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        ABSTRACT
Landslides are significant natural hazards that cause damage to the environment, life, 
and properties, mainly in hilly terrain. This research was mostly focused on generating a 
landslide susceptibility zone map of Papumpare District, Arunachal Pradesh, and classifying 
the region from high susceptibility to least susceptibility using AHP modeling techniques 
considering the landslide causative factors. The Analytical Hierarchy Process (AHP) is a 
multicriteria decision-making model (MCDM) in which each parameter is compared based 
on its role in triggering a landslide. A total of eight parameters were selected based on the 
factors that could affect the most, like Slope, Rainfall, Drainage Density, Lineament Density, 
Geomorphology, Soil, Geology, and Land use/Land cover. These layers were prepared using 
ArcGIS 10.8 software and ERDAS IMAGINE 2014. Based on the output, the region was 
classified into five zones of landslide susceptibility classes. Of these, the high-very-high 
landslides are mostly amassed near the steep and disturbed slopes due to earth-cutting, 
especially for building or construction of roads. Validation was done using the ROC curve 
(73.2%) suggesting good performance of the model. The outcome of this work will provide 
information for proper landslide hazard management and will help in formulating suitable 
mitigation strategies in the future.

INTRODUCTION

Natural disasters are emerging as a huge threat to human life, property, and the 
environment. Landslides, a significant hazard, are more severe and frequent 
in the regions where topography is rugged and human settlements are sparse. 
Many natural factors such as earthquakes, heavy rainfall, river bank erosion by 
flood water, anthropogenic activities including development of infrastructures, 
deforestation, slope excavation causing slope failure, building townships in 
environmentally sensitive zones, etc, have also amplified the impact of disasters. 
Climate-induced disasters such as floods, landslides, and cyclones are increasing 
concerns among the community. These climate-induced disasters are projected to 
become more severe with region-specific intensification (IPCC 2021). Landslides 
serve as one of the most catastrophic geological hazards in the hilly regions.  It 
is more frequent in high mountainous regions where cloudburst-induced extreme 
rainfall causes huge movement of debris down the slope (Kirschbaum et al. 2020). 
In recent years, landslide events have modified landforms, affected biodiversity, 
triggered various hazards like floods, earth-cutting, and alteration of river courses 
due to sedimentation, and damaged life and properties (Lombardo et al. 2020, 
Hao et al. 2023).

India’s distinct climate and geodynamics make it susceptible to various 
naturally occurring disasters. Studies show that about 60% of its landmass is 
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susceptible to earthquakes of different magnitudes, about 8% 
to cyclone hazards, about 68% to drought, 12% to floods, and 
approximately 15% area is vulnerable to landslides. Nearly 
14% of India’s land area is landslide-prone, among which 
one-fifth falls under the northeastern region (Raju 2002). 
Almost the entire NE region is susceptible to landslides of 
various degrees due to its complex terrain conditions. 

Landslide zonation maps formulated through geospatial 
technologies are crucial in disaster management and risk 
mitigation (Kanwal et al. 2016, Huan et al. 2023). According 
to Fell et al. (2007, 2008) and AGS (2000), landslide hazard 
zonation means the classification of terrain into different 
zones that are characterized based on the spatial and 
temporal probability of the phenomenon, including location, 
volume, and future prediction of landslide occurrence. The 
availability of high-resolution spatial data, geoinformatics, 
and fast-processing computers has automated landslide 
hazard/susceptibility mapping processes, minimizing 
fieldwork and delineating potential landslide-affected 
areas (Ilanloo 2011). In recent years, several techniques 
have been utilized for the identification and assessment of 
landslide susceptibility zones, including machine learning 
(ML) (Jhunjhunwalla et al. 2019, Merghadi et al. 2020), 

