional adsorbents. Their advanced grade, prominence, and excellence in various arenas make them a superior choice for wastewater treatment. Recent explorations have shown that NADs, such as carbon nanotubes, graphene, and metal and metal oxide nano adsorbents, have a pronounced and favorable impact on wastewater treatment. The focus of this review article is to provide current data and insights into the use of NADs for wastewater remediation. It aims to highlight the benefits of these novel materials and to discuss the potential areas for further improvement in this field. By exploring the latest advancements and applications of NADs, this review seeks to contribute to the ongoing efforts to address the critical issue of water pollution and to promote sustainable water management practices.

Sadia Shakoor, M. Shahnawaz Khan and M. Ehtisham Khan

Phytochemistry of Aloe vera: A Catalyst for Environment-Friendly Diverse Nanoparticles with Sustained Biomedical Benefits

Nanotechnology has become one of the most active fields in the research area and is getting more attention toward nanoparticle synthesis. Green synthesis methods using various plants, fungi, bacteria, and algae were used to synthesize nanoparticles with proper requirements and maintain sterile conditions to get the desired products. Aloe vera, a bio-medicinal plant, contains a wide range of phytochemicals such as phenolic, hydroxyl groups, alkaloids, polyols, polysaccharides, etc, which act as reducing and capping agents with high efficiency. This review revealed that aloe vera-derived nanoparticles are safe, stable, cost-effective, and eco-friendly, and they also possess significant applications for drug targeting, disease resistance, tissue engineering, wound healing, anticancer, antibacterial, and cosmetic industries. Synthesized metal nanoparticles are characterized through UV-visible spectroscopy, X-ray diffraction, scanning electron and transmission electron microscopy, photoluminescence, and the Well-diffusion method. It is highly interesting to note that aloe vera-mediated silver and zinc nanoparticles possess high potency against multi-drug resistant pathogens. Here, anticancer, antioxidant, anti-inflammatory, and photocatalytic activity separately showed by aloe vera peel, gel, and leaf, along with possible challenging situations faced during plant extract-based nanoparticle synthesis, are highlighted. Additionally, the introduction of GMOs is subjected to play an important role in advancing green methods. However, more research is required to estimate the dose’s safety, degradation, and synergistic mechanism inside the human body for better use of the green method for the treatment of microbial infections.

S. Yadav, A. Khan and J. G. Sharma

A Review on Soil Metal Contamination and its Environmental Implications

The rapid increase in heavy metal accumulation within soil ecosystems has become a significant concern due to various anthropogenic activities such as industrial processes, agricultural practices, and urbanization. These activities have led to elevated levels of heavy metals like lead, cadmium, mercury, and arsenic in the soil, which, when surpassing permissible limits, pose severe toxicological risks to both human health and plant life. Once heavy metals are introduced into the soil, they can be readily absorbed by plants, subsequently entering the food chain and affecting the metabolic activities of humans and animals consuming these contaminated plants. Although trace amounts of heavy metals are naturally present in the soil, their concentration beyond safe thresholds can lead to deleterious effects, including disruption of enzymatic functions, damage to cellular structures, and interference with essential biological processes. Studies have highlighted that children living in urban and industrial areas are particularly vulnerable to heavy metal exposure, which can result in cognitive impairments, developmental delays, and various other health issues. Furthermore, long-term exposure to these metals can lead to chronic diseases such as cancer, kidney dysfunction, and cardiovascular disorders. Given the escalating threat posed by soil metal contamination, it is imperative to implement stringent management practices aimed at maintaining soil chemistry within safe limits. These practices may include the remediation of contaminated sites, the adoption of sustainable agricultural methods, regular monitoring of soil quality, and the use of phytoremediation techniques to mitigate the impact of heavy metals. Ensuring the safe production of food requires a comprehensive understanding of soil dynamics and the integration of innovative strategies to prevent and control heavy metal pollution. Consequently, addressing this environmental challenge is crucial for safeguarding public health, preserving ecological balance, and promoting sustainable development.

Sadaf Hanif, Shaukat Ali, Asif Hanif Chaudhry, Nosheen Sial, Aqsa Marium and Tariq Mehmood

Analysis of CMIP6 Simulations in the Indian Summer Monsoon Period 1979-2014

The monsoon system in India plays a pivotal role in shaping the country’s climate. Recent studies have indicated that the increasing variability of monsoons is attributable to climate change, resulting in prolonged periods of drought and excessive rainfall. Understanding, analyzing, and forecasting monsoons is crucial for socioeconomic sustainability and communities’ overall well-being. Climate forecasts, which project future Earth climates typically up to 2100, rely on models such as the Couple Model Intercomparison Project (CMIP). However, confidence in these forecasts remains low due to the limitations of global climate models, particularly in terms of capturing the intricacies of monsoon dynamics, notably from June to September. To address this issue, researchers have examined precipitation simulations under various future scenarios using both CMIP5 and the latest CMIP6 models. Evaluating the performance of these models from 1979 to 2014, particularly in simulating mean precipitation and temperature, has revealed improvements in multi-model ensembles (MME), highlighting advancements in monsoon characteristics. By comparing the CMIP5 and CMIP6 models, researchers have identified the most reliable models for climate downscaling research, which can provide more accurate predictions of regional climate changes, thereby offering valuable insights for enhancing climate modeling in the Indian subcontinent.

Lakshmana Rao Vennapu, Krishna Dora Babu Kotti, Sravani Alanka and Pavan Krishnudu Badireddi

A Review on Electrooxidation Treatment of Leachate: Strategies, New Developments, and Prospective Growth

Improper disposal of landfill leachate, a highly polluted wastewater, can harm living beings and the ecosystem. Of all the treatment technologies available, electrochemical techniques have the most advantages in terms of ease of use, affordability, and the ability to degrade various contaminants found in landfill leachate effectively. Though there are a sufficient number of research articles regarding the electrochemical treatment of leachate, it has many research gaps, such as a study on the mechanism of radicle generation, pollutant degradation, study on different electrodes with various pollutants concentrations, application of green catalysts, byproduct formation assessment, energy recovery, etc. This review article explores the applications of electrooxidation techniques for the treatment of landfill leachate. Key aspects discussed include the (i) fundamental concepts in electrochemical treatment and its mechanism, (ii) factors affecting the electrochemical treatment efficiency, (iii) the applicability of leachate treatment with different electrochemical methods, (iv) recent advances, (v) merits, and demerits and (vi) proposal of future scope and the studies needed. The integration of electrooxidation with other treatment processes and the challenges hindering widespread adoption are also addressed. Overall, electrooxidation demonstrates promise as an effective and sustainable method for managing landfill leachate. Consequently, this article directs chacurrent and future research efforts toward optimizing the leachate treatment through electrooxidation techniques.

R. Priyadarshini Rajesh and M. P. Saravanakumar

Mechanism and Behavior of Phosphorus Adsorption from Water by Biochar Forms Derived from Macadamia Husks

High phosphate content in water causes eutrophication, leading to many risks to the aquatic environment and human health. This study used biochar derived from macadamia husks at the pyrolysis temperatures (300, 450, and 600?) to remove P from water. Adsorption parameters such as initial pH, biochar dosage, initial P concentration, and adsorption time when biochar was exposed to the P solution were determined. The results show that pH 4 is optimal for P removal with biochar pyrolyzed at 300 and 450°C, while pH 6 gives biochar 600°C, biochar dosage 10 g.L?1, concentration Initial P 25-200 mg.L?1 and adsorption time 40 minutes for 3 types of biochar. The maximum P adsorption capacity is 20.07, 20.03, and 20.03 mg.L?1 corresponding to 3 forms of biochar 300, 450, and 600°C. P adsorption data were consistent with the Freundlich isotherm model for all three biochar forms. The pseudo-second-order kinetic model was suitable for all three types of biochar, showing that the main adsorption mechanism is a surface chemical reaction. The study suggested that hydrogen bonding plays an important role in the adsorption of P onto biochar derived from macadamia husks. This study indicates that biochar derived from macadamia husks pyrolyzed at temperatures of 300, 450, and 600°C are all potentially effective and low-cost adsorbents for phosphate removal from water.

Nguyen Van Phuong

The Utility of Synthetic Biology in the Treatment of Industrial Wastewaters

Effective treatment of industrial wastewater effluents before discharging them to the soil and water bodies has always been one of the paramount environmental concerns. The pollutants in untreated wastewater effluents have hazardous implications for human health and the ecosystem. Conventional physical and chemical processes of industrial wastewater treatment have many complications and they often fall short in the treatment of new and diverse varieties of pollutants. Several microbial strains in nature have shown their remediation property, but they possess limited efficiency in breaking down pollutants into non-toxic components. Synthetic biology is a perfect amalgam of two fields – biological science and engineering, and it has transformed our ways of understanding the functioning of complex biological systems. Researchers have reported that some engineered microbes can achieve remediation efficiency of up to 100% in specific pollutants such as heavy metals and hydrocarbons. For example, microbes like Pseudomonas veronii have been shown to reduce cadmium concentrations by up to 100%, and Pseudomonas putida has been shown to reduce phenol concentrations by 92%. Synthetic biology-based biosensors are also being developed for pollution monitoring and control of industrial wastewater. In this review, we discuss these advancements of synthetically engineered microorganisms in the treatment of industrial wastewater.

