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        ABSTRACT
Due to rapid industrial growth and the increased economic status of people, water sources 
across the globe are being significantly polluted with a wide array of effluents. Industrial, 
agronomic, and customary activities have led to the repeated infestation of water by discarded 
materials. Consequently, there is an urgent need for advanced technologies to effectively 
eradicate these impurities from wastewater. Among the various methods established for 
wastewater remediation, the adsorption process has gained remarkable significance due to 
its efficiency and effectiveness. The use of nano adsorbents (NADs) represents an emerging 
solution to these environmental issues. NADs possess exceptional physical and chemical 
characteristics, which enhance their applicability compared to traditional adsorbents. Their 
advanced grade, prominence, and excellence in various arenas make them a superior choice 
for wastewater treatment. Recent explorations have shown that NADs, such as carbon 
nanotubes, graphene, and metal and metal oxide nano adsorbents, have a pronounced and 
favorable impact on wastewater treatment. The focus of this review article is to provide current 
data and insights into the use of NADs for wastewater remediation. It aims to highlight the 
benefits of these novel materials and to discuss the potential areas for further improvement 
in this field. By exploring the latest advancements and applications of NADs, this review 
seeks to contribute to the ongoing efforts to address the critical issue of water pollution and 
to promote sustainable water management practices.

INTRODUCTION

Rapid industrialization, together with innovation in science and technology, 
upgrades the standard of living, opening out towards viable economic growth and 
worldwide hustle (Xu et al. 2018, Nayyar 2021). The penalty of such rapid growth 
is an environment convoyed by considerable pollution issues (Rasheed et al. 2020). 
Water contamination is a severe concern that the world is facing nowadays (Afroz 
et al. 2014). At present, the world is facing the problem of scarcity of clean drinking 
water because of inadequate clean water resources (Afroz et al. 2014). Worsening 
of the water quality alongside the unceasing reduction in the accessibility of clean 
drinking water is due to the enhanced usage of water in industrial, domestic, and 
agronomic zones (Pimentel et al. 2004, Goel 2006). Industrial runoff encompasses 
many precarious and virulent pollutants severely affecting the ecosystem (McGlade 
et al. 2020, Sharma et al. 2021). An extensive array of waste is generated from 
these industries which are ultimately discharged into the water resources and, 
henceforth, modifying the characteristics and aesthetics of water (Gardetti & Torres 
2017, Loucks & Van Beek 2017). Amongst the numerous wastes originating in 
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these industries, colored stuff predominantly, the dyes are 
the supreme released contaminant (Tahir et al. 2021). To 
boost the aesthetics of the goods, dyes are far and wide 
exploited by a lot of industries such as food, textile, rubber, 
automobiles, cosmetics, printing and photographic sectors, 
pharmaceuticals, etc. (Gázquez et al. 2014, Tahir et al. 2021). 
As soon as the dye-laden effluents from such industries enter 
the water resources, it is now untimely and occasionally 
challenging to treat because of the complex structure and 
non-biodegradable character of dyes (Dhakate et al. 2020). 
Textile industries use dyes on a large scale. Commercially, 
about 0.1 million dyes are accessible globally, and around 
7.0 × 105 metric tons of dyes are manufactured annually 
(Bharathi & Ramesh, 2013, Cockerham et al. 2022). The 
total dye input in textile industries is higher than 104 tons 
annually, and approximately 10-15% of dyes are released 
back into water (Husain 2006, Singh & Arora 2011). Dyes 
can be mutagenic, cancer-causing, and potential allergen. 
Therefore, the adulteration of dyes in water can be menacing 
for flora and fauna as well as humans (Khan et al. 2017b 
Ramesh & Muthuraman 2018).

IMPACT OF DYES ON LIFE

Dyes, as pollutants, are a serious disconcertment for 
civilization as their intricate assemblies and non-
biodegradable nature make them damaging to life (Kahlon 
et al. 2018). They are a precarious category of organic 
pollutants that are being discharged into water resources 
directly or indirectly (Kahlon et al. 2018). They disturb the 
ecosystem and are mostly carcinogenic, mutagenic, and 
teratogenic and also have damaging effects on the excretory, 

respiratory, reproductive as well as central nervous systems 
(Duruibe et al. 2007, Hashimi et al. 2020). They spoil the 
aesthetics of water bodies and curb the sunlight perforation 
in water, thereby affecting the aquatic flora and fauna.

Dyes are commonly classified into different categories 
and sub-categories (Fig. 1) on the basis of their source, well-
established dye structure (nature of chromophore group), and 
the mode of their application (compatibility of the dye-fiber 
type) (Routoula 2019, Velusamy et al. 2021). Amongst the 
numerous classes, azo dyes are a prevalent assembly of 
colorants comprising almost half of all the accessible dyes 
used in the industries. Azo dyes are characterized by –N=N– 
bond where one nitrogen atom is bonded to an aromatic group 
(naphthalene or benzene rings) (Bafana et al. 2011,  Ajmal 
et al. 2014, Dassanayake et al. 2021).

Furthermore, they possess amphoteric character because 
of the auxiliary functional groups such as carboxyl (–COOH), 
hydroxyl (–OH), amino (–NH2), or sulfoxyl (O=S=O). 
These dyes may act as anionic, cationic, or non-ionic based 
on the pH of the surrounding medium. Classification and 
characteristics of azo dyes are outlined in Table 1. 