logistic regression model (Hemasinghe et al. 2018, Shano 
et al. 2022), analytical hierarchy process (Das et al. 2022, 
Barman et al. 2024), frequency ratio (Yadav et al. 2023, 
Qazi et al. 2023). Many researchers have experimented 
with GIS using various causative factors to perform models 
for landslide hazards (Sarkar & Kanungo 2004, Hong et al. 
2007, Kouli et al. 2010, Avtar et al. 2011, Othman et al. 
2012, Devkota et al. 2013, Paulín et al. 2014, Ahmed 2015, 
Pareta & Pareta 2015, Younes Cárdenas and Mera 2016, 
Hadmoko et al. 2017, Stanley & Kirschbaum 2017, Mahdadi 
et al. 2018). This requires the identification of those areas 
that are or could be affected by landslides and the calibration 
of the chances of such landslides occurring within a specific 
period. Commenting on the eventuality of landslides through 
zonation mapping itself is a challenging task. The LHZ 
maps do not directly incorporate the magnitude and time 
before or after the occurrences. The methodology to develop 
a susceptibility map hinge on several elements, viz., the 
nature of the terrain, parameters to be considered, available 
data on slope, rainfall, seismicity, geology, soil, etc. The 
AHP techniques are very productive in identifying potential 
landslide zones as they depend on subjective knowledge 
and expert judgments and are constantly checked through 
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consistency measures (Veerappan et al. 2017, Ozioko & Igwe 
2020). Thus, for minimizing the impact of landslides, the 
AHP-based susceptibility map becomes important since the 
area is classed between very low hazard to very high hazard 
zones based on different landslide hazard zones (Arora et 
al. 2004). Landslide hazard mapping offers knowledge that 
helps designers and engineers locate landslide-prone areas 
to implement effective mitigation measures. 

Here in this study, the method used for preparing the 
zonation map of the Papumpare district is the GIS-based-
Analytical Hierarchy Process (AHP), given by (Saaty 1980). 
AHP is an accepted multicriteria decision-making analysis 
method that has been widely applied to many decision-
making systems. AHP technique integrated with the landslide 
hazard map makes it more reliable (Feizizadeh et al. 2014). 
This research attempts to produce information that can be 
useful for predicting the location of future landslides in the 
Papumpare district of Arunachal Pradesh which will help 
the planners and policymakers in the effective management 
of landslide hazards in the region.

STUDY AREA

The Papumpare district is situated in the southwestern part of 
Arunachal Pradesh, bordering Assam. The name Papumpare 
is procured from the rivers Papum and Pare, which flow 
through the district. Papumpare district lies between 93°12’ E 
to 94°13’ E Longitudes and 26°56’ N to 27°35’ N Latitudes 
(Fig. 1). The district covers a geographical area of 3462 
sq.km in the lesser Himalayan zone. It is bounded by Lower 
Subansiri and Kurung Kumey districts in the north, East 
Kameng district in the west, and North Lakhimpur district 
of Assam in the east and south. Papumpare ranked 14th 
among the districts of Arunachal Pradesh in terms of area. 
The district is covered by thick forest which has sub-tropical, 
deciduous, and humid types of vegetation. Mostly, the low-
lying regions and valleys are occupied by inhabitants. The 
Hill range approximately varies from 300 m to 2700 m above 
sea level. Itanagar, the state capital, is situated at an altitude 
of 440m above MSL.

MATERIALS AND METHODS

Data Sources

Several causative factors which are responsible for landslides 
were studied for this project. The study is solely based on 
the secondary data obtained from various sources (Table 1). 
The selected factors were slope, rainfall, drainage density, 
lineament density, geomorphology, soil type, geology, and 
land use/land cover. Various thematic layers were generated 
within ArcGIS software 10.8 to develop the LSZ map. A 

topographical map of scale 1:50,000 from the Survey of 
India has been georeferenced. Cartosat-3, version 3 (1.12 
m resolution) DEM was employed to develop slope and 
drainage density maps. For rainfall, the data were downloaded 
from the Climate Hazards Group InfraRed Precipitation 
with station data (CHIRPS 0.05° resolution). The spatial 
distribution of rainfall data for the study is estimated 
using the interpolation method (Kriging). LULC map was 
generated from Landsat-8 OLI by supervised classification 
in ERDAS IMAGINE 2014. The Geomorphology, Geology, 
and Lineament map of the study area was obtained from the 
Geological Survey of India. Soil data were collected from 
the Food and Agriculture Organization (FAO).