Monica Joshi and Jai Gopal Sharma

Optimizing Community Health Center Effluent Treatment with Moving Bed Biofilm Reactor Technology Combined with Activated Carbon and Chlorine

Community Health Centers are small-scale hospitals that serve community medicine in Indonesia. These activities generate wastewater containing various contaminants, such as pathogens, chemicals, and nutrients, which can pollute the environment and endanger human health. So, efforts are needed to reduce their impact through wastewater treatment. This research applies an anaerobic-aerobic biofilter system with Moving Bed Biofilm Reactor (MBBR) technology combined with activated carbon and chlorine in treating wastewater. The treatments in the study were different service capacities and wastewater treatment, with three replicates in each treatment. The residence time of wastewater in the system is 4 h. The results showed that combining MBBR technology, activated carbon, and chlorine could reduce temperature, TSS, pH, BOD5, COD, NH3, and Coliform values in wastewater in three Community Health Center services. Thus, it can be concluded that the different services and wastewater treatment efforts, combined with MBBR, activated charcoal, and chlorine, have been proven to affect and improve the quality of wastewater from the Community Health Center to meet the effluent quality standards.

Budirman, Muhammad Farid Samawi, Fahruddin, Paulina Taba, Mahatma Lanuru and Agus Bintara Birawida

An Experimental Investigation on Sustainable Concrete Made with Refractory Brick as a Substitute of Natural Fine Aggregate

In the face of the pressing global issue of waste management and the diminishing availability of natural resources, the management of non-biodegradable waste materials, including brick waste, poses significant challenges. Ineffective disposal practices not only create logistical obstacles but also pose health hazards. This study explores the potential of utilizing waste refractory bricks (RB) as a sustainable substitute for natural fine aggregates in concrete production. Various experimental investigations were conducted to evaluate the feasibility and performance of RB sand in concrete mixtures. Tests included assessments of fresh and hardened properties, such as slump values, compressive strength, tensile strength, flexural strength, and resistance to elevated temperatures. The research revealed that RB sand, when used as a partial replacement for fine aggregates, can significantly enhance the compressive strength of concrete, with optimal results observed at a 30% replacement level. Moreover, RB-based concrete exhibited improved split tensile strength compared to traditional concrete, particularly at replacement levels of 10% to 30%. Flexural strength also showed notable improvements, with the 40% replacement level demonstrating optimal performance. Additionally, the study investigated the effects of elevated temperatures on concrete specimens and found that RB-based sustainable concrete showed higher compressive strength retention compared to conventional concrete at a 30% replacement level. Furthermore, weight variation analysis indicated that RB-based concrete had a lower density compared to traditional concrete. Overall, the findings suggest that incorporating RB sand in concrete mixtures could offer a promising solution for sustainable construction practices, contributing to environmental conservation and human health preservation by reducing reliance on natural aggregates and minimizing adverse environmental impacts.

Sanjeet Kumar, Md Asfaque Ansari, Lakshmi Kant and Nitya Nand Jha

Integrating Traditional Knowledge Systems for Wetland Conservation and Management: A Critical Analysis

With traditional knowledge passing through generations and habits of indigenous people, the local communities perform a crucial role in managing the environment and development. It should be the Local communities who should be involved in the conservation and management of the wetland resources, however, increasing government controls and prohibitions are harming wetland conservation, which potentially promotes responsible use habits in the region. This literature review investigates the role of traditional knowledge systems (TKS) in wetland conservation, focusing on four key domains: agriculture, fishing practices, stormwater management, and traditional knowledge of wetland plants and produce harvesting. This review methodologically synthesizes current research to provide a thorough understanding of the contribution of traditional knowledge to wetland conservation efforts. It does this by using a total selection of 68 papers within a range of five to ten articles per category. Using the PRISMA(Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methods of literature review as a guide, this study identifies, evaluates, and synthesizes peer-reviewed and localized publications that examine the application of Traditional knowledge systems to various wetland management contexts, drawing from scholarly databases and pertinent literature sources. By delving into diverse disciplines such as environmental engineering, ecology, and environmental science, the review elucidates the multifaceted ways in which indigenous wisdom informs conservation practices, fosters sustainable resource utilization, and enhances community resilience in wetland ecosystems. Moreover, it examines the challenges and opportunities associated with integrating traditional and scientific knowledge paradigms, emphasizing the need for inclusive and participatory approaches to conservation that respect cultural diversity and local knowledge systems. The results of the literature study have been compiled to highlight several traditional systems for wetland conservation. These include traditional stormwater management in wetland watersheds, resource management by local communities, the use of wetland plants in conservation, traditional fishing practices, traditional agricultural practices, and religious and cultural practices. The findings of this review contribute valuable insights to academia, policy development, and on-the-ground conservation efforts, serving as a foundation for future research and practice aimed at promoting the holistic and equitable stewardship of wetland ecosystems. This paper concludes with suggestions on using traditional knowledge systems in the conservation of wetlands in India, along with the different traditional methods that could be part and parcel of the decision-making system in this field. The results of this paper are highly significant, as they demonstrate the integration of traditional knowledge systems as a method for environmental conservation and management, specifically targeting wetland ecosystems and their biota.

Anushri Barman, Fulena Rajak and Ramakar Jha

Environmental Impact of Al-Dalmaj Marsh Discharge Canal on the Main Outfall Drain River in the Eastern part of Al-Qadisiya City and Predicting the IQ-WQI with Sensitivity Analysis Using BLR

Monitoring water quality changes in any body of water is crucial as it directly relates to climate change. Evaluating the quality and quantity of fresh water for various uses is essential to maintaining safe water sources now and in the future. This study examined the water quality of the Main Outfall Drain River (MOD) in the eastern part of Al-Qadisiya Governorate at three sites over four seasons in 2023, using the Iraqi Water Quality Index (IQ-WQI). In most cases, the concentrations of dissolved oxygen (DO), biochemical oxygen demand (BOD5), and total dissolved solids (TDS) exceeded allowable limits for freshwater and aquatic life protection. The major contributing parameters to the river’s low water quality were TDS, BOD5, turbidity, and DO. The use of the MOD for discharging agricultural effluents led to increased levels of TDS, BOD5, and turbidity. Temporal variation indicated that the summer season had the highest values compared to other seasons due to increased evaporation and low water discharge. Spatial variation showed the IQ-WQI of the sites in descending order from very poor water to unsuitable, with Site 3 having double the TDS concentrations compared to other sites. This increase may be attributed to the impact of the Al-Dalmag Marsh discharge canal, which comes into contact with the MOD at this site. Sensitivity analysis using backward linear regression was applied to predict the IQ-WQI and determine the most influential parameters on the IQ-WQI score. The test was conducted for two sets of water parameters (from the IQ-WQI calculation) and included 7 parameters for each freshwater and aquatic life use, obtaining different models.

Zahraa Z. Al-Janabi, Idrees A. A. Al-Bahathy, Jinan S. Al-Hassany, Rana R. Al-Ani, Ahmed Samir Naje and Afrah A. Maktoof

Characterization of Multiple Heavy Metal Resistant Bacillus cereus IEI-01 Isolated from Industrial Effluent and its In Vitro Bioremediation Potential

Heavy metal (HM) pollution has been a significant issue for the environment and public health. Unmonitored industrial effluents are a major source of HM pollution. However, metallotolerant bacteria thriving in such environments could be potentially useful for bioremediation purposes. In this study, Bacillus cereus IEI-01 was isolated from water samples of Badshahpur Lake, Gurugram, showcasing resilience to HM exposure and thriving under optimal conditions at 37°C and pH 7.0. Morphological and biochemical characterization showed its Gram-positive rod shape and metabolic versatility, including glucose fermentation and nitrate reduction capabilities. Molecular analysis further affirmed its close relation to the Bacillus cereus strain. Dynamic bacterial growth patterns were observed, with typical sigmoidal curves indicating significant growth over 72 h. When exposed to various HMs, the strain IEI-01 exhibited differential tolerance and promoting patterns, with cadmium (Cd) and lead (Pb) compared to other metals. Over 72 h, the strain exhibited substantial removal rates ranging from 60.64% to 87.43% for Cd and 41.87% to 52.62% for Pb. The concentration-dependent bio-removal efficiency of IEI-01 in Cd-spiked cultures displayed a declining trend with increasing concentrations, with removal rates ranging from 80.23% to 60.72% over the same period. These findings highlight the potential of Bacillus cereus IEI-01 for HM bioremediation, particularly at lower concentrations. Its efficacy in removing Cd and Pb from contaminated environments suggests promising applications in environmental cleanup efforts.

Pooja Dua, Abhishek Chauhan, Anuj Ranjan, Jayati Arora, Hardeep Singh Tuli, Seema Ramniwas, Ritu Chauhan, Moyad Shahwan, Amita G. Dimri and Tanu Jindal

Unveiling Microplastic Ignorance: A Study on Knowledge and Awareness Among Pune’s Urban Population – A Mixed Method Approach

Microplastic pollution has become a global concern with potentially severe environmental and health implications. This research explores the level of knowledge and awareness about microplastics among the urban population of Pune, a busy city in India. A mixed-methods approach was employed using a sequential explanatory design. In the first phase, qualitative data were gathered through semi-structured interviews with 18 participants selected via purposive sampling. In the second phase, quantitative data were collected from 100 participants using a survey and convenience sampling. By combining insights from surveys, interviews, and existing literature, the study analyzed the extent to which residents of Pune are informed about microplastic pollution and their willingness to take action. The findings highlight the need for increased awareness campaigns and educational initiatives to address the growing microplastic problem in urban areas. The study concludes that plastics have become an integral part of our lives, necessitating robust mechanisms to eliminate them from daily use.