Acidic dyes express damaging effects on the eyes, 
respiratory system, melanoma, and mutagenicity in humans 
(Hammam et al. 2015). Basic dyes have a noxious nature, 
leading to allergic complications, skin annoyance, mutations 
(skin carcinoma), escalation of heartbeat, moreover a rise 
in the prevalence of trauma, vomiting, cyanosis, icterus, 
tetraplegia, and tissue mortification (Afreen et al. 2018, 
Elgarahy et al. 2021). The amine group in these dyes is the 
key entity behind their toxicity (Khan et al. 2016, 2017a, 
2018, Vishnu et al. 2021). Henceforth, dye remediation 
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Fig. 1: Classification of dyes based on chemical composition. 
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from wastewater before its discharge into the water sources 
is a serious environmental perturbation in the present hour 
(Madima et al. 2020, Arora et al. 2021).

WATER MANAGEMENT TECHNOLOGIES

Physical techniques (sedimentation, filtration, floatation, 
coagulation, reverse osmosis, solvent extraction, and 
adsorption), chemical techniques (neutralization, reduction, 
oxidation, catalysis, ion exchange, and electrolysis), and 
biological techniques (stabilization, aerated lagoons, trickling 
filters, activated sludge, fungal treatment, flocculation and 

anaerobic digestion) are employed for the confiscation of dyes 
from wastewater (Gunatilake 2015, Carolin et al. 2017, Wu et 
al. 2017, Yadav et al. 2021) Such techniques are steadfast and 
display specific outcomes. However, on the other hand, they 
also have some limits like lesser efficacy, greater investment, 
generation of too much sludge, and high maintenance charges, 
making them unbefitting for economical practice. 

All of these methods have their pros and cons, such 
as high operational /energy expenses, generation of huge 
expanses of sludge, and production of detrimental byproducts 
(Table 2). 

Table 1: Classification of azo dyes.

Class Solubility
Characteristic

Fiber Fixation % Pollutant

Reactive • Water-soluble
• Anionic

• Cotton
• Cellulosic
• Wool

60-90 Colour, salt, alkali, unfixed dye, 
surfactants, defoamer, diluents

Acidic • Water-soluble
• Anionic

• Cotton
• Nylon
• Wool
• Acrylic
• Protein

80-93 Colour; organic acids; unfixed dye

Basic • Water-soluble
• cationic
• Applied in acidic dye baths

• Protein
• Cellulosic
• Nylon
• Polyester
• Acrylic

97-98 Not available

Vat • Water-insoluble
• Chemically complex

• Cotton
• cellulosic
• Wool

60-70 Color, alkali, oxidizing, and reducing 
agents

Sulfur • Water-insoluble
• Non-ionic

• Cotton
• Cellulosic

60-70 Color, alkali, oxidizing and reducing 
agents, unfixed dye

Disperse • Water-insoluble
• Non-ionic

• Acrylic
• Modacrylic
• Nylon
• Polyester

80-92 Color, organic acids, carriers, leveling 
agents, diluents phosphates, defoamers,
lubricants, dispersants

Table 2:  Pros and cons of dye-removal techniques.

Methods Pros Cons

Physical
(Sedimentation, filtration, 
floatation, coagulation, reverse 
osmosis, solvent extraction, 
adsorption)

•  Good removal of a wide variety of dyes
•  regeneration- no adsorbent loss, 
•  effective oxidation at the lab scale,
•  economically feasible

• expensive
• concentrated and high sludge formation
• not effective for all dyes

Chemical 
(neutralization, reduction, 
oxidation, catalysis, ion exchange, 
electrolysis)

•  simplicity of application
•  Fenton’s reagent is a suitable chemical means
•  Ozone can be applied in its gaseous state and does not 

increase the volume of wastewater and sludge.
• No chemical consumption and no sludge buildup

• The reagent needs to be activated by some 
means

• Sludge formation
• Formation of by-products
• Relatively high flow rates cause a direct 

decrease in dye removal

Biological
(stabilization, aerated lagoons, 
trickling filters, activated sludge, 
fungal treatment, flocculation, 
anaerobic digestion)

• Allows azo and other water-soluble dyes to be decolorized
• Certain dyes have a particular affinity for binding with 

microbial species
• Decolorized in 24 to 30 hours

• Under aerobic conditions, azo dyes are not 
readily metabolized

• Not effective for all dyes
• Anaerobic breakdown yields methane and 

hydrogen sulfide
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Still, from the above-mentioned techniques for wastewater 
remediation, the adsorption route is the most tempting 
method due to its easy functioning, high efficacy, easiness, 
cost-efficiency, and persistence (Wu et al. 2017). Moreover, 
in the majority of explorations, the process is reversible, and 
henceforth, the adsorbents can be without difficulty recycled 
recurrently, making the overall adsorption process more 
cost-effective. Additionally, the accessibility of an immense 
choice of adsorbents to befit precise requisite makes it more 
adaptable (Creamer & Gao 2016, Wu et al. 2017). Owing to 
the diverse benefits aforementioned, the adsorption method 
has acknowledged consideration all around the environment 
adoring society (Liu et al. 2016). 

