Archives Issues
Volume 23, Issue No 3, Sep 2024
Cover
Contents and Other Pages
Navigating Nepal’s Economic Growth and Carbon Emissions: Insights into the Environmental Kuznets Curve (EKC)
This research aims to employ the Autoregressive Distributed Lag (ARDL) method within the insight into the Environmental Kuznets Curve (EKC) to verify whether EKC exists in the Nepalese economy. In this research, variables were used, such as carbon emissions per capita, GDP per capita, energy use per capita, trade volume, and urbanization from 1980 to 2021, and the ARDL method was used. The data has been taken in this research except trade volume from the World Bank and the Ministry of Finance, Nepal. The data sets are converted into the natural logarithmic form to minimize the problem of heteroskedasticity. The findings provide compelling evidence for the existence of the EKC in Nepal, that economic growth has an inverted U-shaped impact on carbon emissions. In the early stages of development, economic growth leads to rising carbon emissions, but in the later stages, economic growth becomes associated with declining emissions. Besides economic growth, per capita energy consumption and urbanization emerge as significant drivers of carbon emissions. However, the trade volume is not found to be the driving factor of carbon emissions. The findings of this study have significant policy implications for global climate change issues and Nepal’s transition from an underdeveloped to a developing nation. To achieve harmonious economic growth and emissions reduction, donor countries and agencies to partner with Nepal in its ambitious endeavors. This partnership can take shape through multifaceted support as fueling socio-economic progress that aligns with Nepal’s commitment to reduce carbon emissions, ensuring that development and sustainability walk together. This research recommends the government of Nepal electrify the transportation landscape by incentivizing the adoption of electric vehicles, paving the way for cleaner air and a healthier planet, empowering Nepal’s natural guardians by strengthening public and private forest programs, safeguarding invaluable ecosystems and biodiversity and curbing the tide of waste mismanagement through strict regulations and robust enforcement, transforming a potential threat into a source of innovation and resourcefulness. These measures, aligned with sustainable employment generation, can pave the way for a brighter and greener future for Nepal.
R. Adhikari, B. Niroula and S. K. Singh
Advanced Waste-to-Energy Technologies: A Review on Pathway to Sustainable Energy Recovery in a Circular Economy
In the face of the rapid rise in global waste production and the pressing need to shift towards sustainable energy options, advanced Waste-to-Energy (WtE) technologies have emerged as a highly promising solution. These innovative technologies effectively utilize waste as a valuable resource, presenting a viable pathway for sustainable energy recovery and making a substantial contribution to the principles of the circular economy paradigm. This review provides a comprehensive overview of advanced WtE technologies, including thermal, biological, and chemical methods, such as gasification, pyrolysis, plasma arc gasification, anaerobic digestion, fermentation, transesterification, and hydrothermal carbonization. The efficiency of these technologies is evaluated based on their energy recovery potential, environmental impact, and economic feasibility. Case studies on successful implementations of advanced WtE technologies are analyzed to highlight their practicality and effectiveness. Finally, the paper addresses technical, regulatory, and policy challenges in this field and provides future perspectives. The objective is to underscore the role of advanced WtE technologies in achieving a sustainable and resource-efficient circular economy.
C. G. Achi, J. Snyman, J. M. Ndambuki and W. K. Kupolati
Techno-Economic Analysis of Solar, Wind, and Biomass Hybrid Renewable Energy Systems to Meet Electricity Demand of a Small Village in Bihar State of India
This study examines the potential use of Hybrid Renewable Energy Systems (consisting of photovoltaic, wind, bio, and diesel sources) both with and without the inclusion of battery storage in the eastern region of India. An evaluation is conducted to determine the economic viability of several system configurations, and the most efficient system is selected using HOMER software. The investigation focused on six distinct scenarios to meet the energy needs of a village community. The goal was to satisfy a daily load need of 1093.7 kWh, with a peak demand of 153.63 kW. The study examined many factors, such as system efficiency, financial viability, and ecological consequences. The primary aim of the research was to compare the power costs associated with different designs of HRES. Detailed techno-commercial assessments were carried out to examine the energy production, consumption, and financial impacts of each scenario. This research provides valuable insights for individuals and organizations seeking reliable and long-lasting energy solutions by analyzing the potential benefits and drawbacks of implementing HRES in rural areas. An evaluation is conducted to determine the energy contribution of each element within an RES, as well as the influence of HRES on energy expenses and net present value. The findings of this study reveal that the optimized hybrid system comprises 133 kW photovoltaic arrays, a 130-kW wind turbine, a 0.2 kW biogas generator, a 100-kW diesel generator, a 540-kWh battery bank with nominal capacity, and a 58-kW converter. This system has a minimum COE of 0.347$/kWh and NPC of $1.71M. The research offers useful insights for designers, scholars, and policymakers on the existing design constraints and policies of biomass-based hybrid systems.