Manisha Mistry and S. G. Joshi

Deep Learning for Soil Nutrient Prediction and Strategic Crop Recommendations: An Analytic Perspective

Agriculture has been a vital sector for the majority of people, especially in countries like India. However, the increasing need for food production has led to intensive farming practices that have resulted in the deterioration of soil quality. This deterioration in soil quality poses significant challenges to both agricultural productivity and environmental sustainability. To address these challenges, advanced soil nutrient prediction systems that utilize machine learning and deep learning techniques are being developed. These advanced soil nutrient prediction systems utilize various sources of data, such as soil parameters, plant diseases, pests, fertilizer usage, and changes in weather patterns. By mapping and analyzing these data sources, machine learning algorithms can accurately predict the distribution of soil nutrients and other properties essential for precise agricultural practices. A previous study compared machine learning algorithms like SVM and Random Forest with deep learning algorithms CNN and LSTM for predicting crop yields. The most appropriate model is a significant challenge, but several studies have evaluated recommendation system models using deep machine learning techniques. Deep learning models attain accuracy above 90%, while many ML models achieve rates between 90% and 93%. Furthermore, the research seeks to propose specific crop suggestions grounded in soil nutrients for precision agriculture to enhance crop productivity.

P. Latha and P. Kumaresan

Penta Helix Collaboration Model Involving Reserve Component Personnel in Disaster Resilience in Malang Regency

This study aims to analyze the Penta helix collaboration model for involving reserve component personnel in disaster resilience in Malang Regency. A qualitative approach was used with an in-depth interview method involving nine informants from various Penta helix actors, namely academia, business, the community, government, and the Media. The main findings indicate that the Penta helix collaboration model has the potential to enhance disaster resilience in Malang Regency. Its strengths lie in inclusive participation, transparency, clear leadership, and the commitment of stakeholders. However, there are still weaknesses, such as a lack of coordination, limited resources, and suboptimal role understanding that hinder the involvement of reserve component personnel. Each actor makes significant contributions: academics provide knowledge, businesses aid in logistics, communities engage in mitigation and emergency response, the government formulates policies, and the media disseminates information. Major challenges include a lack of coordination, limited resources, miscoordination, bureaucracy, insufficient training, and unclear legal frameworks. Improvement efforts include strengthening coordination, increasing resource capacity, clarifying roles, developing guidelines, and enhancing training. In conclusion, the Penta helix collaboration model in Malang Regency has great potential but requires improvements to enhance its effectiveness, providing insights for stakeholders to strengthen disaster resilience in the region.

D. Muktiyanto, S. Widagdo, M. Istiqomah and R. Parmawati

Identification of arsB Genes in Metal Tolerant Bacterial Strains Isolated from Red Mud Pond of Utkal Alumina, Odisha, India

Exploration of microbial flora in red mud ponds is a topic of economic importance. In this study, we report two bacterial strains isolated from red mud ponds of Utkal Alumina, Odisha India. These strains were identified to be Brevundimonas sp. and Pseudomonas sp. through 16S rDNA analysis which showed more than 99% similarities with their respective clades. The LD50 values showed metal resistance to As, Cr, Cu, and Pb in a range of 2-8 mM. Both the strains showed a high tolerance towards arsenic and lead but a low tolerance towards chromium and copper salts. The bioaccumulation of copper was found to be the maximum and that of arsenic was the minimum. To find out the underlying genetic mechanism of the metal tolerance, a degenerate PCR approach was made to find out the genes responsible for the metal efflux or transformation. Two putative arsB genes could be identified from these two strains. Phylogenetic analysis of deduced amino acid sequences showed similarities with the amino acid sequences of arsB genes of Pseudomonas strains and formed monophyletic clades with their arsB proteins. These strains thus harbor potential genetic mechanisms for metal tolerance. Determination of whole operons and their cloning is the future aspect of the study. Moreover, these bacterial strains have a high potential to accumulate copper and can be used in studies related to biomining of copper.

S. Panigrahi and D. P. Panigrahi

Assessment of 40K and Heavy Metal Levels in Euphrates River of Al-Qadisiyah Governorate

The objective of the current research is to measure the specific activity of 40K and heavy metals in the water samples collected from the Al-Diwaniyah River in Al-Qadisiyah Governorate, Iraq. The activity of 40K in water samples was ascertained using High Purity Germanium Spectrometer (HPGe) detector technology, which is based on a high-resolution gamma spectrometry system, and by using an atomic absorption spectrometer (A.A.S.) to determine the heavy metals of Ni, Cd and Pb, as well as measure some of the physical properties of water samples. The results indicated the concentration of 40K in the water was presented in different concentrations. The lowest value was 2.6±0.5 Bq/L Al-Muhanawiyah, while the highest value was in Al-Diwaniyah center 24.6± 4.0Bq/L. On the other hand, the highest results of Pb, Cd and Ni have been 0.1247, 0.0652 and 0.157 ppm, respectively. While, the results of physics properties were from 7.05 to 8.3 for total dissolved solids (T.D.S.) values were from 2100 to 756.6 mg/L, electrical conductivity values were between 1140 and 3500 ?s/cm, and turbidity values were between 7.0 and 54.5. Based on the results, the concentrations of the 40K and heavy metals indicated that the results are almost slight compared to internationally accepted values.

S. K. Ibrahiem and H. A. Walli

Use of Geopolymerized Fly Ash with GGBS as a Barrier for Waste Containment Facilities

The present paper reports the results of experimental investigations performed to examine the feasibility of using fly ash (FA) and ground-granulated blast furnace slag (GGBS) geopolymers as barrier materials for waste containment facilities. The alkaline geopolymer is a blend of FA and GGBS with sodium hydroxide in concentrations varying from 1 to 5. The important properties of most barrier materials include strength and hydraulic conductivity. While FA can develop compressive strength through pozzolanic reactions, polymerized FA develops tensile strength. For the construction of barriers for landfills with higher heights, tensile strength assumes importance. To further improve the strength, FA can be amended with GGBS. Results indicate that the FA-GGBS mixture in the ratio of 40:60, when cured, exhibited higher strength at any molar concentration. Further, the hydraulic conductivity of the material, which is predominant for barriers in waste containment facilities, is studied. To examine the impact of the presence of heavy metals in the leachates, batch adsorption studies were executed on a 40?- 60% GGBS mixture. Leachate with nickel and lead were adapted for their retention within the barrier. It has been observed that the geopolymerized FA and GGBS can retain ionic metals. The retention capacity of heavy metals is due to their precipitation in the voids of the barrier material enabling further reduction in the hydraulic conductivity making geopolymer a sustainable barrier material.

S. S. S. Saranya and S. N. Maya Naik

Identification and Functional Annotation of Echium plantagineum Metallothioneins for Reduction in Heavy Metals in Soil Using Molecular Docking

Heavy metal contamination in soil poses a significant environmental challenge globally, affecting agricultural productivity and human health. Phytoremediation, using plants to extract and detoxify heavy metals, presents a promising solution. This study investigates the novel potential of Echium plantagineum, a metal-tolerant species, in phytostabilization and phytoremediation and explores the role of metallothioneins in heavy metal reduction. A comprehensive literature review identified known metallothioneins involved in heavy metal reduction across various plant species. Moreover, genome annotation and gene prediction of Echium plantagineum were performed, predicting a total of 39,520 proteins. This comprehensive protein list facilitates the identification of metallothioneins or other metal-related proteins with potential functional roles in heavy metal tolerance, suggesting new targets to improve the effectiveness of phytoremediation. The sequences of these proteins were utilized to construct a protein BLAST database, against which known metallothioneins protein sequences from other plant species were subjected to BLAST searches, resulting in 41 top hits. Subsequent 3D modeling, structural analysis, protein-metal virtual screening, and functional annotation of the proteins revealed novel high affinities of Ctr copper transporter, zinc/iron permease, and nicotianamine synthase proteins with nickel, zinc, and zinc ion, suggesting their unexplored roles in the uptake of aforementioned ligands. Notably, this study identifies novel metallothioneins proteins in Echium plantagineum, highlighting their role in metal tolerance and phytoremediation.

Y. S. Rasheed, M. S. AL-Janaby and M. H. Abbas

Exploring the Water Crisis and Viability of Unregulated Groundwater in India: An Analysis

Water conservation and management are significant features of ancient Indian Vedic culture. However, India’s rapid industrialization, globalization, and urbanization have posed a serious threat to this practice. Many metropolitan cities and other cities will likely have groundwater depletion in the near future. As per the ‘United Nations University - Institute for Environment and Human Security (UNU-EHS)’ report titled “The 2023 Interconnected Disaster Risks Report”, India is close to reaching its tipping point of groundwater depletion. It also highlighted that 27 of 31 major global aquifers are depleting faster than they can be replenished. A combination of factors, including climate change, private land ownership, mechanical pumping, etc., led to the depletion of groundwater and water scarcity for farming and other purposes. Additionally, NITI Aayog and the Central Water Commission have released several reports that highlighted the plight of the country’s aquifers. India’s groundwater resources are not only a potential source for agricultural, domestic, and industrial needs in the country but also a threat to its sustainable development and equitable distribution. At present, there is no central law on the groundwater regulation. Although the Model Groundwater (Sustainable Management) Bill 2017 is an affirmative step, its effectiveness depends on implementation by state governments, the establishment of robust local institutions, and removing political incentives from groundwater management. Until now, landowners have enjoyed monopolistic access to groundwater due to common laws that recognize uncontrolled rights over the resources. These restrictions have perpetuated gross inequities in accessing groundwater, which makes a remarkable shift from previous laws. This paper evaluates India’s existing groundwater laws to achieve sustainability, equity, and the effective execution of water rights. It also delves into the lacunae in the existing laws and suggestive measures to control the challenges of groundwater in India.