Application of AHP Techniques

The AHP (Saaty 1980) is a technique employed to determine 
the weight of different parameters. Relative ratings/scores 
were assigned to every parameter according to the level of 
influence, the literature review, and expert opinions. Each 
class of parameter was graded using Saaty’s nine-point 
weighing scale (0-9), i.e., the pairwise comparison matrix 
(Table 2), where a high rating indicates a high influence on 
the occurrence of landslides. The final layout for the LHZ 
map was carried out by using weighted overlay analysis 
within the ArcGIS 10.8 software using each of the generated 
thematic layers. 

According to Gorsevski et al. (2006), AHP is a hierarchical 
structure of a pairwise comparison matrix consisting of equal 
rows and columns. For formulating a comparison matrix, 
each parameter is rated against each one of the parameters by 
assigning a rate that is relatively more dominant. The scale 
ranges between 1 to 9 (Table 2). Thus, comparison matrices 
are pursued as input, and the relative weights are accorded as 
output. Fig. 2 shows the methodological framework adopted 

Table 1: Database and its sources.

Data Source

Cartosat-3, version 3 
(1.12m resolution) DEM

Downloaded from NRSC-Bhuvan, 
https://bhuvan-app1.nrsc.gov.in/

CHIRPS Annual Rainfall 
data (0.05° resolution)

Downloaded from Climate Hazard 
Centre, UC Santa Barbara, https://data.
chc.ucsb.edu/products/CHIRPS-2.0/

LULC from satellite 
image Landsat-8 OLI 

Downloaded from the United States 
Geological Survey,
http://earthexplorer.usgs.gov/

Lineament, Geology, 
Geomorphology

Downloaded from Geological Survey 
of India,
https://bhukosh.gsi.gov.in/

Soil data Downloaded from the Food and 
Agriculture Organization of the United 
Nations (FAO),
https://www.fao.org/

https://bhuvan-app1.nrsc.gov.in/
https://data.chc.ucsb.edu/products/CHIRPS-2.0/
https://data.chc.ucsb.edu/products/CHIRPS-2.0/
http://earthexplorer.usgs.gov/
https://bhukosh.gsi.gov.in/
https://www.fao.org/
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in delineating the landslide inventory map of Papumpare 
district, Arunachal Pradesh.

Computation of the Weights Assigned to Parameters

After assigning the pairwise comparison matrix (Table 3), 
the calculation was done. The comparison matrix in AHP 
consists of rows and columns; each row of the matrix is 
compared to the other, and each row indicates the relative 
significance between the two criteria. In this matrix, the rows 
follow the inverse of each criterion and its significance with 
others (Bera et al. 2019). Subsequently, the weights were 

normalized (Table 4) to minimize the biases that exist in the 
weight assignment (Saravanan et al. 2021).

The calculation of the Consistency ratio (CR) validates 
the result and was coined to consider whether the comparison 
matrix is consistent or not (Kolat et al. 2012). 

 Consistency Ratio (CR) =  Consistency Ratio (CR) =      CI
RI      

                                                            CI =   λmax− n
n − 1  

 CI = 

Consistency Ratio (CR) =      CI
RI      

                                                            CI =   λmax− n
n − 1  

Where, λ
 
- eigenvalue and n - number of factors 

To determine the Consistency Index, AHP compares it 
by Random index (RI), and the result is called Consistency 
Ratio, which can be defined as CR = CI/RI. The Random 
index  (Table 5) is the randomly generated comparison matrix 
of order 1 to 10 obtained by approximating random indices 
(Saaty 1990). Table 3 shows the value of RI.

As per the values of CR, if CR is less than 0.10, the 
ratio indicates a sensible level of consistency for the given 
pairwise comparisons. Thus, if CR is greater than 0.10, 
then the ratio indicates inconsistent judgments. In certain 
cases, the assigned values for the given matrix should be 
reconsidered and re-evaluated. 

Table 2: Weights for Pairwise comparison. Source: (Saaty 1990).

Scales Intensity Descriptions

1 Equally important Both factors are important

3 Slightly important One among others is slightly more 
effective than a certain factor

5 Quite important One among others strongly tends to 
a certain factor

7 Extremely 
important

One among others is extremely 
dominant to a certain factor

9 Absolutely 
important

A factor has the highest possibility 
of tending to a certain factor
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Fig. 2: Conceptual Framework. 