Anant Arun Patil, Rajesh Arora, Ranjana Arora and S. N. Sridhara
Energy Intervention Model in Public Education Institutions that Contribute to Sustainable Development
Sustainable development is a global policy that requires the collective effort of the actors present in each territory. In this sense, an energy renewal intervention model is presented at the Juan XXIII Educational Institution in the city of Monteria, Córdoba, Colombia, which results from alliances between international, national, and regional actors, becoming a reference that could serve as a basis. To be replicated in other institutions with characteristics similar to those described in this case. The model generally describes the entire process carried out in the intervention and focuses on the benefits generated for the educational community. Among the main results, the increase in thermal, lighting, and acoustic comfort of the educational community stands out, according to a survey and semi-structured interviews carried out. A fact that could be attributed to the perception of increased comfort in the community is the increase in the student population in 2022, going from 1,478 in 2019 to 1,909 in 2022, with a growth of approximately 29%. Energy renovation also resulted in the improvement of the indoor climate of the classrooms (from 35°C to 27°C), the improvement in the physical infrastructure of the institution, the integration of photovoltaic solar energy, and the subsequent reduction of energy cost.
J. Velez-Ramos, D. Mayorga and F. Gonzalez
Characterization of the Bacterial Microbiome Structure and Identification of the Beneficial Genera in the Leaf Litter Compost for its Potential Application as a Bioorganic Fertilizer
This study investigates the potential of leaf and various organic waste composts as bio-organic fertilizers using 16S rRNA metagenomics. The microbial richness and diversity analysis, employing alpha and beta diversity indices, reveal substantial variations influenced by organic substrates during composting. The leaf compost had a high total OTU (70,554) but low microbial diversity (Chao 1 index = 272.27). The kitchen waste compost had the highest microbial diversity (Chao 1 index = 429.18). Positive correlations between microbial biomass, diversity, and compost quality highlighted the pivotal role of microbial activity. The beneficial genera identified across all the bio-composts were Lactobacillus, Leuconostoc, Sphingobacterium, Paenibacillus, Pseudomonas, and Clostridium. Some pathogenic genera were also detected in all the composts analyzed, viz. Prevotella, Agrobacterium, Fusobacterium, and Streptococcus. Nonetheless, the ratio of beneficial to the pathogenic genera was generally high in all compost, highlighting the enrichment with beneficial microorganisms. The leaf compost demonstrated the highest proportion of beneficial genera, about 92%, indicating significant bio-fertilizing potential, with a low % level of pathogenic genera of about 3%. Thus, the leaf compost has excellent potential to be used as a bio-organic fertilizer. Understanding the microbial composition of organic waste composts is crucial for its application as bio-fertilizer for promoting sustainable agriculture.
Sophayo Mahongnao, Pooja Sharma, Arif Ahamad, Neeraj Dohare, Neeru Dhamija, Anita Garg Mangla and Sarita Nanda
Saccharification of Different Delignified Sawdust Masses from Various Trees Along the Lagos Lagoon in Nigeria
Sawdust, a major waste product of the forestry industry, is accumulating along the Lagos Lagoon in Lagos, Nigeria, without it being effectively managed. Besides its use in The saccharification of sawdust could contribute to the development of renewable energy sources and feedstock for bioproduct development. The process is, however, not that straightforward as variables such as the type of cellulase enzyme, pretreatment of the cellulose substrate, and optimizing of cellulase to cellulose ratio are a few that need to be optimized for the process to be effective in terms of glucose production.manufacturing sound-absorbing boards to reinforce concrete beams and for energy purposes, its potential as a renewable energy source and feedstock for bio-product development has not yet been realized. Cellulose, a glucose biopolymer and structural component of cellulose can be hydrolyzed by a hydrolytic enzyme known as cellulase. During the process, the enzyme breaks the B-1,4-glucosidic bond, which keeps the glucose units together, and by acting on this bond, numerous glucose units are released. As part of sawdust, the cellulose molecule is not freely available for the degradation action of the cellulase enzyme as it is strongly associated with lignin, which acts as bio-glue, keeping cellulose and hemicellulose together. Delignification is an effective technique that was used to make the sawdust from ten different trees along the Lagos Lagoon in Nigeria more susceptible to saccharification by cellulase isolated from the fungus Aspergillus niger. Delignified and non-delignified sawdust masses between 2 mg and 10 mg were incubated with the A. niger cellulase solution (2 mg.mL-1), whereafter, the amount of sugar produced by the cellulase action was determined. The percentage saccharification of each sawdust material was also linked with the amount of sugar produced during cellulase action. From these investigations was concluded that delignification increased sugar production when almost all the masses of different sawdust materials were degraded. It was also observed that the ratio of sawdust mass to enzyme concentration is an important variable that influences the effectiveness of the saccharification process. The percentage saccharification of the various sawdust materials was also determined, and it indicated that the highest percentage of saccharification was not obtained when the highest amount of sawdust was degraded, producing the highest amount of sugar.