Aditi Nidhi and J. Lakshmi Charan

Utilization of Leiotrametes menziesii BRB 73 for Decolorization of Commercial Direct Dyes Mixture with Different Culture Conditions

Mycoremediation is classified as an inexpensive, environmentally friendly, and effective technique to reduce wastewater. Leiotrametes menziesii BRB 73 was one of the White Rot Fungi (WRF) that has the potential to degrade dyes. Suitable environmental conditions can optimize dye decolorization results. This study aims to investigate optimal environmental conditions such as time incubation, concentration of dyes, pH, CuSO4, and glucose concentration against decolorization of a mixture of direct dyes and enzyme activity (laccase and MnP). The mixture of commercial direct dyes used contains direct turquoise (DT), direct orange (DO), and direct yellow (DY) dyes. Decolorization was measured using a spectrophotometer at 400-700 nm. Laccase and MnP assay using ABTS and 2.6 DMP as substrate, respectively. The highest decolorization by Leiotrametes menziesii BRB 73 was produced at 54.3% at 96 hours and increased to 67% at a dye concentration of 500 mg.L-1. Meanwhile, the highest laccase and MnP activities were 215 U.L-1 and 39 U.L-1, respectively. pH range was quite wide, ranging from pH 5.5-9, supported by stable MnP activity from pH 3-7. CuSO4 inducers were not required for the decolorization of these dyes. Decolorization was optimal at the addition of 1% glucose, while enzyme activities were 0.5% glucose. Decolorization of dyes by Leiotrametes menziesii BRB 73 was indicated through degradation pathways involving laccase and MnP enzymes. This isolate has a high tolerance to dye concentrations, a wide pH range, and low carbon requirements. Thus, it was recommended as a mycoremediation agent.

I. Apriani, D. H. Y. Yanto, P. L. Hariani, H. Widjajanti and O. D Nurhayat

Odor Emissions from Municipal Solid Waste Open Dumps Constituting Health Problems Due to their Composition, Ecological Impacts and Potential Health Risks

The presence of Hydrogen sulfide, Methane, Volatile Organic Compounds (VOCs), and other odorous compounds in the ambient air is the root cause of the offensive odor emitting from the MSW dumping yard. Composition features and health risks associated with odor emissions concentrations in MSW dumping yards. This paper aims to provide an overview of research on health problems due to their composition, ecological impacts, and potential health risks of volatile organic compounds (VOCs) and to examine the relationship between VOC exposure and chronic illnesses in humans and the environment. In this study, a comprehensive investigation of VOC odor emission from an urban MSW dumping site has been performed. The VOC odor sample was analyzed using the GC-MS technique. The maximum VOCs concentration reported is due to tert - butylbenzene at 1.41?g.m-3 and the minimum is due to Sec-butylbenzene at 0.07 ?g.m-3. Scientific databases, including Google Scholar, California Office of Environmental Health Hazard Assessment (OEHHA), and US EPA (Integrated Risk Information System (IRIS), were searched extensively using a bibliographic technique, in addition to a case study on MSW dumping yard workers. The findings of epidemiologic and experimental research, the emission of odors as a result of volatile organic compounds (VOCs) can cause a variety of non-cancerous health effects that are linked to abnormal functioning of the body’s vital organs, including the nervous and coronary, and pulmonary systems. It can also have minimal impact on the environment by causing global warming and ozone layer depletion. The odor emissions from the dumpsite pose both carcinogenic and noncarcinogenic risks to the health of the individuals participating in the dumping yard. As a result of these results, it is important to manage odor emissions (VOCs) during composting and take steps to reduce their negative effects on the environment and public health.

S. Srinivasan and R. Divahar

Enhancing Social Capital Development Through Environmental Management Model in the Periphery Area of Banjarmasin City

The objective of this research was to determine an environmental management model that integrates social, economic, geographic, and community aspects to promote the growth of social capital among residents in the periphery area of Banjarmasin City. The analysis was conducted with 150 respondents selected through purposive sampling based on specific criteria. A quantitative descriptive method was adopted, and the structural model analysis was conducted using SmartPLS 3.0 software. The structural model analysis consisted of (a) formulation of the structural model theory, (b) analysis of the outer model, (c) analysis of the inner model, and (d) hypothesis testing. The field data analysis and calculations using SmartPLS 3.0 software showed an R² value of 0.855. The value showed that the economic, social, geographic, and community indicators could indeed contribute to the development of social capital, including norms, culture, perceptions, and behaviors among residents in the periphery area. Approximately 85.5% of the variation could be explained, while the remaining 14.5% might be influenced by other factors. In terms of the development of social capital, environmental management model was shown by (1) economic, with a T-statistic value of 2.627 and a P-value of 0.009, (2) geographic, with a T-statistic value of 1.982 and a P-value of 0.048, (3) community, with a T-statistic value of 4.211 and a P-value of 0.000, and (4) social with a T-statistic value of 2.057 and a P-value of 0.040. Since the T-statistic values exceeded the T-table threshold of 1.96, and the P-values were less than the significance level of 0.05, it could be concluded that economic, geographic, community, and social, environmental management in the periphery area served as valuable indicators for fostering the sustainable development of social capital among residents of Banjarmasin City.

E. Normelani, D. Arisanty, Ahmad, M. Efendi, I. K. Hadi, R. Noortyani, Rusdiansyah and R. P. Salan

The Impact of Iron Oxide Nanoparticles on Crude Oil Biodegradation with Bacterial Consortium

This study was performed to determine the effect of synthesized iron oxide nanoparticles on the consortium of isolated bacterial strains from the crude oil-contaminated site. The iron oxide nanoparticle (FeNPs) was synthesized by chemical co-precipitation method and confirmed with its characterization results such as UV-spectroscopy, X-ray Diffraction (XRD), High-Resolution Scanning Electron Microscopy (HR-SEM), Zeta potential and Particle Size Analyser studies. The isolates were cultured in LBBH (Luria-Bertani and Bushnell Haas) medium containing crude oil as a carbon source with incubation for 7 days. This study was performed using FeNPs with four different concentrations (10, 50, 100 and 150mg) incorporated with the isolated microbes clubbed as a consortium. The rate of biodegradation was investigated by gas chromatography-mass spectrometry (GC-MS) analysis. By comparing the control sample (crude oil) there was a better degradation in FeNPs added bacterial culture than consortium degradation. The obtained results conclude that studying different concentrations of FeNPs with the consortium of isolated microbes showed degradation differences, whereas 150mg concentration has a better degradation effect compared to other variations. It should be carried out to avoid agglomeration of nanoparticles by improving their biocompatibility and quality to influence the biodegradation of crude oil.

Suganya Kalaiarasu, K. J. Sharmila, Santhiya Jayakumar, Sreekumar Palanikumar and Priya Chokkalingam

Relative Saccharification of Sawdust Materials at Different Incubation pH-values

The uncontrolled production of waste is a daily phenomenon that is experienced by most global communities, and the situation worsens due to the lack of effective waste management procedures. Solid waste such as sawdust is primarily produced by the forestry industry and although it is utilized by certain countries as briquettes to make fire or as an absorbent to clean fluid spillage as well as a component of ceilings, most of the sawdust along the Lagos Lagoon in Nigeria is left unattended as waste, contributing to environmental pollution. Cellulose, composed of glucose units is a structural component of sawdust and when saccharified the resulting glucose can be fermented into renewable substances such as bio-ethanol. The cellulose degradation process can be performed with a cellulase enzyme such as available in the fungus Aspergillus niger and during the current investigation, this enzyme system was used to bio-convert the cellulose component of sawdust from ten different trees along the Lagoon into glucose. To increase the cellulase action all sawdust materials were delignified before cellulase action with the main aim of determining the optimum pH value for maximum degradation of the various sawdust materials. The pH-related saccharification profile of each type of sawdust was constructed as well as the relative percentage of saccharification and it was concluded that all the materials were optimum degraded at acidic pH-values which varied between pH 5.0 and pH 6.0 that are like optimum pH-values reported for the other types of cellulose materials.

N. A. Ndukwe, J. B. M. Seeletse and J. P. H. van Wyk

Conversion of Citrus Fruit Peel into a Value-Added Product, Bio-Oil

The present study aimed to investigate the bio-oil from the blended citrus fruit peel by hydrothermal liquefaction process. Huge amounts of fruit peel waste are disposed of in the open environment without any proper management. Such fruit peels are considered a potential bio-resource to be converted into economically valuable products like bio-oil. Since the citrus fruit peel is a rich source of moisture content, a hydrothermal liquefaction process was introduced to produce bio-oil from cellulose, and lignocellulose. The experimental design against temperature, time, and biomass concentration optimization was carried out which was confirmed by the ANOVA f and p test that reveals time and temperature influenced the bio-oil yield drastically. As the time and temperature rise more than 60 min and 280°C, the volatile substance present in the biomass converts itself into solid residue which has a negative impact on bio-oil production, compared with biomass concentration. The maximum yield of bio-oil was recorded as 29.4% at 280°C at 60min reaction time and 80g/200mL concentration as optimized parameters. The GCMS reveals the presence of hydrocarbons and alkanethiol which are flammable and hold the standards of commercial transportation fuel but hold nitrogen and oxygen-containing compounds to pull down the fuel standards. Thus, the produced bio-oil can be blended with the transportation fuel after the upgradation process for efficient results.