Adsorption is the adhering of a particle superficially to a 
surface. The particle might be a gas, liquid, or solid (atom, 
molecule, or ion), and the surface might be a liquid or solid. 
The binding between the particle and the surface is either 
chemical or physical (Liu et al. 2016, Ijaz & Zafar 2021). 
The substances offering the surface are the adsorbents, while 
the entity that is attached to the surface is the adsorbate (Li 
et al. 2009, Farrukh et al. 2013, Dutta et al. 2019).

 Adsorbate particles are associated with adsorbent 
via two kinds of forces, viz. physical and chemical, in 
the processes named physisorption and chemisorption. 
Physisorption is caused by feeble attractive forces amid 
adsorbate-adsorbent molecules, while chemisorption occurs 
through the formation of a strong chemical bond (Jelmy et 
al. 2021). An adsorbent is considered effective; constraints 
like surface area, porous nature, adsorption capacity, and 
mechanical strength ought to be extremely high alongside 
the viability of supplementary features like cost-efficiency, 
untroubled renewal, persistence, and selectiveness (Jelmy et 
al. 2021). A diagrammatic illustration of the elimination of 
dyes from wastewater using adsorption is displayed in Fig. 
2. Several factors, namely, adsorbate/adsorbent interaction, 
surface area (adsorbent), adsorbent/adsorbate proportion, 
particle size (adsorbent), temperature, pH, contact time, etc., 

are calculated as they are accountable for the elimination 
rates of dyes (Gupta 2009, Banerjee et al. 2015, Mashkoor 
& Nasar 2020). Detailed investigations of such optimized 
factors are considered to be useful in the remediation of 
dyes efficiently and for the progress of commercial-scale 
wastewater treatment processes (Karimifard & Moghaddam 
2018, Islam et al. 2019).  Amongst the diversity of adsorbents 
available, activated carbon is the utmost chosen adsorbent for 
the confiscation of dyes owing to its outstanding adsorption 
capability (Ahmad et al. 2021). However, extensive 
application of activated carbon is constrained as it is costly 
(Whitacre et al. 2012, Ahmad et al. 2021). A variety of 
non-conventional economical adsorbent materials have been 
investigated by various researchers for the remediation of 
dyes (Crini 2006, Rafatullah et al. 2010, Dawood & Sen 
2014). These encompass agricultural wastes industrial 
waste products, clay materials, zeolites, siliceous materials, 
biosorbents, biomass and others (cyclodextrin, starch, 
cotton), Artocarpus heterophyllus peel, Allium sativum peel, 
hazelnut shell, pineapple stem, longan shell, consumed tea 
leaves zeolite, corncobs and so on (Bouzaida & Rammah 
2002, Crini & Morcellet 2002, O’mahony et al. 2002, Özacar 
& Şengil 2002, Crini 2003, Delval et al. 2003, Walker et al. 
2003, Allen et al. 2004, Wong et al. 2004, Aksu & Tezer 
2005,  Hameed  2009). Consequently, the considerations have 
been encouraged to discover more economical and proficient 
replacements of activated carbon. Innate components, 
agronomic and industrialized trashes and bio-sorbents can 
be the most credible replacements (Whitacre et al. 2012).

Also, the non-conventional adsorbents displayed 
diversified conclusions, with several cases exhibiting high 
removal efficiencies as compared to the activated carbons 
(Gupta et al. 2013, Vieira et al. 2020).

But, the investigations for innovative and futuristic 
adsorbents with high dye removal efficiencies with excellent 
regenerability are a crucial part of current research in the 
water treatment field. Currently, nanoparticles (NPs) are 
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being exploited for the decontamination of wastewater. 
These anticipated NPs are being made with distinctive 
assets like enormous surface area/volume ratio and surface 
characteristics to tackle noxious contaminants.

IMPLEMENTATION OF NANOTECHNOLOGY IN 
DYES REMOVAL

Nanotechnology presents a new arena of science offering a 
significant part in wastewater treatment (Nasrollahzadeh et 
al. 201, Thangadurai et al. 2020, Shakoor et al. 2023). The 
word ‘Nano’ is extracted from the Greek term ‘Nanos’, 
meaning dwarf or exceptionally tiny. Nanoparticle size 
covers the 1-100 nm range and is distributed in all media 
(gaseous, liquid, solid). Such characteristics make them 
the most desirable materials for an extensive array of 
uses (Gangadhar et al. 2012). NPs may be categorized as 
inorganic, polymeric, solid lipids, liposomes, nano-crystal, 
nanotubes, and dendrimers (Biswas et al. 2014, Ansari et 
al. 2020). NPs are synthesized via physical, chemical, or 
biological techniques (Jameel et al. 2020). The chemical 
technique is significant since it requires little duration for 
the preparation of a variety of NPs (Ju-Nam & Lead 2008). 
Polymeric NPs are synthesized via the polymerization of 
several monomer units like methacrylic acid, acrylic esters, 
methacrylic, and so on (Martin et al. 2021). Synthesis 
of inorganic NPs might be done in the manifestation of 
polymers like polylactic acid and polyglycolic acid etc. 
(Xue et al. 2019). Presently, chemical techniques, viz., 
dispersion of pre-formed polymers, polymerization of 
monomeric units, and coacervation of hydrophilic polymers, 
are practically aiming for the synthesis of diverse polymeric 
NPs (Xue et al. 2019). Metal/metal oxide NPs might 
be synthesized via different physical methods, namely, 
evaporation-condensation, sol-gel technique, solvothermal 
method, chemical reduction, laser ablation, etc. Amongst 
several methodologies, the biological one is exceedingly 
effective owing to its environmentally friendly approach. 
This category of NPs includes those synthesized using 
plants, fungi, yeast, bacteria, viruses, proteins, enzymes etc., 
(Saratale et al. 2018, Salem & Fouda 2021). 