N. A. Ndukwe, J. B. M. Seeletse and J. P. H. van Wyk
Emerging Issues in Energy Sustainability: A Systematic Review and Research Agenda
This research paper seeks to investigate and categorize previous studies to understand better the role of energy generation technology in promoting sustainable development of a country country. The primary aim of this review is to identify and emphasize key issues related to energy sustainability. The study employs a systematic review approach, drawing on academic publications from the Web of Science and Scopus database. The analysis reveals five key issues: the nexus between energy generation and greenhouse gas emissions, energy generation and employment, the impact of energy generation and land use intensity, the association between energy generation and water footprint, and the nexus between energy generation and human health. This study delves into the theoretical dimensions of research concerning the interplay between energy sustainability and various aspects of energy generation technologies. Furthermore, it contributes to the existing body of knowledge concerning Sustainable Development Goal 7, with the overarching goal of enhancing both human well-being and economic prosperity through advancements in energy generation technologies. The study comprehensively explores the subject matter, offering an in-depth analysis of energy sustainability. Its unique contribution lies in its extensive examination of multiple facets of energy sustainability, making it a significant addition to the field of research.
Aqsa Anjum, Jahangir Chauhan, Marghoob Enam and Irfan Ali
Microbial Fuel Cell: Optimizing Graphene-Sponge Anode Thickness and Chamber pH Using Taguchi Experimental Method
The rapid consumption of fossil fuels has led to calls to switch from non-renewable to renewable energy sources. Microbial fuel cells are a promising technology that simultaneously treats wastewater and produces power. This study used the Taguchi Experimental method to optimize anode thickness and pH to obtain the maximum power density of an air-cathode microbial fuel cell (ACMFC). The graphene-sponge (G-S) anode thickness and chamber pH were selected as operating parameters, with their corresponding levels. The L9 orthogonal array was chosen for the experimental design. According to the Taguchi Method, the optimum G-S anode thickness and chamber pH were determined to be 1.0 cm and 8.0, respectively. A confirmatory run was performed under these optimum conditions, and the maximum power density observed was 707.75 mW·m?3. Analysis of variance (ANOVA) was conducted to identify the percentage contributions of the operating parameters to the process, which were found to be 30.66% for pH and 69.34% for anode thickness.
Emilio Steven C. Navarro and Melissa May M. Boado
Heavy Metal Contamination of Surface Sediments-Soil Adjoining the Largest Copper Mine Waste Dump in Central India Using Multivariate Pattern Recognition Techniques and Geo-Statistical Mapping
This detailed study assessed heavy metal contamination of sediments/soil near central India’s largest copper mining area using 38 sampling sites within 10 km of the mine using atomic absorption spectroscopy. This study utilized multivariate pattern recognition methods, namely hierarchical clustering analysis (HCA) and principal component analysis (PCA), for source identification. Twelve parameters, i.e., copper (Cu), manganese (Mn), cobalt (Co), zinc (Zn), nickel (Ni), lead (Pb), organic matter (OM), cation exchange capacity (CEC), soil pH, distance (D), and elevation (E) were analyzed. The hierarchical cluster analysis (HCA) was used to analyze the sample sites with similar metal contamination and principal component analysis (PCA) was used to analyze the relationship between the parameters as well as to identify sources of heavy metal pollution. Three major pollution hotspots were detected by AHC and were classified as unpolluted/low pollution sites (UPS: mean concentration factor of 1.35 for Cu), highly polluted sites (HPS: mean concentration factor of 22 for Cu), and extremely polluted sites (EPS: mean concentration factor of 74 for Cu). PCA revealed three hidden factors/components, namely PC1 (explaining 38% of the variability), PC2 (18% of the variability), and PC3 (14% of the variability). Metals showed strong positive loading in PC1, explaining the highest variability. The mean content of Cu in soil/sediment samples was 502.526 mg/kg. The mean copper content was 10 times higher than the natural crustal value of 45mg/kg, indicating severe pollution in several sites around the study area. Mapping of copper contamination was conducted to reveal the spatial distribution of copper contamination using QGIS. This study exposes the heavy metal contamination level in surface sediments/soil and the effectiveness of pattern recognition techniques for the assessment of multivariate datasets in discerning spatial disparities and identifying the contamination causes.