M. Subathra and R. Devika

Assessing Natural Disaster Vulnerability in Indonesia Using a Weighted Index Method

Natural disasters are natural activities that can disrupt various aspects. Natural disasters cannot be avoided, but the impact of natural disasters can be minimized through mitigation. This can be known through event history to determine an area’s vulnerability to natural disasters. This research aims to determine regional natural disaster vulnerability by calculating the natural disaster index. The data used in this research refers to data from the 2021 PODES data collection, which contains the intensity of natural disasters and casualties according to the type of natural disaster in Indonesia in 2020. The method used for the calculation is the weighted index method. The results of this research produced 5 clusters based on the level of natural disaster vulnerability according to sub-district/village. The top five provinces in Indonesia that have the highest natural disaster-prone areas are Aceh, North Sumatra, West Java, East Java, and Central Sulawesi. Research shows that sub-districts/villages in Indonesia are known according to their level of vulnerability to natural disasters. These results can be used as a reference for the government to carry out mitigation so that accelerated development in the local area can continue.

Faradiba Faradiba, St. Fatimah Azzahra, Taat Guswantoro, Lodewik Zet and Nathasya Grisella Manullang

Waste to Wealth: An Approach Towards Sustainable Construction from Pollutants

The global construction industry faces significant challenges related to environmental sustainability and resource scarcity. Researchers are increasingly exploring innovative approaches to repurpose waste materials, aiming to mitigate environmental pollution while producing value-added construction materials. This paper reviews the sustainability of current methodologies for synthesizing construction materials from pollutants, considering industrial by-products, post-consumer waste, and pollutants as potential feedstocks. The evaluation focuses on various recycling, upcycling, and bioconversion techniques, assessing their environmental and technical feasibility. The paper also discusses case studies of successful implementations and emerging trends in the field to highlight practical applications and future research directions. Ultimately, the paper advocates for sustainable practices in the construction sector by promoting a circular economy model, where waste is transformed into valuable resources, fostering wealth development.

Kasturima Das, Bikramjit Goswami and Girija T. R.

Isolation of Freshwater Algae from Some Reservoirs of Chiang Mai Rajabhat University, Mae Rim Campus, Chiang Mai

A study on the biodiversity and isolation of freshwater algae from some reservoirs of Mae Rim Campus, Chiang Mai Rajabhat University, Chiang Mai Province, collected algal samples and assessed the water quality at four reservoirs, including Wiang Bua Reservoir, Ma Lang Por Reservoir, Education Auditorium reservoir, and Kru Noi Garden Reservoir. One hundred and six species of algae belonging to 8 phyla were found. The most prominent species were Cylindrospermopsis philippinensis, Trachelomonas volvocina, Peridiniopsis sp., and Coelastrum astroideum, respectively. The overall water quality was categorized as clean according to some physical and chemical parameters by the National Environmental Board of Thailand. However, high BOD values were detected at some sampling points. The algae isolation included 8 isolates, which could be utilized for various purposes in the future, such as biomass, protein, polysaccharide energy, bioactive compounds, antioxidant substances, wastewater treatment, environmental indicators, algal toxins, and phylogenetic studies. All strains were stored at the Centre of Excellence of Biodiversity Research and Implementation for Community, Chiang Mai Rajabhat University, for conservation and future development purposes.

Pongpan Leelahakriengkrai, Phitsanuphakhin Chaimongkhon and Tatporn Kunpradid

Adoption Intention of Technology-Based Water Generation and Management Through W-TAM

Increasing concerns related to climate change and extensive use of water resources have depleted the available water for use. For water as an essential requirement for humans to carry onto their day-to-day chores, access and availability of water becomes the highest priority. Technology-based solutions support water generation, filtration, quality testing, water distribution, and many other areas. The present paper dwells on the user acceptance of these technologies. A conceptual model was developed through a literature review and named as Water-Technology Acceptance Model (W-TAM). The data was collected through a self-designed survey instrument to empirically test the proposed model. Analysis of this data was done with confirmatory factor analysis and structural equation modeling. It was observed that the actual use of these technologies depends on the ease of use and usefulness. Attitude to use them also matters. Although perceived risks and affordability did affect the use of W-TAM, trust, and regulatory aspects did not confirm their role in the adaptation of W-TAM. These findings will provide meaningful insights to the stakeholders and will help them in the practical implementation of these water-based technologies. This may also help service providers in the formulation of policies for technology-based water generation.

Rajashree Jain, Sarika Sharma, Deepthi Setlur, Aditya Bajaj and Dhwani Parekh

Evaluation of Physicochemical Parameters in Sandy Soils After Applying Biochar as an Organic Amendment

Sandy soils are not suitable for agriculture because they do not retain nutrients, and water drains quickly. The biochar applied to these soils provides nutrients, improves their fertility, and favors crop yields. Thus, this work aimed to evaluate the effect of the application of pine biochar and the pruning of green areas obtained by slow pyrolysis on the physicochemical attributes of sandy soil. For this purpose, a greenhouse experiment was conducted in fifteen pots randomly divided into three groups (five replicas) of treatment depending on the dose of biochar: 0% (0 g/pot, T1 control treatment), 10% (100 g/pot, T2), and 25% (250 g/pot, T3) calculated according to the volume of the soil. Likewise, 05 seeds of turnip (Brassica rapa subsp. rapa) were placed in each pot, where their germination and growth were monitored. Application of biochar reported an increase in organic matter, porosity, pH, electrical conductivity, cation exchange capacity, NO3-, K, and Mg (without significant differences) and a reduction in bulk density, P, and Ca (without significant differences). These behaviors were higher in T3, followed by T2, compared to T1. Similarly, T3 (68%, 7.5 ± 0.9 cm) showed a higher number of turnip germinations and growth compared to T2 (48%, 7 ± 0.6 cm) and T1 (28% 6 ± 0.4 cm). The biochar applied improved the attributes of the sandy soil, strengthening it against possible erosion and promoting the preservation of terrestrial ecosystems.

Alex H. D. C, Gina L. C., Nicole M. S., Daniel A.T., Ronald J. L., Armando C. C., Geovany V. C., Julio M. A. and Roger A. R.

GIS-Based Assessment of Soil Erosion Using the Revised Universal Soil Loss Equation (RUSLE) Model in Morigaon District, Assam, India

Soil erosion in the agricultural landscape of Assam has been impacting the livelihoods of millions. In administrative regions like districts, which are vulnerable to natural disasters like floods and bank erosion, GIS-based soil erosion estimating studies can help planners and policymakers identify areas of soil erosion to implement scientific conservation measures. The main purpose of this study is to estimate soil loss and to determine soil loss zones in the Morigaon district of Assam. The Revised Universal Soil Loss Equation (RUSLE) combined with GIS has been incorporated into the present study. The five parameters of RUSLE, namely, rainfall-runoff erosivity, soil erodibility, topographic factor, cover management, and conservation practices, are individually estimated from relevant and authentic data sources, and all these parameters are quantified in GIS. The research findings show that 46.89% of areas in the district are in moderate soil loss zone, eroding 0.78 ton/ha/year, 34.27% of areas are in low soil loss zone, 15.36% of areas are in high soil loss zone, eroding about 12.22 ton/ha/year and 3.47% of areas are in a very high soil loss zone, eroding 192.8 ton/ha/year. The high soil loss zones mainly cover the riverine areas and bare lands in the district. As per our estimation, there is an average of 205.85 tonnes of soil loss in the district per hectare per year.

Ananya Saikia, Monjit Borthakur and Bikash Jyoti Gautam

The Synthesis of AgNPs/SAC Using Banana Frond Extract as a Bioreducing Agent and its Application as Photocatalyst in Methylene Blue Degradation

Silver nanoparticles (AgNPs) were synthesized utilizing various methods, including bioreducing agents. The synthesis involved the use of silver nitrate (AgNO3) as the precursor and banana frond extract as the bioreducing agent, with different volume ratios being tested. Subsequently, the most optimal variant of AgNPs was immobilized onto activated carbon (AC) derived from soybean seeds. The AgNPs/SAC composite was subjected to thorough characterization using UV-Vis diffuse reflectance spectroscopy and X-ray diffraction (XRD). A series of degradation experiments were then conducted using methylene blue, with the reaction duration following a specific protocol. A comparison of methylene blue concentrations before and after the photodegradation process was made to assess the reaction’s efficacy. The findings revealed that the ideal ratio between the bioreducing agent and precursor was 9:30 (v/v). The AgNPs/SAC composite exhibited a peak absorption at a wavelength of 420-440 nm. The UV-DRS characterization of AgNPs/SAC unveiled a band gap energy of 1.52 eV. The AgNPs supported on AC displayed a peak absorption wavelength of 5,438.5 nm, showcasing a face-centered cubic (FCC) structure. The AgNPs/SAC effectively decreased the concentration of methylene blue through a combination of adsorption and photodegradation mechanisms, achieving efficiencies of 35.3813% and 81.1636%, respectively. The AgNPs/SAC composite demonstrates significant potential for efficient and sustainable water treatment.