Numerous nanomaterials have been synthesized 
and used for the sequestration of impurities existing in 
wastewater (Ata et al. 2019, Mustapha et al. 2020). They 
have remarkably high surface area-volume ratio, micro- or 
mesoporous structure, high adsorption capability, cost-
efficiency, and regenerability (Chang et al. 2019). These 
nano-adsorbents (NADs) perforate deeply, act quickly, and 
possess outstanding pollutant-binding capability (Chang 
et al. 2019). NADs might be shaped into nanowires, 
nanotubes, nanofilms, and nanoparticles. In wastewater 

management, several practically viable and effective NADs 
are recognized as having characteristic features for successful 
decontamination of wastewater (Sharma et al. 2009, Harja 
& Ciobanu 2020, Janani et al. 2022). Outstanding removal 
efficiencies of NADs have been published in the literature 
regarding the confiscation of dyes from wastewater (Ahmed 
et al. 2020, Essekri et al. 2021, Ansari et al. 2023, Afridi et 
al. 2023). NADs can be classified into different categories 
based on their application in adsorption techniques, namely, 
magnetic, nanostructured mixed oxides, and metallic/metallic 
oxides (Ahmadi et al. 2017). In addition to these, nanotubes, 
nanosheets, and carbon/silicon/polymer nanoparticles are a 
few NADs utilized for the adsorptive removal of dyes from 
wastewater (Ahmadi et al. 2017).

Wastewater treatment methods using nanotechnology are 
hopeful approaches to overcome the key hurdles in water 
treatment technologies.

NANO-ENGINEERED ADSORBENT

Prerequisites for an efficient adsorbent are the constraints 
like higher surface area, highly favorable porosity, greater 
absorptivity, and eminent mechanical strength, as well 
as supplementary features like cost-efficiency, easy 
regenerability, viability, and selectivity (Mahfoudhi & Boufi 
2017). Numerous adsorbents are being used for wastewater 
treatment, which mainly include those obtained from 
agronomic, domestic, and industrialized wastes, polymeric 
materials, and organic as well as inorganic substances 
(Mahfoudhi & Boufi 2017). However, the adsorbents obtained 
from such sources have low absorptivity (Mahfoudhi & 
Boufi 2017). Hence, it has become essential to discover more 
innovative, operative, and excellent adsorbents for wastewater 
treatment (Tara et al. 2020). The cost and physiognomies 
like particle size, homogeneous size organization, shape, 
crystal framework, composition, purity, stabilization, and 
reproducibility make the NPs appropriate for utilization in 
various fields like sensors, biomedical applications, and, in 
particular, in water treatment. The utilization of NADs in 
wastewater treatment opens up a new arena for the application 
of nanotechnology (Tara et al. 2020).

The most extensively studied NADs for wastewater 
treatment are carbon nanotubes (CNTs), graphene and metal 
oxides such as Fe3O4, MnO2, CO3O4, TiO2, MgO, ZnO, etc 
(Luo et al. 2010, Apul et al. 2013, Abas et al. 2014, Khan 
et al. 2016, 2015, Zare et al. 2015a, Mohammad et al. 2019, 
Mohammad et al. 2021a,b). They might be prepared in 
diverse morphological arrangements. Hereby, this review 
aims to update on the recent advancements in dye remediation 
from wastewater using NPs as efficient adsorbents along with 
the viewpoints in this part of the exploration. 
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CARBON-BASED NANOMATERIALS

Recently, NPs based on carbon, namely, graphene, 
fullerenes, and carbon nanotubes, have attracted noteworthy 
attention owing to their superlative assets, predominantly 
vast surface area, porosity, thermal and mechanical strengths, 
and removal efficacy (Bhatnagar & Minocha 2006 Mauter 
& Elimelech 2008, Shakoor & Nasar 2017, 2018a, Varghese 
et al. 2019, Shahbazi et al. 2020).

Carbon Nanotubes (CNTs)

Sumio Iijima, a Japanese physicist, discovered CNTs in the 
arc evaporation method (Ajayan et al. 1993). Apart from the 
arc evaporation method, several other methods, namely, laser 
ablation, flame synthesis, chemical vapor deposition, and 
electrolysis, have been described for the synthesis of CNTs 
(Terrones 2003, Farhat & Scott 2006, Nayeri & Jafari 2024). 
It is worth mentioning that arc evaporation, chemical vapor 
deposition, and laser ablation procedures are widely used 
for the synthesis of CNTs (Farhat & Scott 2006). The CNTs 
comprise graphene/graphite sheets that wind up in a tube 
shape having a diameter in the nanometer range and length 
in the micrometer range. The ends of CNTs are capped with 
a hemisphere of the fullerene-like entity. The hollow-tiered 
structures of CNTs offer a high surface area as well as high 
porosity. This unique assembly of CNTs possesses mechanical 
strength, electronic as well as thermal stability. They might 
be metallic or semiconducting depending upon the class of 
chiral characteristics (chiral angle between carbon hexagons 
and tube axis) (Aqel et al. 2012, Gusain et al. 2020).