Anoop Kant Shukla, Manoj Pradhan and Onkar Nath Tiwari
A Review on Bioremediation of Tannery Effluent using Immobilized Bacteria
Tannery effluent is a significant contributor to contaminants such as heavy metals within the ecosystem. Effluents generally contain heavy metals, and they also contain more bacteria that can thrive in such an environment. Bioremediation has ancestrally been performed using bacteria; in recent decades, the implementation of “immobilized” bacteria has acquired recognition as an intriguing technique due to manifold assistance. This review systematizes a humongous amount of extant literature on multifarious toxicants that can be tackled with immobilized bacteria. We further explore assorted deterministic facets using immobilized bacteria for environmental remediation with an emphasis on encapsulation in biomaterials and their role in detoxifying toxic compounds. We explore multiple techniques for immobilizing bacteria in numerous complementary arrays incorporating multiple species of bacteria, factors that influence the remediation process, such as bioreactor layouts used in pilot, lab-scale applications. Exploits and drawbacks of using immobilized bacteria in fermenters to treat tannery effluent are also described. The imperishable future aspects, recovery of significant commodities, in addition to bioremediation, represent an important incentive of the immobilized treatment process that makes more cost-effective, legitimate treatment enforcement that is also congruent with the precepts of the bioeconomy.
J. Raveena Jayam and Priya Chokkalingam
Survey and Characterization of Edible Fruit and Ethnomedicinal Trees in the Forest Landscape of Apayao Province
This study was conducted in the six municipalities of Apayao Province, namely, Luna, Pudtol, Flora, Conner, Kabugao, and Calanasan. This aimed to survey and characterize the edible fruit and ethnomedicinal trees in the forest landscape of Apayao province. It determined the geographical location, morphological characteristics, ecological status, DNA sequencing, phytochemical contents, uses, and threats of the edible and ethnomedicinal trees in the forests of Apayao. The methods used were qualitative and quantitative research. Fifteen (15) edible and 10 ethnomedicinal trees were surveyed with sixteen (16) families were identified.Out of 25 edible and ethnomedicinal trees, the conservation status is endangered, threatened, rare, vulnerable, and least concerned. Out of 25 edible and ethnomedicinal fruit trees, most are with identity results that range from 93 to 100% identity. Flavonoids, tannins, and sapotin compounds are mostly present in edible and ethnomedicinal trees. The community members are using 15 different ethnomedicinal trees to address 32 health-related conditions. The results of the phytochemical analyses provide support evidence to support the traditional uses of ethnomedicinal trees. All surveyed trees are susceptible to pests, diseases, and destruction brought by natural phenomena such as the effect of climate change. A policy recommendation for the conservation and protection of edible and ethnomedicinal trees is then proposed.
Hannie T. Martin, Olivia C. Tomas, Ryan W. Gabit, Maria Christina Z. Manicad and David A. Rodolfo
Zinc and Boron Foliar Application Effects on Primed Mung Bean (Vigna radiata L.) Growth and Productivity
Mung bean is recognized for its abundant high-quality protein content. For human consumption, it is a high-quality protein source and also serves various purposes crops, its arvested residue is used for green manuring and also used for fodder purposes. The research aimed to assess the impact of foliar micronutrient application on primed mung bean (Vigna radiata). The experimental procedures were executed in the sandy loam soil prevalent in the central plain region of Punjab. The investigation was conducted during the Zaid season 2022, focusing on the (SML-1827) mung bean variety. Specifically, the research assessed the impact of foliar micronutrient applications involving zinc and boron at 15 and 45 days after sowing (DAS) on primed mung bean growth characteristics. The experimental design employed a Randomized Block Design, incorporating 11 distinct treatment combinations, each replicated thrice. The investigation revealed that foliar micronutrient treatment on primed mung bean substantially influenced growth and yield parameters. Growth indicators for mung bean exhibited a positive trend when zinc and boron were jointly applied to primed seeds with gibberellic acid, followed by a decline in the control group, which experienced typical growth conditions devoid of growth regulators and micronutrients. Specifically, the highest recorded plant height was 70.1 cm in the T9 (GA(50 mg.L-1) + ZnSO4 (0.5%) + B (1%)) treatment, while the lowest height was 58 cm in the T0 (control) treatment. Similarly, the most significant fresh weight was observed in T9 (GA(50 mg.L-1) + ZnSO4 (0.5%)+ B (1%)) treatments at 136.8 g, with the lowest weight recorded in T0 (control) treatments at 86.6g. the most significant grain yield was achieved in T9 112 g.m-2, followed by T10 (SA(150 mg.L-1)+ ZnSO4 (0.5%)+B (1%)) at 105.7 g.m-2. This study suggests micronutrients and growth regulators can be sustainable agricultural inputs to enhance soil health and productivity.