Anti Kolonial Prodjosantoso, Tengku Khadijah Nurul Hanifah, Maximus Pranjoto Utomo, Cornelia Budimarwanti and Lis Permana Sari

High-Performance, Eco-Friendly Blocks from Iron Ore Tailings: A Solution for Sustainable Construction

Goa’s iron ore mining industry has generated over 7.7 million tonnes of iron ore tailings (IOTs) in the past two decades. These IOTs pose a significant environmental threat due to heavy metal contamination, dust generation, and acid mine drainage. While some IOTs are used for backfilling, the majority are stored in tailings storage facilities (TSFs), posing long-term risks to surrounding water resources, ecosystems, and land use. Large-scale utilization technologies are crucial for sustainable IOT management. This study investigates the feasibility of incorporating IOTs in construction block production, aiming for high-volume waste consumption and improved resource efficiency. This approach offers a potential pathway to remediate the environmental impact of IOTs. The proposed method replaces 85% of the cement content with a cementitious material comprising 65% Ground Granulated Blast Furnace Slag (GGBS), 10% Fly Ash, and 10% Lime. It also utilizes IOTs entirely as a substitute for sand, with ceramic waste partially replacing coarse aggregates. While partial substitution of coarse aggregates with ceramic waste was attempted, it decreased workability. The optimal mix design, achieving the highest compressive strength, utilizes 15?ment, 65% GGBS, 10% Fly Ash and Lime, and 100% IOTs as fine aggregate with 100?saltic aggregates. This formulation successfully demonstrates the potential use of IOTs in manufacturing construction blocks that reach compressive strengths of 10.91 N.mm-² and 15.92 N.mm-² at 7 and 28 days, respectively, satisfying the IS 2185-Part 1 (2005) code requirement. The block density was 2.20 g.cm-³. This research demonstrates the potential to convert a significant environmental challenge into a sustainable solution. By utilizing IOTs in construction block production, we can effectively achieve waste remediation; and create resource-efficient and eco-friendly building materials, offering substantial dual benefits for Goa’s environment and construction sector.

S. A. Kakodkar and Ulhas G. Sawaiker

Phenopalynological Study of Some Ornamental Species in the Giza Region, Egypt

Mature flower buds were collected from twenty species planted on the different roads in the Giza district from May to September 2022 and 2023. The pollen grains were examined carefully and photographed using a 40x10x magnification lens in an OPTICA (B-150D) light microscope fitted with a USB digital video Camera and Computer Software. At least 30 pollen grains/each species were measured and described. Non-catalyzed pollens were sputtered onto Aluminum stubs, coated with 30 nm gold, and examined and photographed using JEOL JSL IT 200 SEM. The morphological characters of the pollen grains were examined. According to the pollen size Acalypha wilkesiana and Tecoma stans were the smallest pollen grains, from 20.0?m to 26.0?m, which facilitate their introduction to the nose causing asthma and rhinitis. Clerodendrum inerme pollen grains have echinate exine surface, which causes allergic symptoms more than the psilate ones. Plumbago capensis has intectate exine with echinate columella causing human disorders. This study demonstrates the critical position of air pollution in this area with the change in the phenological aspects of the plants resulting in producing immature pollen grains in huge amounts, which cause human disorders and pollinosis. Our results showed that the studied species can induce allergy in one way or another if we consider the situation of the studied area, weather pattern, and pollen characteristics.

W. K. Taia, W. M. Amer, A. B. Hamed and A. M. Abd El-Maged

Isolation, Identification, and Characterization of Putative Dye-Degrading Bacteria from Polluted Soil: Bioremediation Investigations

The residual dye within the soil from the synthetic dye manufacturing and fabric industries is a global state of affairs. The discharge consists of an excessive content of pigments and other components, creating complicated structures. It leads to damage to the soil structure and its fertility. Amid existing amputation methods, microbial remediation takes significant consideration owing to its subordinate charge, sophisticated proficiency, and fewer influences on the milieu. The current study was premeditated for the seclusion and portrayal of azo dye- dye-decolorizing bacteria, which is a criterion for emerging a microorganism-facilitated treatment of adulterating dyes. In this present investigation, twenty sorts of bacteria that were talented to decolorize seven kinds of azo dyes (Crystal Violet, Methylene Blue, Safranine, Congo Red, Methyl Orange, Malachite Green, and Carbol Fuchsin) were isolated from dye-polluted soil from the dying industry near the railway station; in Calicut. Based on 16S rDNA scrutiny, the most resourceful decolourizing bacteria for these azo dyes was identified as Priestia megaterium strain NRBC 15308. After characterization, Priestia megaterium was found to be optimally nurtured at 35°C, on a pH of 7, with a 1.5% glucose concentration in a minimal salt medium. 100?colorization of a 6% dye solution was found at optimal conditions by Priestia megaterium. Priestia megaterium can decolorize cotton and gauze suspended in the dye solution in 24 hours. Bioremediation studies with the isolate proved that the inhibition effect of the dye solution on seed germination could be removed by the application of Prestia megaterium. The isolation of Priestia megaterium strain NRBC 15308 as a dye-degrading bacterium holds immense promise for remediating dye-contaminated soil.

M. M. Sahila, M. Shonima Govindan, N. K. Shainy, P. Nubla and M. Kulandhaivel

The Potential of Blue Light as a Disinfection Strategy in Indoor Environments

Microbially contaminated objects used in everyday life have been shown to impact human health by harboring infections through direct or indirect contact. For this reason, the development of alternative methods for bacterial elimination that do not lead to resistant microorganisms, large quantities of residues, or human cytotoxicity is warranted. Due to their proven bactericidal power, the use of electromagnetic waves lower than ultraviolet-C radiation would constitute a possible alternative. The main aim of this research was to determine the effect of 462 nm radiation emitted by light-emitting diodes (LEDs) on the most frequent bacteria contaminating everyday objects and surfaces in residential and hospital environments. The rationale behind the selection of this specific frequency within the blue light spectrum, in contrast to previous research exploring the application of higher frequencies, was its safety for individuals’ eyes and skin. The findings suggest that the use of low-frequency blue light can be effective in destroying environmental microorganisms stemming from the skin microbiome and mucous membranes, and even fecal bacteria, present in the surfaces of everyday objects such as inter alia, mobile phones, remote controls, credit cards, and of which some present high antibiotic resistance.

F. Llinares Pinel, M. J. Pozuelo de Felipe, D. Uruburu Ferrón, D. Baeza Moyano, S. Bueno Fernández, T. Awad Parada and R.A. González Lezcano

Evaluation of Toxicity of Few Novel Insecticides Against Different Aphid Species (Rhopalosiphum maidis, Myzus persicae, Liphaphis erysimi)

Aphids are important insect pests and are considered a major threat to various crops. In the laboratory experiment, our objective is to assess the toxicity level of some newer synthetic insecticides, viz. Imidacloprid, Flonicamid, and Spirotetramat against different species of aphids viz. maize leaf aphids (Rhopalosiphum maidis), green peach aphids (Myzus persicae), and mustard aphids (Liphaphis erysimi). The leaf dip bioassay was conducted to evaluate the LC50 and LT50 values. Among these novel molecules, Spirotetramat was the most toxic insecticide against R. maidis and M. persicae, with median lethal concentrations (LC50) of 0.68 and 3.99 ppm, and Flonicamid was the most toxic against L. erysimi with an LC50 value of 5.79 ppm. The median lethal concentrations for the Imidacloprid, Flonicamid, and Spirotetramat are different for each species of aphids. The LT50 values of the given insecticides revealed that the Imidacloprid has the potential for giving effective control of R. maidis, M. persicae, and L. erysimi species, as evidenced by the shorter time required for 50% mortality with LT50 values of 44.53, 49.19 and 44.90 hrs respectively with median lethal concentrations of 4.20, 5.14 and 10.86 ppm. The results indicated variations in toxicity among these different chemicals against different insect species.

Ajinkya Markad, Pritha Ghosh and Matangi Mishra

Using Immobilized Algae (Scenendesmus quadricauda) to Reduce Copper Element Toxicity in Common Carp Fish (Cyprinus carpio)

The study assessed the efficiency of immobilized algae (Scenedesmus quadricauda (Turpin) Brébisson) in treating copper toxicity in common carp fish. Acute toxicity of copper towards carp fish was determined. Fish were exposed in aqueous tanks to different heavy metal concentrations (10, 15, 25, and 35 ppm) for 96 h to examine their response. The lethal concentration (LC50) of copper for common carp over 96 h was found to be 1.4 ppm, with fish mortality increasing gradually with higher metal concentrations. Subsequently, half of the LC50 concentration (0.7 ppm) was used as a chronic toxicity concentration, and fish were treated for 21 days to assess copper accumulation in their gills and muscles. Copper concentration in gills on day 5 of the experiment was 16.89 ± 2.2 mg.kg-1 (Mean ± S.D), a significant increase from in muscles, which recorded 10.72 ± 1.1 mg.kg-1 (Mean ± S.D). On day 21, the copper concentration decreased significantly in both gills (4.73 ± 0.5 mg.kg-1) and muscles (8.4 ± 4.5 mg.kg-1) compared to the control group (significant LSD 0.05). But the copper and algae group recorded on day 21 of the experiment (a significant decrease LSD 0.05) in both the gills (mg.kg-1) Mean± S.D) (4.73±0.5) and the muscles (mg.kg-1) Mean± S.D) (8.4±4.5) compared to the copper group. The removal rate in the gills was 75.57%, and in the muscles was 21.17%. Therefore, treatment with immobilized algae is an efficient and promising method for treating copper toxicity in aquatic environments.