CNTs have been substantially applied for the remediation 
of dyes in wastewater treatment as a result of their high 
absorptivity for dyes(Gusain et al. 2020, Thakur et al. 2024).

CNTs are classified into single-walled CNTs and multi-
walled CNTs (Fig. 3). Single-walled CNTs are comprised 
of single graphene sheets that wind up in a cylinder whereas 
multi-walled CNTs are made of coaxial piling of graphene 
sheets to form of a cylinder with the adjoining sheets being 
adhered by weak van der Waals forces with an interspacing 
of approximately 0.34 nanometers (Aqel et al. 2012).

Multi-walled CNTs have been exploited for the adsorptive 
elimination of single dye systems such as Congo red (Zare 
et al. 2015b), methyl orange (Yao et al. 2011), blue 116 
(Vuono et al. 2017), red 159 (Vuono et al. 2017) and yellow 
81  (Vuono et al. 2017), maxilon blue (Alkaim et al. 2015), 
reactive blue 4 (Machado et al. 2012), reactive red M-2BE 
(Machado et al. 2011), direct blue 53 (Prola et al. 2013), 
ponceau 4R (Ferreira et al. 2017), allura red (Ferreira et al. 
2017), etc. The adsorption behavior of multi-walled CNTs 
on cationic-anionic binary dye systems was also studied (Ma 
et al. 2018). Multi-walled CNTs were utilized for adsorptive 
remediation studies of acid red 183 and methylene blue in an 
aqueous solution. It was observed that multi-walled CNTs 
possess higher adsorptive attraction towards methylene blue 
as compared to acid red 183 in single as well as dual-dye 
systems (Ma et al. 2018).

 The maximum adsorption capacity in the case of mono-
dye set-up was obtained to be 59.7 for methylene blue 
(cationic) and 45.2 mg.g-1 for acid red 183 (anionic).
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For dual-dye set-up, keeping the concentration of acid red 
183 constant (20 mg/L), an increase in adsorptive removal of 
both the dyes was observed with the increase in methylene 
blue concentration, suggesting a synergistic effect. On 
the other hand, by maintaining a constant methylene blue 
concentration (10 mg/L), adsorptive removal of methylene 
blue was found to be reduced with increasing acid red 
183 concentrations, while acid red 183 exhibits a rising 
inclination in adsorption capacity (Wang et al. 2012, Shakoor 
& Nasar  2016).

Functional modifications of CNTs have been commenced 
for the introduction of different functional groups, 
thereby providing fresh adsorption sites (Wang et al. 
2012).  Many research explorations have confirmed the 
enhanced elimination of dyes from wastewater by modified 
CNTs using various functional groups. Such functional 
modifications lead to the reduction in the accumulation of 
CNTs, escalation of adsorption, durability, selectiveness, 
and affinity for pollutants in wastewater (Gupta et al. 2013, 
Gupta & Saleh, 2013). Amongst the various functionalization 
methods, oxidation is the simplest mode for the introduction 
of –OH and C=O groups to the walls of CNTs. Multi-walled 
CNTs obtained after oxidation were more efficient for the 
elimination of methyl red (MR) and bromothymol blue (BB) 
in water (Ghaedi & Kokhdan 2012, Sadegh et al. 2017). An 
adsorption capacity of 41.63 mg.g-1 was reported by Yao et 
al. for the elimination of MB on CNTs at 333 K (Yao et al. 
2010). Similar experiments were executed by Shahryari et 
al. (Shahryari et al. 2010) on multi-walled CNTs with high 
surface area (280 m2 g-1) in comparison to the CNTs (160 
m2 g-1) investigated by Yao et al. An adsorption capacity 
of 132.6 mg.g-1 at 310 K was observed for MB dye. The 
adsorption capacities are also influenced by the experimental 
constraints and kinds of adsorbents. Relative adsorption 
capacities of orange II dye from aqueous solution by the 
utilization of multi-walled CNTs and carbon nanofibers 
adsorbents were calculated in batch experimentations by 
Rodríguez et al. (Rodríguez et al. 2010). It was observed 
that the adsorptive elimination of anionic orange II on multi-
walled CNT (77.83 mg.g-1) was a little higher than carbon 
nanofiber (66.12 mg.g-1).

CNT-impregnated chitosan hydrogel (CS/CNT) beads 
were synthesized to investigate the elimination of Congo red 
dye. CS/CNT beads revealed a higher maximum adsorption 
capacity (450.4 mg.g-1) as compared to the chitosan without 
impregnation (200 mg.g-1, Langmuir isotherm model) 
(Chatterjee et al. 2010). A unique type of CS/CNT beads 
was synthesized by (Chatterjee et al. 2011) by treating 
multi-walled CNTs with sodium dodecyl sulfate to upgrade 
mechanical characteristics (Chatterjee et al. 2011). These 
unique CS/CNT beads revealed a maximum adsorption 

capacity of 375.94 mg.g-1 for Congo red dye (Chatterjee 
et al. 2011). It is worthy of mentioning that CNTs might 
be consequently generated on a macroscale by different 
methodologies to reduce the production cost thereby 
increasing their subsequent consumption in environmental 
safeguard administration. Utilization of CNTs in wastewater 
treatment is anticipated to be a revolution in upcoming 
research (Hussain et al. 2024).