Lalit Saini, Prasann Kumar and Hina Upadhyay
The Nexus Between Climate Variability and Undernutrition: A Systematic Review
Undernutrition is a confront to the health and output of the populace. It is viewed as one of the five leading contrary health impacts of climate variability and is defined as different measures of nutritional status. We aimed to assess the scientific evidence base for the impact of climate variability on childhood undernutrition (particularly wasting and underweight) in low- and middle-income countries. A systematic review was conducted to identify the peer-reviewed and gray full-text studies in English with no limits for the year of publication and study design. This review covers only published studies from four databases (PubMed, Scopus, Web of Science, and Science Direct). The risk of bias was assessed using the ROVBIS tool in individual studies. The PRISMA Statement checklist for systematic reviews was referred for this review process. A significant correlation between climate variables, temperature, rainfall, and drought, and at least one undernutrition parameter in 19 out of 22 studies was observed in this systematic review. In addition, we note that crop yield, maternal education, nutritional status of mothers, wealth status at the household level, and individual levels also play substantial roles in mediating the nutritional impacts. The findings of our analysis imply that exposure to climate variables may be linked to an increased risk of undernutrition both during and for several years following climate events. This may imply that undernutrition is never caused by temperature, precipitation, drought, or other weather-related factors alone but rather that undernutrition is triggered in children who are already at risk.
Niraj K.C. and Kuaanan Techato
GIS-Based Mapping of the Water Quality and Geochemical Assessment of the Ionic Behavior in the Groundwater Aquifers of Middle Ganga Basin, Patna, India
The study implemented Geographic Information System (GIS) techniques and multivariate hydrogeochemical analysis to evaluate the spatial-temporal and seasonal variation in the groundwater quality of Patna, India. For this purpose, sixty groundwater samples were collected and analyzed for major anions and cations during the pre-monsoon, monsoon, and post-monsoon seasons of 2019-2020. The physicochemical parameters such as pH, EC (Electrical Conductivity), TDS (Total Dissolved Solids), TH (Total Hardness), Ca2+, Mg2+, Na+, K+, HCO3-, Cl-, SO42- were considered to evaluate the water quality index. The result revealed degradation in groundwater quality from pre-monsoon (49.21) to post-monsoon (74.48). EC, TDS, TH, Mg2+, Na+, Ca2+, K+, and HCO3- ions were found accountable for high WQI values at various sampling sites during different seasons. Spatial maps showed that 45 % of the sampling stations exhibited poor quality in all three seasons, where the eastern part of the studied region was revealed to be the most affected area. The application of multivariate statistical methods and hydrogeochemical investigation has clearly defined the dominant role of the weathering process, and reverse ion exchange mechanism in controlling the aquifer’s ionic chemistry. Moreover, poor seepage system, and waste leachate from the surface have been found as the main cause of high levels of Na+, K+, and Cl- in the eastern part of Patna.