Table 3: Pair-wise comparison matrix. 

CRITERIA SL RF DD LD GE SO G LULC 

Slope (SL) 1 2 3 3 4 5 6 7 

Rainfall (RF) 0.5 1 2 4 5 5 6 7 

Drainage density (DD) 0.33 0.5 1 2 3 4 6 6 

Lineament density (LD) 0.33 0.25 0.5 1 3 4 6 6 

Geomorphology 0.25 0.2 0.33 0.33 1 2 3 5 
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Based on this study, the calculated overall value for 
the consistency ratio was 0.065, which shows that the 
comparisons of each factor/parameter indicate a reasonable 
consistency and that the weights (Table 6) were appropriate 
for the model. 

Eigenvector  λ = sum of consistency vector/ no. of 
parameters(N)

  λ = 8.64

Consistency Index    = 0.092

Consistency Ratio    = 0.065

RESULTS AND DISCUSSION

Slope

The slope plays a major role, as the degree of slope angle 
is considered the main causative factor used to generate the 
susceptibility in landslides. According to (Lee et al. 2004), 
as the degree of slope angle increases, shear stress in soil or 
overlying material increases as well. The slopes of the study 
area (Fig. 3) were classified into five categories such as steep 
(>50°), which cover 301.49 sq. km, and high (31°- 40°) 
covers 798.41 sq. km. Moderately high (21°- 30°) covers 
1024.26 sq. km, gentle (11°- 20°) covers 897.96 sq. km, and 
rolling slopes (<10) which covers 497.57 sq. km. A steep 
slope with more mobilizing force may fail early (Anbalagan 
et al. 2015). In steeper slopes, due to gravity, the weight of 
the underlying material will be more compared to moderate 
slope, thus, the weights were allotted accordingly (Table 7). 

Rainfall

Landslides triggered by rainfall are primarily caused by the 
build-up of pore water pressures in the ground (Sengupta 
et al. 2010). For the preparation of the rainfall distribution 

Table 6: Consistency Vector for each criterion.

CRITERIA Weight Consistency Vector

Slope 2.56 8.87

Rainfall 2.22 9.20

Drainage 1.41 9.03

Lineament 1.14 8.84

Geomorphology 0.61 8.45

Soil Type 0.46 8.32

Geology 0.28 8.10

LULC 0.18 8.33

Table 3: Pair-wise comparison matrix.

CRITERIA SL RF DD LD GE SO G LULC

Slope (SL) 1 2 3 3 4 5 6 7

Rainfall (RF) 0.5 1 2 4 5 5 6 7

Drainage density (DD) 0.33 0.5 1 2 3 4 6 6

Lineament density (LD) 0.33 0.25 0.5 1 3 4 6 6

Geomorphology 0.25 0.2 0.33 0.33 1 2 3 5

Soil 0.2 0.2 0.25 0.25 0.5 1 3 4

Geology (G) 0.17 0.17 0.17 0.17 0.33 0.33 1 3

LULC 0.14 0.14 0.17 0.17 0.2 0.25 0.33 1

Table 4: Standardized comparison matrix and calculation of criterion weights. 

CRITERIA SL RF DD LD GE SO G LULC Total Weight Standardized Weight

Slope (SL) 0.34 0.45 0.40 0.27 0.23 0.23 0.19 0.18 2.31 0.29

Rainfall (RF) 0.17 0.22 0.27 0.37 0.29 0.23 0.19 0.18 1.93 0.24

Drainage density (DD) 0.11 0.11 0.13 0.18 0.18 0.19 0.19 0.15 1.25 0.16

Lineament density (LD) 0.11 0.06 0.07 0.09 0.18 0.19 0.19 0.15 1.03 0.13

Geomorphology 0.09 0.04 0.04 0.03 0.06 0.09 0.10 0.13 0.58 0.07

Soil 0.07 0.04 0.03 0.02 0.03 0.05 0.10 0.10 0.44 0.06

Geology (G) 0.06 0.04 0.02 0.02 0.02 0.02 0.03 0.08 0.28 0.03

LULC 0.05 0.03 0.02 0.02 0.01 0.01 0.01 0.03 0.18 0.02

Table 5: Random Index. 