Graphene

Graphene comprises one or more layers of carbon atoms 
adhered by weak Van der Waal forces and p–p stacking 
associations with a distinctive 2D assembly and tremendous 
mechanical, thermal, and electrical characteristics (Shahryari-
ghoshekandi & Sadegh 2014, Rajabi et al. 2019). Several 
studies were conducted employing graphene and graphene 
oxide for the elimination of dyes from wastewater. For 
modification of the physico-chemical properties, reduced 
graphene oxide (rGONSs) and graphene oxide nanosheets 
(GONSs) were prepared by incorporating them in composite 
fragments. rGONSs, as well as GONSs layers, have large 
aspect ratios with huge electronic surfaces providing 
powerful intermolecular forces amongst the adsorbate 
molecules (Denis & Iribarne 2012). Owing to the exposed 
layered arrangement, rGONSs show significantly accelerated 
adsorption kinetics as compared to the CNTs (Ji et al. 2013, 
Yu et al. 2014).

Amongst the various carbon-based nanomaterials 
(Activated carbons, single-walled CNTs, and multi-walled 
CNTs), rGONSs showed enhanced absorptivity of two 
synthetic organic compounds (phenanthrene and biphenyl) 
in an aqueous medium (Thakur & Kandasubramanian 2019). 
Also, rGONSs are comparatively low-priced compared 
to single-walled CNTs. rGONSs were employed for the 
elimination of cationic red X-GRL (Li et al. 2011c), 
methylene blue (Li et al. 2011°, Yang et al. 2011), methyl 
orange (Li et al. 2011b), Congo red (Li et al. 2011b) from 
aqueous solutions. The maximum adsorption capacities for 
p-toluenesulfonic acid, 1-naphthalenesulfonic acid, and 
methylene blue on GNS goes to 1430, 1460, and 1520 mg.g-
1 at 303 K, respectively, highest amongst all nanomaterials 
calculated so far (Wu et al. 2011). The abundance of 
functional groups with oxygen superficially on graphene 
oxide nanosheets was described as executing an essential part 
of the adsorption process. Relative to activated carbons and 
CNTs, graphene oxides and graphene nanosheets exhibit a 
stronger adsorption affinity for dyes in wastewater.

Metal Oxide-Based Nanomaterials

Nanomaterials based on metal/metal oxides are a class of 
inorganic nanomaterials extensively utilized to confiscate 
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dyes from wastewater. Metal oxides have negligible 
environmental effects, little solubility, and do not contribute 
to secondary pollution. Nowadays, zero-valent iron, iron 
oxides/hydroxides (Fe3O4), titanium oxide (TiO2), zinc 
oxide (ZnO), and copper oxide (CuO) nanoparticles as well 
as in its composites form have been employed as adsorbent 
for the confiscation of dyes from wastewater (Khan et 
al. 2019b, 2019a). In recent times, zero-valent iron was 
synthesized by Rahman et al. (Rahman et al. 2014) with 
a borohydride chemical reduction method and is being 
employed for the elimination of azo dyes from wastewater. 
(Arabi et al. 2013) carried out kinetic and thermodynamic 
investigations for eliminating vat green dye from wastewater 
using zero-valent iron NADs. Diverse methodologies, 
namely, oxidation, reduction, disproportionation, hydrolysis, 
sol-gel, high-pressure hydrothermal, and co-precipitation, 
have been employed to synthesize iron oxide nanoparticles 
(Lu et al. 2006, Teja & Koh, 2009, Layek et al. 2010). Iron 
oxide and zero-valent iron composite NADS have also been 
synthesized and exploited for the elimination of precarious 
toxic pollutants from wastewater (catalytic and magnetic 
character of such NADs exhibited greater efficiency for 
dye confiscation). Iron being the most prevalent element 
in the earth crust and triviality of its resources and ease of 
production makes ferric oxides an economical adsorbent for 
dye adsorption.

Novel magnetic Fe3O4@CNADs were synthesized 
and employed for the confiscation of methylene blue and 
Congo red (Zhang & Kong 2011). The maximum adsorption 
capacity was found to be 44.38 and 11.22 mg.g-1 for 
methylene blue and Congo red, respectively. Improvements 
in the iron oxides and zero-valent iron nanoparticles were 
also made by mingling such particles with different organic 
and/or inorganic constituents. 

An adsorbent with a size in the nano range having an 
enormous surface area might proficiently confiscate dyes. 
However, the consumed nanoparticles are hard to isolate 
afterward, and continuing exposure might cause toxicity 
altogether. By utilizing magnetic iron oxide nanoparticles, 
such difficulties can be overcome. Nevertheless, additional 
efforts are desired to make the procedure extra efficient and 
innovative. The maximum adsorption capacity of magnetic 
zero-valent iron nanoparticles prepared by the coprecipitation 
method and loading on Arabic gum was found to be 14 mg.g-1 
for methylene blue dye (Alzahrani 2014). A novel bi-metallic 
Fe-Zn nanoparticle prepared by co-precipitation technique 
has been employed for the confiscation of malachite green 
and Congo red from wastewater by Gautam et al. (Gautam et 
al. 2015).The maximum adsorption capacity of the adsorbent 
was found to be 21.74 mg.g-1 for malachite green and 28.56 