Mohammad Masroor Zafar, Mohammed Aasif Sulaiman and Anupma Kumari
The Effect of Mycorrhiza and Plant Growth-Promoting Rhizobacteria Supplementation on Zea mays saccharata Sturt. Growth and Productivity Grown on Low Nutrients Soil
Marginal land has low nutrient content (nitrogen, phosphorus, potassium). Addressing nutrient deficiencies on marginal land requires a strategic approach. Biological fertilizers like Arbuscular Mycorrhizal Fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) enhance nutrient availability through symbiotic interactions. In addition, organic fertilizers such as compost could provide organic matter and improve soil structure to increase plant growth and productivity. Combining these three fertilizers with the addition of low doses of NPK fertilizer can increase the growth and productivity of maize crops on sub-marginal land. This study aims to determine the effect of AMF, consortium of PGPR, and a low dose of NPK on the growth and productivity of maize and soil nutrients on sub-marginal land by measuring plant growth up to 8 WAP (week after planting) (parameters: plant height, stem diameter, number of leaves, leaf area, chlorophyll content, stomatal density) and productivity (parameters: cob length, cob weight with husk, fresh weight, dry weight) and levels of N, P, and K elements at 8 WAP in the soil after planting. All treatments showed an increase in the level of N and K elements, while the P element showed a decrease compared to the control (soil without treatment). Moreover, each parameter did not show a significant difference, but the P2 (Compost + PGPR consortium + AMF + 50% of NPK) treatment showed the best growth and productivity. Overall, the data showed the utilization of PGPR and AMF combination was able to reduce the usage of chemical fertilizer by 50%.
T. Nurhidayati, L. N. Sari, A. R. Anggraeni, A. Luqman, M. Shovitri, N. D. Kuswytasari, T. B. Saputro and H. D Rizki
Reuse and Recovery of Water from Industrial Textile Dyeing Effluent Using High-Performance Electrodes Continuous Flow Electrocoagulation Reactor
The dye effluents released from the textile and printing industries contain strong colorants, inorganic salts, and other toxic compounds. The conventional coagulation technique of dye effluent treatment is plagued with issues of low removal rate of color, generation of large quantities of sludge, and toxic end-products. Recently electrocoagulation technique gained immense attention due to its high efficiency. This technique involves the dissolution of the sacrificial anodes to provide an active metal hydroxide as a strong coagulant that destabilizes the pollutants and removes them by precipitation or flocculation. This study is about the efficiency of the electrocoagulation process using titanium coated - aluminum and mild steel electrodes to treat industrial dye wastewater. Effects of parameters such as current density & initial dye concentration were investigated. It was observed that, for the same current density, electrode consumption was higher with TiO2/Al electrode than with mild steel electrode, resulting in more color removal efficiency (CRE) using TiO2/Al electrode. The settling rate of the flocs was higher in the rector having TiO2/Al electrode at the 100 mL with current density (2.5 mL.min-1 to 5.3 mL.min-1), while in the reactor with mild steel electrode, the settling rate was very less. The results showed that dye removal was 95.11% and 92.1% for mild steel and titanium-coated electrodes, respectively. It was observed that 50 % of Aluminum was removed from the treated effluent after the final stage of filtration. Based on the multicriteria analysis to identify the optimum operational parameters to be applied at the field level, it was observed that maximum CRE may be obtained with TiO2/Al electrode and the applied current of 1 Amps with a flow rate of 100 mL.min-1. It can be concluded that electrocoagulation is a highly efficient and the fastest method to treat dye effluents from industries.
P. Jegathambal, Brunoc, Shobina, C. Mayilswamy and K. Parameswari
Nitrogen Nutrition-Induced Changes in Macronutrient Content and Their Indirect Effect on N-Metabolism Via an Impact on Key N-Assimilating Enzymes in Bread Wheat (Triticum aestivum L.)
Judicious application of nitrogen (N) fertilizers in crop production is critical for reducing the nitrate pollution of groundwater and greenhouse gas emissions. It is, thus, important to improve the nitrogen use efficiency under the reduced application of nitrogen. A genotypic variation in N-uptake and N-use efficiency particularly under low N-input conditions exists across crops that can be deciphered and exploited for environmentally sustainable farming without any significant penalty of yield and quality. The present research conducted under the nutrient solution culture aimed to explore the inherent variability in the growth response of ten genetically diverse wheat varieties to low fertilizer N-application (N-, 10 ?M N) in comparison to N sufficient control (N+, 8.5 mM N) viz., a viz., the activity of various key N-assimilating enzymes and to delineate the indirect effect of low N on uptake and partitioning of other major macronutrients viz., P, K, S, which may indirectly regulate the N-use efficiency. A notable increase in sulfur, potassium, and phosphorus content was observed under nitrogen-deficient conditions. Varieties such as Carnamah and HD 2824 exhibit a significant increase in shoot phosphorus content, emphasizing their potential to optimize phosphorus acquisition and utilization efficiency under nutrient-limited conditions. The findings highlight the complex interplay between nutrient availability and plant responses, showcasing varietal-specific adaptations to nitrogen limitations.