N 1 2 3 4 5 6 7 8 9 10

RI 0.0 0.0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49
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map (Fig. 4), 10-year rainfall data were considered. The 
intensity of the annual average rainfall of the region ranges 
between 864 and 2884 mm. The rainfall map was divided into 
five categories, namely, 864-1268 mm, which covers 465.47 
sq. km, 1268-1664 mm covers 708.40 sq. km, 1664-2012 mm 
covers 987.89 sq. km, 2012-2392 sq. km, and 2392-2884 
mm which covers 591.84 sq. km. Higher intensity of rainfall 
was found in the eastern part of the region, and the northern 
region showed moderate-intensity rainfall (864-1664 mm). 
Intense rainfall during monsoon causes rainwater seepage, 
due to which the materials get saturated and loosened, this, 
in turn, causes slope failure. Higher rainfall zones were 
provided with high weights and vice-versa (Table 7).

Drainage Density

Drainage is an important factor that controls the landslide as 
its densities control the nature of the soil and its geotechnical 
properties (Pareta 2004). The function of infiltration is 
negatively correlated to drainage density. High-density 
values are indicative of lower infiltration rates and higher 
surface flow velocity. The lower the infiltration rate, the 
more favorable it is for runoff, thus indicating higher 
drainage density. The study area (Fig. 5) has been divided 
into five classes, namely, 0.01-0.22 km/sq.km, which covers 
a 438.62 sq.km area, 0.22-0.34 km/sq.km covers 828.2 

sq.km, 0.34-0.44 km/sq.km covers 939.57 sq.km, 0.44-0.55 
km/sq.km covers 818.31 sq.km and 0.55-0.78 km/sq.km 
covers 505.3 sq.km. High-density values, i.e., between 0.01-  
0.78 km/sq.km, are witnessed in whole parts of the region. 
The susceptibility of landslide zones is proportional to the 
function of drainage density due to its relation with surface 
runoff and permeability. The weights were allotted according 
to the dominance of drainage in different locations of the 
Papumpare district (Table 7).

Lineament Density

Lineament is a linear feature in a landscape that is an 
expression of an underlying geological structure, such as 
a fault. Lineament appears as a fault-aligned valley, fold-
aligned hills, straight coastline, or union of these features. 
Lineament helps to surmise mineral prospects of a region, 
analyze structural deformation patterns/trends, identify 
geological boundaries, and surmise crustal structure and 
various subsurface phenomena in areas of unexposed 
lithology. Lineament and any planar structure are important 
factors for assessing the stability of slopes which destabilize 
the area as well as lead to the deterioration of rocks, which 
energize the weathering processes. The lineament density 
varies between 0 and 74.9 km/km square. Hence, the 
Lineament density (Fig. 6) has been classified upon natural 
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Fig. 5: Drainage Density map. 
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The geomorphologic map depicts important geomorphic units, landforms, and underlying geology to 

provide an understanding of the processes, lithology, structures, and geologic controls related to 

landslide susceptibility. The geomorphology of the region (Fig. 7) consists of a river, an alluvial/flood 
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mostly mountainous, forming a part of the eastern Himalayan ranges. The high/low dissected structural 

hills dominate the region with 3361.44 sq. km of areal coverage comprising 95.23% of the geographical 

area of the region, followed by alluvial/flood plain with 96.60 sq.km (2.73%), rivers occupying 49.83 

sq.km (1.41%), pediment slope covering 21.53 sq.km (0.60%) and the rest are mass wasting products 

spread across 2.33 sq.km area (0.06%). The weights are ranks assigned to the geomorphological class, 

and sub-classes are depicted in Table 7. 

Soil 

Soil texture,  soil depth, and soil erosion play an important role in assessing the stability of the soil and 

landslide susceptibility of the land. In the case of soil texture, the landslide occurrence probability value 

Fig. 5: Drainage Density map.
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breaks into 5 classes such as class I (0-6.46 km/sq.km), class 
II (6.46-18.21 km/sq.km), class III (18.21-31.42 km/sq.km), 
class IV (31.42-42.04 km/sq.km), class V (49.04-74.9 km/
sq.km). The regions with high lineament density values were 
provided with higher weights and vice-versa (Table 7).