mg.g-1 for Congo red. The polypyrrole-coated magnetic 
Fe3O4 nanoparticle (PPy@Fe3O4) was also utilized as an 
adsorbent to eliminate synthetic textile dye RB19. The 
maximum adsorption capacity of PPy@Fe3O4 for RB19 
was observed to be 112.4 mg.g-1 (Shanehsaz et al., 2015). 
L-arginine-functionalized Fe3O4 magnetic nanoparticles 
(Fe3O4@L-arginine) were synthesized, and the removal 
efficiency for Reactive Blue 19 was observed to be 96.3% 
under optimum conditions. The adsorption mechanism 
obeyed pseudo-second-order kinetics and Freundlich 
isotherm (Dalvand et al. 2016).

Apart from iron, other metal-based nanoparticles and 
their composites have also been synthesized and exploited 
for dye remediation, showing tremendous removal efficiency 
for various types of dyes.  Cupric oxide (CuO) nanoparticles 
synthesized by numerous procedures were employed for 
the removal of various dyes such as MO, MB, crystal violet 
(CV), CR, trypan blue (TB), etc. (Mustafa et al. 2013, 
Mekewi et al. 2016, Sasikala et al. 2016, Taufik & Saleh 
2017,  Shakoor & Nasar 2018b, 2019).

Mustafa et al. (Mustafa et al. 2013) synthesized the 
cupric oxide (CuO) nanoparticles using the precipitation 
method and employed it for the adsorptive studies on 
MB dye, accomplishing a removal efficiency of   88.9%. 
Similarly, Mekewi et al.(Mekewi et al. 2016) synthesized 
CuO nanoparticles and chemically activated them with 
montmorillonite clay, and used them for the removal of MB 
dye from an aqueous solution.

Sol-gel method was adopted to synthesize the iron (II, 
III) oxide/zinc (II) oxide/copper (II) oxide (Fe3O4/ZnO/CuO) 
nano-composites. The Fe3O4/ZnO/CuO nanocomposites 
with different amounts of CuO nanoparticles were used 
for photocatalytic degradation of MB dye under UV/vis 
light and ultrasound arrangement. Faster degradation of 
MB was observed using a higher quantity of CuO in visible 
light and also with a lower quantity of CuO in UV light 
(Taufik & Saleh 2017). Adsorptive studies were carried 
out on cerium-loaded CuO NPs by Sasikala et al. (Sasikala 
et al. 2016) for the remediation of azo dyes such as MO 
and TB in UV radiation.  Silver nanoparticles-loaded AC 
was used as an adsorbent by Karimi et al. (Ghaedi et al. 
2013) for the elimination of MO dye. In their study, it was 
observed that an increase in the pH of the dye solution was 
accompanied by enhanced adsorption of MO. The removal 
efficiency increased from 67.3 to 98.8%, with a rise in pH 
from 2 to 5.  Mady et al. (Mady et al. 2017) prepared Ag-
ZnFe2O4@ reduced graphene oxide (rGO) nanocomposites 
by a one-pot microwave-assisted self-assembly technique. 
The Ag-ZnFe2O4@rGO nanocomposites thus obtained 
with a 15.2 weight percentage of rGO exhibited brilliant 
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adsorption characteristics and high photocatalytic activity 
for the elimination of degradation of rhodamine B (RhB), 
MB, and MO dyes. The Ag-ZnFe2O4@rGO nanocomposite 
can be recovered straightforwardly with a simple magnet 
and can be used five times with no substantial reduction 
in its photocatalytic activity. The Ag-ZnFe2O4@rGO 
nanocomposite catalyst can also be employed for the 
confiscation of hard-to-degrade unwanted constituents 
because of its high proficiency in both UV and visible light 
and its excellent regenerability.

Yang et al. (2016)synthesized novel silver-containing 
vanadate semiconductor nanorod (Ag2ZnV4O12 nanorod) 
was prepared using the sol-gel process, and the photocatalysis 
was explored by photodegradation of RhB dye excited by 
the light wavelength higher than 420 nm. 

Ni-doped ZnO nanoparticles were synthesized by a 
simple low-precipitation method at low temperatures and 
were exploited for the degradation of anionic Fast Green (FG) 
and cationic Victoria Blue (VB) dyes (Saharan et al. 2015), 
synergistic influence of Ni-doped ZnO nanoparticles and 
ultrasonication leads to practically complete mineralization 
of both FG and VB dyes in merely 5 minutes of contact time 
in the manifestation of light. The recovered nanoparticles 
were utilized yet again to degrade the same dyes recurrently 
under ultrasonic irradiation. The sonodegradation efficiency 
for FG and VB was found to be 96% and 94%, respectively, 
in the first 2 cycles. After that, only a slight decrease in the 
catalytic efficiency was observed. Cobalt ferrite (CoFe2O4) 
nanoparticles prepared and functionalized with an amine 
(-NH2) group were employed for the adsorption studies on 
Direct Green6 (DG6), Direct Red 80 (DR80), and Acid Blue 
92 (AB92) dyes. The amine group was introduced to enhance 
the adsorption activity of the CoFe2O4 nanoparticles. The 
adsorption was quite fast, and adsorption equilibrium was 
attained in about 15 minutes. Experimental outcomes indicate 
that the system obeys the Langmuir adsorption isotherm 
model equation and fits better than the other equations 
(Yavari et al. 2016).