Athraa Ismaal, Jasim M. Salman and Moayed J. Yass

Estimation of Flood Hazard Zones of Noa River Basin Using Maximum Entropy Model in GIS

This study aims to develop a comprehensive flood hazard map for effective hazard management in the Noa river basin, located in Assam, India, through the integration of Geographic Information System (GIS) tools and a Maximum Entropy (MaxEnt) model. The MaxEnt machine learning algorithm was employed, utilizing eight selected geographic and environmental parameters as predictors to generate the flood hazard map. The accuracy of the generated map was evaluated using the Area Under the Curve (AUC) metric. Key findings of the study identified elevation and slope as critical parameters in the assessment of flood risk. Results revealed that the flood hazard map produced by the MaxEnt model achieved an AUC value of 0.85, indicating high predictive accuracy. The research underscores the significance of flood hazard maps as essential tools for policymakers, enabling the identification of areas vulnerable to severe environmental and economic damage. By providing a reliable and precise assessment of flood-prone zones, this study contributes valuable insights for the formulation of effective flood management strategies and mitigation measures. The implementation of such hazard maps is crucial in enhancing preparedness and resilience against flooding events, ultimately safeguarding lives, property, and infrastructure in the Noa River basin.

Nilotpal Kalita, Niranjan Bhattacharjee, Nirmali Sarmah and Manash Jyoti Nath

Wind Analysis for Power Generation in the South of Iraq

The spectrum of the wind speed is expressed as the total wind speed that results from events split up into space, time, or both. It is the relationship shown between the energy or magnitude of any given parameter versus the frequency. In this study, the spectra of the wind speed at the Al-Reem site in Iraq were presented. Since the goal of the current research is to analyze wind speed and direction using the Fast-Fourier-Transform, experimental measurements for the wind speed and wind direction were taken every ten minutes for a year, from December 2014 to December 2015 at heights (10, 30, 50 m). Based on the performance of the Fast-Fourier-Transform, the peak with the highest spectral density, measured at 226,236.282 m/s at the frequency of 2 Hz, was found to be at a height of 50 m throughout the night, while the peak with the lowest height level. The spectral density was 115,863.7 m/s at a frequency of 2 Hz, at a height of (10 m) all into the night. Winds coming from the west and northwest were the most common direction in the region. In the morning, the wind was blowing faster than at night.

Taghreed Ali Abbas, Monim H. Al-Jiboori and Amani I. Altmimi

Food and Water Safety Surveillance at Galala Port in Ambon, Indonesia: An Investigation Study

The port is a place for ships as sea transportation to dock. The port, as a place of entry and exit for goods or passengers from various regions, places, and environments, encourages the potential for disease transmission to a new environment. Pathogens present in the environment can directly contact the human body through air, touch, and transmission through food around areas with high mobilization. Therefore, this study aims to look at the results of hygiene observations and laboratory testing related to food, drinking water, and air samples at Galala Port, Ambon City. This study used descriptive research with a cross-sectional research design. From all parameter examination results, several examination results do not meet the standards such as food microbiology examination results (E. coli bacteria > 3.6MPN/gr), sanitation (walls and floors are not watertight), the presence of mosquito larvae (seven Aedes albopictus mosquito larvae), drinking water microbiology (total Coliforms 64 CFU.100 mL-1), and clean water microbiology (E. coli > 250 CFU. 100 mL-1 and total Coliforms 8 CFU.100 mL-1). Therefore, it can be concluded that the inspection of restaurants carried out at Galala port, Ambon City, is not appropriate and does not meet the standards according to the Minister of Health Decree number 942 of 2003.

E. Fikri, Y. W. Firmansyah, S. Suhardono, W. Mikana and L. Y. J. Noya

The Saprobic Index for Water Quality Based on Fish Aquaculture: A Case Study of White Snapper (Lates calcarifer) in Floating Net Cages at Sendang Biru Water, Indonesia

The impact of water organic pollution from leftover fish feed and metabolic waste in floating net cages (FNC) aquaculture can lead to detrimental effects on coastal marine biota. This underscores the necessity for continuous monitoring of water quality in areas surrounding FNCs to mitigate the environmental impacts of aquaculture. One method of evaluating water quality is through the Saprobic Index, which quantitatively analyzes pollution status based on the presence and composition of various organisms, including plankton. This study aims to evaluate the organic pollution potential derived from fish feed in the vicinity of the FNCs at Sendang Biru waters by employing the Saprobic Index. The research identified five classes of phytoplankton in the FNC area: Bacillariophyceae, Dinophyceae, Chrysophyceae, Cyanophyceae, and Globothalamea. Analysis of the phytoplankton composition indicated that the waters surrounding Sendang Biru FNC can be classified as ranging from Oligosaprobic to ?-Meso/Oligosaprobic. These findings suggest that the aquaculture practices utilizing the FNC system contribute to a light level of organic pollution in the water. This emphasizes the importance of effective management and monitoring strategies to minimize the environmental impact and ensure the sustainability of aquaculture in coastal marine ecosystems.

Dewi Hidayati, Rifqi Aldrian Abrar Syauqa, Dian Saptarini, Carolyn Melissa Payus, Nur Syahroni and Yeyes Mulyadi

Studies of Outdoor Thermal Comfort in Bogor Botanical Gardens

This study investigates the use of thermal indexes, specifically Physiologically Equivalent Temperature (PET) and Universal Thermal Climate Index (UTCI), to determine outdoor comfort in the Bogor Botanical Gardens (KRB). This park is centrally located in Bogor city, with elevations ranging from 215-260 m above sea level. The thermal sensation was determined using seven references: PET in Europe, Taiwan, Tianjin, Tel Aviv, and UTCI in the Mediterranean, Tianjin, and general contexts. The study involved 284 visitors surveyed for their thermal comfort perceptions. Findings indicate that, based on thermal sensation criteria from the seven references, KRB is generally not within the comfort zone throughout the year, except for the PET in Taiwan, which is comfortable year-round. In-situ measurements show an average daily PET of 33.8°C and UTCI of 34.4°C. According to the Taiwan PET range, the thermal sensation is categorized as somewhat warm to warm (uncomfortable). However, 69.4% of visitors reported feeling comfortable, likely due to the environmental conditions, with 70.3% tree coverage in the 54.7 ha park area.

Nofi Yendri Sudiar, Yonny Koesmaryono, Perdinan, Hadi Susilo Arifin and Randy Putra

Using Azospirillum Bacteria Isolated from Soil as Bioremediation Agent in Wastewater Contaminated with Cadmium in Iraq

Bioremediation is an important technique to remove heavy metals from wastewater. The current research aimed to use Azospirillum bacteria in removing cadmium ions from wastewater. The source of Azospirillum bacteria was the soil of Al-Mishkhab in Al-Najaf province, Iraq (rice fields), while the source of wastewater was taken from the Al-Rustamia wastewater treatment plant, in Baghdad in October 2020. All the experiments were carried out in Soil and Water Research Center, Ministry of Science and Technology. After collecting the soil, the microorganisms were isolated through the Immunomagnetic beads (IMB) process and were incubated on a certain synthesized medium. The concentration of cadmium ion was determined through the Absorption Spectrophotometer (AAS) technique. The Azospirillum colonies were identified and characterized as white colonies while the concentration of cadmium ion ranged from 0.03-1.6 mg/L and applying the microorganism on the wastewater will decrease the concentration up to 99.9% in a process called biosorption. Treatment time was also studied for 24, 48, 72, and 168 hours. The statistical analysis shows that increasing time will enhance the removal of cadmium. Cadmium is one of the heavy metals responsible for soil contamination; bacteria play a crucial role in bioremediation, demonstrating stability in decomposing various compounds and materials. Azospirillum is employed for soil decontamination purposes; increasing incubation time will enhance the removal of the trace element; also further investigate the effect of other factors such as temperature, pH, and the effect of using other microorganisms.

Z. R. Abbas, A. M. Al-Ezee, B. T. Al-Shandah and M. A. Shafeeq

The Circular Economy of the Food Bank Supply Chain in Bandung City, West Java

Food banks play a crucial role in reducing food waste and addressing food vulnerability. Their operations involve an efficient supply chain that collects surplus food, processes it, and distributes it to those in need. This aligns with the goals of a circular economy, aiming to minimize food crises. This research aims to understand the supply chain of the Food Bank Bandung and analyze the implementation of circular economy principles within its supply chain. The study employs qualitative methods, with data gathered through interviews conducted with representatives from the Food Bank located in Bandung City. The collected information was used to design a comprehensive supply chain model, which was then meticulously analyzed. The analysis reveals that the Food Bank in Bandung effectively implements a circular economy by transforming surplus food, which would otherwise go to waste, into consumable items. Furthermore, the food bank adopts circular economy concepts by providing inedible food to Black Soldier Fly (BSF) cultivation for maggot consumption, which then can be used as an alternative source of protein for animal feed. The findings of the study show how circular economy practices can be integrated into food bank operations. By analyzing the circular economy approach in the Food Bank of Bandung, this research contributes to the existing body of knowledge and provides a foundation for future studies, offering a more extensive dataset for researchers and practitioners in the field.