Geomorphology

The geomorphologic map depicts important geomorphic 
units, landforms, and underlying geology to provide an 
understanding of the processes, lithology, structures, and 
geologic controls related to landslide susceptibility. The 
geomorphology of the region (Fig. 7) consists of a river, an 
alluvial/flood plain, highly/low dissected structural hills, a 
pediment/piedmont slope, and mass wasting. The region is 
mostly mountainous, forming a part of the eastern Himalayan 
ranges. The high/low dissected structural hills dominate the 
region with 3361.44 sq. km of areal coverage comprising 
95.23% of the geographical area of the region, followed 
by alluvial/flood plain with 96.60 sq.km (2.73%), rivers 
occupying 49.83 sq.km (1.41%), pediment slope covering 
21.53 sq.km (0.60%) and the rest are mass wasting products 
spread across 2.33 sq.km area (0.06%). The weights are ranks 
assigned to the geomorphological class, and sub-classes are 
depicted in Table 7.

Soil

Soil texture,  soil depth, and soil erosion play an important 
role in assessing the stability of the soil and landslide 
susceptibility of the land. In the case of soil texture, the 
landslide occurrence probability value is higher in rocky and 
sandy loam and is lower in fine sandy loam, silt/gravelly silt 
loam, and loam (Lee et al. 2004). According to the generated 
soil map (Fig. 8), the region is mainly composed of three 
soil types: loamy soil (1516.33 sq.km areal coverage), fine 
loamy soil (1054.44 sq.km), and coarse loamy soil (959.18 
sq.km). The study shows that lightweight soils like sandy 
and coarse loams are easy to detach as they need low organic 
matter content, leading to an inability to stable aggregates. 
Therefore, soil with a lot of sand, steep slopes, and intensive 
fall, which represent the most dominant factors of landslide, 
cause severe harm to the land, and thus, weights were 
provided accordingly (Table 7). Thus, the susceptibility of  
an area to landslide increases with the increase of soil  
erosion. 

Geology

Lithology is one such factor that is oftentimes used 
for landslide susceptibility analysis in the hilly area 
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Fig. 7: Geomorphology. 

 

Fig. 8: Soil map. 

Fig. 7: Geomorphology.

16 
 

 

Fig. 7: Geomorphology. 

 

Fig. 8: Soil map. Fig. 8: Soil map.



10 Tilling Riming et al.

Vol. 24, No. 1, 2025 • Nature Environment and Pollution Technology  

(Althuwaynee et al. 2016). Landslides generally depend on 
the rock properties of the region because of the variance in 
strength and permeability of rocks. Due to heavy rainfall, weak 
or highly weathered or eroded rocks cause frequent landslides 
in different places around the world. In the study area (Fig. 
9), the rocks that are the most dominant are the Siwalik group 
(59.28% area), followed by Undifferentiated Quaternary 
sediments (39.22% area), the Bomdila group (1.14% area) 
and the Lower Gondwana group (0.34% area). The region 
dominated by undifferentiated quaternary sediments was 
assigned the highest weight due to its unstable structure, and 
the Bomdila group was given the least weight as these rocks 
are comparatively older and more stable (Table 7).

Land-use/Land-cover

Alteration in land use/land cover is a crucial factor for 
landslide susceptibility models. Anthropogenic factors like 
the construction of buildings, roads, bridges, deforestation, 
etc., in the hilly regions also contribute to the event of 
landslides due to the instability of the slope. The LULC map 
(Fig 10) was prepared using Landsat 8 OLI satellite data. 
Five categories of land use/land cover were classified in 
the region, namely, dense forest (3385.23 sq.km), cropland 
(30.72 sq.km), sandbar (5.78 sq.km), rivers (10.02 sq.km), 

and settlement (98.25 sq.km) were identified. In general, the 
region has a dense vegetation cover with thick evergreen 
forests, which are very less susceptible to landslides and, 
thus, were assigned the lowest weight. The weights assigned 
to each LULC sub-class are depicted in Table 7.