A thin-film TiO2-coated nano-structured template was 
synthesized by metal-assisted wet etching of Si. This was 
used as a substrate for the deposition of a 10 nm thick film of 
TiO2 by atomic layer deposition.is studied by dye degradation 
in water. The photocatalytic efficacy of this nanostructured 
template was evaluated by the degradation of two dyes in 
aqueous solution, namely, MB and MO (Scuderi et al. 2014).

The nanostructured TiO2 revealed that the photo-
degradation reaction rate is approximately 3 (for MB) and 
12 times (for MO) as compared to the rate of TiO2 flat film 
(Scuderi et al. 2014). New photoactive composites, Cu2O/
TiO2 nanoparticles in novel inorganic geopolymer matrix 

altered by cetyltrimethylammonium bromide (CTAB), were 
synthesized to efficiently confiscate MB dye from aqueous 
solution. The mechanism of the removal of dye involves 
a combination of adsorption (under dark conditions) and 
photodegradation (under UV radiation). MB adsorption in 
the dark obeys pseudo-second-order kinetics and is best 
described by Freundlich-Langmuir isotherms. The adsorptive 
behavior of the CTAB-modified geopolymer-centered 
composites is far superior to the ones based on unmodified 
geopolymer hosts. The most effective composite is the 
one containing 5-weight percent Cu2O/TiO2 in a CTAB-
modified geopolymer host. These composites set up a new 
class of materials with outstanding potential in environmental 
protection applications (Falah et al. 2016).

Glutaraldehyde cross-linked magnetic chitosan 
nanoparticles (GMCNs) not only exhibited outstanding 
adsorptive behavior for food dyes but also exhibited small 
cytotoxicity. Adsorption features of FD&C Blue 1 and 
D & C Yellow 5 in aqueous solutions by GMCNs were 
carried out. The adsorption mechanism was better depicted 
by the pseudo-second-order kinetics and the Langmuir 
adsorption isotherm model. Maximum adsorption capacities 
of GMCNs at pH 3.0 and 298K were found to be 475.6 
and 292.1 mg.g-1 for FD&C Blue 1 and D&C Yellow 5, 
respectively. Thermodynamic studies demonstrated that 
the reactions were spontaneous and exothermic (Zhou et 
al. 2014).

DISADVANTAGE OF NANO ADSORBENT 
MATERIALS

NADs play a vital part in elucidating ecological concerns like 
the decontamination of wastewater due to their incredible 
physiochemical properties. At the same time, certain 
shortcomings can be acknowledged while utilizing NADs 
in wastewater treatment (Yaqoob et al. 2020). One key 
shortcoming is the probable ecotoxicity of the remaining 
nanomaterial in water, which might cause secondary toxic 
impacts and possibly hurt humans, animals, and other life 
forms (Wang et al. 2019, Zhu et al. 2019, Sardar et al. 2021). 
Another major shortcoming is the utilization of large amounts 
of NADs in the procedure to accomplish a realistic treatment 
period, thereby leading to the wastage of little prospective 
activity. Studies have been carried out to isolate powdery 
leftovers of the water treatment procedures by application 
of membranes which in turn enhance the price of the overall 
procedure. Some studies have conveyed the detrimental 
effects of nanomaterials because of the addition of materials 
in water for its decontamination. For example, chlorination 
of water to get rid of pathogens present in it leads to the 
formation of cancer-causing by-products. Furthermore, 
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owing to the small size of nanoparticles, they can enter the 
lymph and blood via the epithelial and endothelial barriers 
and travel further into the brain, heart, liver, and other organs 
of human beings (Pandey et al. 2023). Hence, future studies 
are required with a focus on advanced comprehension and 
refinement in the utilization of NADs in water treatment.

CONCLUSIONS 

Amidst the variety of wastewater treatment techniques 
available to date, the adsorption technique is the utmost 
proficient and long-established one. The adsorption 
technique can exterminate organic as well as inorganic 
pollutants without creating any by-products or noxious 
intermediary substances. Consequently, it has an extensive 
pertinence in eradicating contaminants from a water resource. 
In recent times, NADs have been used in the adsorption 
process due to their exceptional assets. Thus, NADs are 
considered next-generation adsorbents and execute very 
well in restraining pollutants from wastewater. Various 
NADs can be utilized, like nanometals and their oxides 
and carbon nanotubes, because of the unique assets like 
a large surface expanse, stability, etc. However, there are 
still some shortcomings that limit the promotion of these 
materials. These shortcomings include the cost-effectiveness 
of the method, ecological apprehensions, and practical 
challenges like scaling up to the industrial level and system 
setup. Additionally, there are a few other challenges linked 
to the size of these materials, where the separation of 
nano adsorbents from water is a grave concern. Also, the 
availability of large quantities of nano adsorbents with 
low costs for water treatment destinations can be a serious 
issue for commercial procedures. Furthermore, preventing 
the release of used nanomaterials into the environment is a 
serious challenge because they accumulate for long periods.

In the future, novel studies can be performed with these 
materials in order to advance their applications in wastewater 
remediation, along with more investigations regarding the 
limitations of NADs.
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