Vandna, Vasundhara Sharma, Kalidindi Usha, Dalveer Singh, Ranjan Gupta, V. K. Gupta and Bhupinder Singh
Urban Nature Reserves Waste Challenges from Neighboring Informal Settlements: Western Cape, South Africa
Nature reserves have played a crucial role in biodiversity conservation for decades. Rapid urban sprawl has increased the amount of solid waste created by littering and illegal dumping in metropolitan nature reserves. This paper examines how two nature reserves, Wolfgat Nature Reserve and Witzands Aquifer Nature Reserves, can combine community conservation with waste management. To determine aspects such as the socioeconomic impact of the nature reserves on the surrounding communities, questionnaires with a specific focus on the topic were distributed to the surrounding communities and subsequently administered. Data was collected using semi-structured interviews with key informants from the nature reserve staff and observational methods, and SPSS was used to analyze the data. Consistent with previous research, this study revealed that ignoring local populations frequently results in people disobeying the appropriate regulations in these protected areas and that education does not guarantee conservation support. Despite this, the survey revealed an absence of community participation; conservators were more reactive than proactive. In this study, the level of education, which in some studies is always associated with knowledge, was contradicted; those with post-secondary education knew little about these areas, and the vast majority of participants were unaware of the protected areas just a few kilometers away from their communities.
X. S. Grangxabe, T. Maphanga and B. S. Chidi
Seasonal Variation of (Benzo[a]Pyrene) in Ambient Air of Urban to Peri-urban Areas of Panvel Municipal Corporation, Raigad with Reference to Particulate Matter
Polyaromatic Hydrocarbons (PAHs) in the environment have been linked to severe health effects. This study aims to assess the atmospheric pollutant and analyze the variation in PAHs, focussed on benzo[a]pyrene [B(a)P]. Among all PAHs, B(a)P is regarded as a marker for human carcinogenicity. This study reflects the B(a)P concentration and its correlation with the particulate matter (PM10 and PM2.5) in rural, peri-urban, and urban areas of Panvel Municipal Corporation, Maharashtra, India. Samples were collected during the pre & post-monsoon season for two consecutive years (Yr. 2020 and Yr. 2021). B(a)P level was determined using high-performance liquid chromatography coupled with a diode array detector. It was observed that PM2.5 and PM10 show a strong positive correlation (r=0.8-0.9) with B(a)P. It is observed that B(a)P concentrations were high in pre-monsoon w.r.t. post-monsoon, and this concentration increased spatially as we moved from rural to urban areas. Pre-monsoon B(a)P concentration varies somewhat by 5?tween rural to urban areas as compared to post-monsoon. High levels of vehicular emissions and industry were associated with the distribution of B(a)P in urban areas, whereas a combination of local emissions and metropolitan area diffusion was responsible for the presence of B(a)P in peri-urban and rural areas. Also, this study captures the variation of B(a)P levels during the period of COVID-19. In future studies, Artificial Intelligence (AI) can augment the determination of PAHs in soil by improving the accuracy and speed of analysis using predictive modeling based on different input parameters to determine outliers in soil PAH data, building sensor networks for real-time monitoring of PAH levels, leverage robotics for automated sample preparations, and rapid testing of samples to identify hotspots.
Namrata Kislay, Harshala V. Kasalkar, Nilesh D. Wagh and Geeta Malbhage
Bioaccumulation of Lead (Pb) and Cadmium (Cd) in Padina Australis Hauck at Palang Beach, Tuban, East Java, Indonesia
Waters polluted with Pb and Cd have a negative impact on the environment. Padina australis grows abundantly on the coast of Palang Subdistrict, Tuban, and the local community consumes it. Macroalgae as food must be free of metal contamination. This study aims to determine the impact of Pb and Cd bioaccumulation on P. australis. Sampling was conducted at two stations, including Station I, Panyuran Village, and Station II, Glodog Village. Analysis of Pb and Cd metal levels using Atomic Absorption Spectrophotometry (AAS). Analysis of protein content using the Kjeldahl method. The data obtained was analyzed with Principle Component Analysis (PCA). The results of the analysis of Pb and Cd levels in P. australis at station II, which are 0.200 ± 0.028 and 0.021 ± 0.004 mg.kg-1 higher than station I, which are 0.194 ± 0.015 and 0.010 ± 0.001 mg.kg-1. The protein content of P. australis at station I was 4.713 ± 0.508 mg.kg-1, and at station II was 5.900 ± 0.928 mg.kg-1. This shows that P. australis is still considered good for consumption even though it has been polluted and contains Pb and Cd metals. P. australis can tolerate and does not experience severe physiological damage so it has the potential as a heavy metal phytoremediator.