Landslide Hazard Zonation

The LSZ map was delineated by weighted overlay analysis 
which was performed in ArcGIS 10.8 software, with 
reference to the eight parameters cited above. The weighted 
values of each parameter (Table 7) indicate the impact of 
each parameter on another. Accordingly, the susceptibility 
map of the region contains five zones, based on the landslide 
susceptibility index such as “very low hazard, low hazard, 
moderate hazard, high hazard, and very high hazard”  
(Fig. 11). Table 8 signifies that 6.35% (223.55 sq. 
km) of the area falls under the very high zone, 26.29%  
(925.02 sq. km) has a high zone, 40.68% (1431.43 sq. km) 
in the moderate zone, 26.69% (938.24 sq. km) in low zone 
and only 0.003% (0.12 sq. km) has a very low potential for 
the occurrence of landslide. Most of the area falls under the 
moderate to high zone. The map demonstrates that the high 
to very high-landslide-hazard zone was concentrated in the 
following circles, i.e., Doimukh, Itanagar, Kakoi, Kimin, 
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Fig. 9: Geology. 

 

Fig. 10: Land use/Land cover map. 

Fig. 9: Geology.
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Fig. 11: LHZ map of the study area. 

Table 8: Area of zones (Percentage). 

        Susceptibility zone        Area [km2] Area in Percentage [%] 

            Very Low zone 0.12 0.003 

                Low zone 938.24 26.69 

             Moderate zone 1431.43 40.68 

                High zone 925.02 26.29 

            Very High zone 223.55 6.35 

 

Map Validation of LHZ Map with Field Data 

Validation of the hazard zones is essential to confirm the precision rate of the landslide susceptibility 

map acquired based on the AHP model. In the current study, validation is done by using ROC (Receiver 

Operating Characteristic) as a tool for appraising the efficiency of landslide zonation. ROC curve is 

mostly used to show the correlation between True Positive Rate and False Positive Rate graphically 

(Althouse 2016). A landslide inventory map (Fig. 12) was prepared based on data collected from the 

Geological Survey of India and field visits. A total of hundred landslide location points were collected 

Fig. 11: LHZ map of the study area.
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Naharlagun, Sangdupota, Toru, etc. Most of the concentrated 
hazard zones are seen near steep terrains and disturbed 
slopes because of earth-cutting for the construction of roads, 
buildings, etc. Areas that have low-hazard potential zones 
are largely concentrated in the southern part of the district, 
which are mostly low-lying regions. The delineated zonation 
map shows that the degree of landslide hazard decreases with 
increasing distance from drainage, lineament, and settlements.

Map Validation of LHZ Map with Field Data

Validation of the hazard zones is essential to confirm the 
precision rate of the landslide susceptibility map acquired 
based on the AHP model. In the current study, validation is 
done by using ROC (Receiver Operating Characteristic) as a 

tool for appraising the efficiency of landslide zonation. ROC 
curve is mostly used to show the correlation between True 
Positive Rate and False Positive Rate graphically (Althouse 
2016). A landslide inventory map (Fig. 12) was prepared 
based on data collected from the Geological Survey of India 

Table 7: Landslide hazard weights values and rating system of different thematic layers.

Factors Classes Weights Rating Consistency 
Ratio

Slope (in degree) <10
11-20
21-30
31-40
>50

0.29 1
3
5
7
9

0.017

Rainfall (in mm) 864-1268
1268-1664
1664-2012
2012-2392
2392-2884

0.24 5
6
7
8
9

0.045

Drainage Density [Km.
sq.km-1]

0.01-0.22
0.22-0.34
0.34-0.44
0.44-0.55
0.55-0.78

0.16 1
3
5
7
9

0.016

Lineament Density
[Km.sq.km-1]

0-6.46
6.46-18.21
18.21-31.42
31.42-42.04
49.04-74.9

0.13 1
3
5
7
9

0.020

Geomorphology River
Alluvial/Floodplain
Highly/low dissected structural hills
Pedimont/Piedmont slope
Mass Wasting

0.07 3
4
5
6
7

0.039

Soil Loamy soil, moderate erosion
Fine loamy soil, moderate erosion
Coarse loamy soil, severe erosion

0.06 4
5
6

0.006

Geology Siwalik unclassified, Miocene
Bomdila Gp. Paleoproterozoic
Lower Gondwana Gp. Permian
Undifferentiated  
sediment, Quaternary

0.03 6
4
5
7

0.086

LULC River
Sandbar
Cropland
Settlement
Dense Forest

0.02 8
7
6
5
4

0.053

Table 8: Area of zones (Percentage).