Sri Widiyanesti and Bintang Mahardhika

The Benefit of Biodegradable Plastics for Supporting Sustainable Development: A Case Study of Willingness to Pay in Surakarta City, Indonesia

Plastic pollution is a global concern affecting water, soil, and air quality. Urgent action is needed to address this issue. This study aims to identify factors influencing the use of biodegradable plastic to reduce its negative impacts. Data were collected from 269 households-129 in Punggawan and 140 in Mojosongo, Surakarta, and analyzed using multiple regression analysis to study the determinants of WTP (Willingness to Pay) for biodegradable plastic with STATA software. The results show that the average WTP for biodegradable plastic is IDR 2,214. Most people in Surakarta are already environmentally conscious. Age, knowledge, occupation, interaction of sex and location, education, and marital status influence WTP for biodegradable plastic. It is hoped that the implications of the research will be used as a recommendation for government policies to reduce the amount of plastic waste generation, which is a danger to human beings and the environment.

B. R. M. Jati, Suranto, Pranoto, Suryanto and E. Gravitiani

Geostatistical Appraisal to Comprehend Hydrogeochemical Environment of Major Ions and Depiction of Groundwater Suitability from Part of Balaghat District (M.P.), Central India

The key observations on the study concerning the geostatistical appraisal, hydrogeochemical environment of major ions (cations and anions) as well as groundwater suitability from the part of Balaghat District (MP) latitude 21°31?42?: 21°43?11? N and longitude 79°50?30?:80°11?30? E., Central India are presented here. The pH (7.3 to 8.6) of the groundwater samples and range of EC values (50-5080 ?S.cm-1) typically clarify the alkaline nature and the involvement of diverse processes (geogenic as well as anthropogenic) deciding the hydrogeochemical environment of groundwater. This prominent behavior is the result of the conductivity in groundwater, which is the consequence of ion exchange along with the solubilization processes during the rock-water interaction and also represents anthropogenic activity. The abundance succession of cations is Ca2+ > Na+ > Mg2+ > K+, while the profusion sequence of anions is HCO3- > Cl- > NO3- > SO42- > F-. The positive correlation among the pair of Ca2+ with Mg2+ (r = 0.657), Na+(r = 0.691), and HCO3- (r = 0.842) as well as the high positive association between K+ and SO42- (r = 0.856), plus K+ and NO3- (r = 0.779) unravels the derivation of ions from the geogenic origin and the agro-chemical derivation of ions respectively. The three factors (1:6.350, 2:2.732, and 3:2.697), having a total variance of 87.923%, correspond with the geogenic factor, anthropogenic factor, and alkalinity factor, respectively. The groundwater from the study area is suitable for drinking and irrigation purposes with a slight threat of exchangeable sodium.

Y. A. Murkute and A. P. Pradhan

A Review on Biosurfactants with their Broad Spectrum Applications in Various Fields

Because of the superior qualities of biosurfactants over their equivalents derived from fossil fuels, they have recently attracted more attention. Although production costs are still a major barrier to biosurfactants’ superiority over synthetic surfactants, biosurfactants are expected to grow in market share over the next several decades. Glycolipids, a class of low-molecular-weight biosurfactants, are particularly sought-after for a variety of surfactant-related applications due to their effective reduction of surface and interfacial tension. Rhamnolipids, trehalose lipids, sophorolipids, and mannosyl erythritol lipids are the primary types of glycolipids. Glycolipids are made of hydrophilic carbohydrate moieties joined to hydrophobic fatty acid chains by ester bonds. This review addresses the unique glycolipid production and the wide range of goods available in the global market, as well as the present state of the glycolipid industry. Applications include food processing, petroleum refining, biomedical usage, bioremediation, and boosting agricultural productivity. With biosurfactants, their beneficial Ness in releasing oil encased in rock, a need for enhanced oil recovery (EOR). Another crucial biotechnological component in anti-corrosion procedures is biosurfactants, which stop Crude oil transportation in pipelines and are made easier by incrustations and the growth of biofilms on metallic surfaces. They are also employed in the production of emulsifiers and demulsifies and have other cutting-edge uses in the oil sector. Natural surfactants can be used to lessen pollution produced by chemical solvents or synthetic detergents without compromising the oil industry’s financial gains. Consequently, it is imperative to invest in biotechnological processes. It is anticipated that natural surfactants will take over the global market in the not-too-distant future and prove to be economically feasible. It is likely possible to substitute synthetic surfactants used in agricultural product composition with biosurfactants. Because biosurfactants can benefit crops without harming the environment, they hold great potential as a useful tool in the fight against pesticide use. Furthermore, by making hazardous and leftover pesticides more soluble and thus accessible for biodegradation by other microbes, their potential as bioremediation agents can help to improve the health of soil systems. This article is based on the explanation of various applications of Biosurfactants.

Nazim Uddin, Jyoti Sarwan, Sunny Dhiman, Kshitij, Komal Mittal, Vijaya Sood, Md. Abu Bakar Siddique and Jagadeesh Chandra Bose K.

Woody Species Diversity and Conservation Status of Tumauni Watershed Natural Park, Isabela, Philippines

The study was conducted within the Protected Area of the Tumauini Watershed Natural Park located in the municipality of Tumauini province of Isabela along the western part of the Northern Sierra Madre Natural Park. The protected areas in the Philippines cover 39% of the total forest cover. Protection and conservation of protected areas is significant due to the increasing habitat loss and biodiversity loss. The main objective of the study is to assess the tree diversity of the park using the modified belt-transect method adopted by the Department of Environment and Natural Resources (DENR). The transect line has a distance of 2 kilometers and a total of 9 stations. A Nested Quadrat was established along the transect line for tree identification. Results of the assessment show that the park has a species richness of 34 tree species in eight families and 26 genera. Species diversity indicates low (2.4) to very low (1.12) based on the Shannon-Weiner Diversity Index despite the high number of individuals found in the watershed area. The low diversity of the watershed is affected by the rampant anthropogenic activities and naturally-induced hazards occurring in the protected area. Shorea polysmerma is the most dominant and the most important species, with an Importance Value index of 38.78. Three species of trees were recorded as generalists in the area such as Calophyllum blancoi, Shorea palosapis, and Ficus sp.

Rocel S. Galicia and Hannie T. Martin

Optimizing Landfill Site Selection and Solid Waste Management in Urbanizing Regions: A Geospatial Analysis of Rewari City, Haryana, India

Improper disposal of solid waste obstructs drainage systems and pollutes surface water. Additionally, the dumping of unsorted garbage generates emissions and leachate, which harm local ecosystems and contribute to climate change. With Rewari City’s growing population, effective municipal solid waste management, including landfill site selection, is crucial. This study employs Geographic Information System (GIS), Analytical Hierarchical Process (AHP), and Weighted Linear Combination (WLC) methodologies to determine appropriate sites for landfills. The FAO, ALOS PALSAR DEM, Sentinel 2B images, Google Earth Pro, and interviews were employed to gather data. The results of the Analytic Hierarchy Process (AHP) indicate that 35.4% of the parameters under consideration are associated with Land Use Land Cover (LULC), whereas roads rank as the second most significant criterion, accounting for 24.0%. The WLC technique determined that 4.65 square kilometers were inappropriate for dump sites, while 0.11 square kilometers were extremely favorable. These findings can assist decision-makers in determining the order of importance for variables when selecting a landfill location.

A. Yadav, P. Kumar and A. Kumar

Environmental Assessment Methods for Dissolution of Soil

Water plays a crucial role in the environment and in the process of liquefaction, which can occur during moderate to major earthquakes and cause significant structural damage. Liquefaction is defined as the transformation of granular material from a solid state to a liquid state, a process driven by increased pore water pressure and reduced effective stress within the soil. When an earthquake strikes, the shaking causes the pore water pressure between the sand grains to rise, which in turn reduces the contact forces between the grains. As a result, the sand loses its effective shear strength and starts to behave more like a fluid, leading to instability and potential collapse of structures built on such ground. Liquefaction can occur in moderate to major earthquakes, resulting in severe damage to structures. The transformation of granular material from a solid state to a liquid state due to increased pore pressure and reduced effective stress is defined as liquefaction. When this happens, the sand grains lose their effective shear strength and will behave more like a fluid. This phenomenon of dissolution of soil damages trees’ stability and disturbs the formation of the earth’s surface. Liquefaction resistance of soil depends on the initial state of soil to the state corresponding to failure. The liquefaction resistance can be evaluated based on tests on laboratory and in situ tests. For this research, liquefaction resistance using in-field tests based on SPT N values is attempted. Cyclic resistance ratio (CRR) is found based on the corrected N value. About 16 bore logs have been selected for the factor of safety calculation. The factor of safety for soil was arrived at by taking into account of corresponding corrected SPT N values. The liquefaction hazard map is prepared for the moment magnitude of 7.5-7.6 M w. It is also found that the areas close to water bodies and streams have the factor of safety less than unity. The bore log of locations having a factor of safety less than one indicates that up to a depth of about 6 m, very loose silty sand with clay and sand is present, which are defined as medium to fine sand having low field N values.

Deepanjali Sahu, M. K. Tiwari and Arunachal Sahu

Full Issue

Keywords:

Volumes & Issues