Susceptibility zone Area [km2] Area in Percentage [%]

Very Low zone 0.12 0.003

Low zone 938.24 26.69

Moderate zone 1431.43 40.68

High zone 925.02 26.29

Very High zone 223.55 6.35
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using the GPS device during the field survey and Geological Survey of India and were analyzed with 

the LHZ map using ArcSDM tools. The value of the accuracy curve for the Area Under Curve (AUC) 

ranges between 0.5 to 1, and the prediction model based on the ROC curve and AHP generated a value 

of 0.73 or 73%, which quantifies that the prediction is good (Fig. 13). Fig. 14 shows images from the 

field visit identifying some active landslide zones in the Papumpare districts. 

    

Fig. 12: Landslide inventory map. Fig. 12: Landslide inventory map.
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Fig. 13: ROC curve for Landslide zonation map derived from AHP. Fig. 13: ROC curve for Landslide zonation map derived from AHP.
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and field visits. A total of hundred landslide location points 
were collected using the GPS device during the field survey 
and Geological Survey of India and were analyzed with the 
LHZ map using ArcSDM tools. The value of the accuracy 
curve for the Area Under Curve (AUC) ranges between 0.5 
to 1, and the prediction model based on the ROC curve and 
AHP generated a value of 0.73 or 73%, which quantifies that 
the prediction is good (Fig. 13). Fig. 14 shows images from 
the field visit identifying some active landslide zones in the 
Papumpare districts.

Limitations and Suggestions for Future Research

The landslide hazard zonation (LSZ) of the Papumpare 
district using GIS and AHP techniques provided significant 

results. However, the research has several limitations that 
should be acknowledged for building a base for future 
studies in the region. Some of the limitations include a lack 
of adequate landslide data, inaccessibility due to rugged 
terrain conditions and limited field validation, subjectivity 
in the AHP model, and lack of monitoring temporal change 
in different landslide triggering factors. Thus, future courses 
of research need to be guided by the integration of real-
time data, consideration of other hazards associated with 
landslides, and the use of GIS-based machine learning (ML) 
and deep learning (DL) in landslide zone mapping.

CONCLUSIONS

Papumpare, the capital district of Arunachal Pradesh, is prone 
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Fig. 14: Photographs of some selected landslide sites of the study area. 
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building a base for future studies in the region. Some of the limitations include a lack of adequate 

landslide data, inaccessibility due to rugged terrain conditions and limited field validation, subjectivity in 

the AHP model, and lack of monitoring temporal change in different landslide triggering factors. Thus, 

future courses of research need to be guided by the integration of real-time data, consideration of other 
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to frequent landslide, which occurs every year mostly due 
to heavy downpours, seismic activity, and anthropogenic 
interference. During the monsoon season, the region faces 
difficulties caused by landslides, resulting in several issues 
like loss of life, damage of properties, and hindering social 
and economic progress. In the present research, potential 
landslide sites were identified by integrating AHP and 
geospatial technologies using eight landslide-triggering 
factors. The findings revealed that more than 70% (2,580 sq. 
km) of the region falls under moderate to very high landslide 
zones, and the rest of the region falls under low to very low 
landslide potential zones. The higher landslide susceptibility 
was witnessed in the areas affected by human intervention, 
higher rainfall, and geological vulnerability. The validation 
of the LSZ map was realized through field surveys and by 
generating a landslide inventory map and ROC-AUC curve 
with an accepted value of 0.73. The results suggest good 
landslide predictability. However, the improvement of the 
prediction accuracy of the delineated map can be further 
reformed by considering more factors. The resulting LHZ 
map of the Papumpare district can be a reliable repository of 
information supporting land-use planning and management 
of the terrain, helping to minimize the impact of landslides 
in the region.
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