F. Rachmadiarti, Winarsih, H. Fitrihidajati, T. Purnomo, S. Kuntjoro, F. A. Nafidiastri, R. Yolanda, R. Ambarwati, D. Anggorowati, W. Budijastuti, U. Faizah, D. Putriarti and N. F. Rosyidah
Enhanced Phenanthrene Biodegradation by Bacillus brevis Using Response Surface Methodology
The current investigation assessed the capability of a well-adapted and enriched bacterial strain known as Bacillus brevis for the biodegradation of phenanthrene. To enhance the removal efficiency of phenanthrene, employed Response Surface Methodology (RSM) in conjunction with a Box-Behnken design (BBD) model. The experiments were designed to explore the impact of pH (6.0 to 9.0), temperature (20 to 40°C), initial phenanthrene concentration (50 and 100 ppm), and incubation time (7 to 21 days) on biodegradation of phenanthrene. The highest level of phenanthrene biodegradation, approximately 55.0%, was achieved by Bacillus brevis when the optimal conditions were met as pH of 7.0, temperature 30oC, and initial phenanthrene concentration (70 ppm) after 21 days of incubation time. This study underscores the significance of employing statistical tools like RSM to enhance the microbial degradation of contaminants.
Kiran Bishnoi, Pushpa Rani and Narsi R. Bishnoi
Combined Application of Biochar and Silicon Fertilizer for Improved Soil Properties and Maize Growth
Biochar can be a good soil amendment to reduce the soil pH, increase crop growth rate, and improve the efficient use of fertilizer. Other than that, silicon fertilizer also would promote photosynthetic ability on plant development that would help to produce high yield. In this work, a series of experiments was conducted to observe the effect of rice husk biochar and silicon fertilizer on the maize growth rate and soil pH. A 45-day pot experiment in the greenhouse with three replicates of 9 experimental treatment combinations of RHB at two rates (5 and 2.5 t.ha-1) with silicon fertilizer at three rates (125%, 100%, 75%), sole biochar (10 t.ha-1), sole silicon fertilizer (100%) and control (NPK) to observe the best rate and combination to improve growth rate and change in soil chemical in acid soil. The result showed that the co-application of sole biochar and biochar with Silicon significantly improved growth development, increased photosynthesis rate, altered soil pH, and reduced Fe concentration compared to control. The plant height increased 88.35% from T4 (5 t.ha-1 RHB + 100% Si) compared to the control and the conductance was higher in T4 (0.53) followed by T8 (0.438) while T1 (0.071) recorded the lowest conductance. The shoot fresh weight was higher in T4 (127.83 g) followed by T8 (57.14 g). However, the weight increased by 343.7% at T4 followed by T8 (2.5 t.ha-1 RHB + 75% Si) at 98.33%. The highest pH increment of 1.24 units (T1 = 5.53, T4 = 6.77) of soil pH was noted from T4 (5 t.ha-1 RHB + 100% Si) compared to control (NPK), and the highest total Fe in soil was observed from T1 (442.30 mg.kg-1). The current study results showed that T4 (50% RHB + 100% Silicon) was the best treatment over the other rates of RHB and silicon increased plant height, photosynthetic rate, and biomass.
Muhammad Wasil Bin Abu Bakar, M. K. Uddin, Susilawati Kasim, Syaharudin Zaibon, S. M. Shamsuzzaman, A. N. A. Haque and A. Reza
Experimental Investigation on Photocatalytic Degradation of Refractory Organics in Biologically Treated Tannery Effluent Using Photocatalysis
There is a pressing demand for the introduction of environmentally safe technologies for the industries that supply the basic needs of industrialized societies. Advanced Oxidation Processes may become one of the answers to these uprising pollution management problems in the near future. The present investigation aimed to reduce the refractory organics present in the biologically treated (Activated Sludge Process) tannery effluent using Photocatalysis. The optimum time, pH, dosage of H2O2, and mass of NPAC required for the effective treatment using photocatalysis were found to be 60 mins, 8, 0.2 mg.L-1, and 1g. 100 mL-1, respectively. Although the efficiency of homogeneous photocatalysis was found to be higher than that of heterogeneous photocatalysis, the biodegradability was higher in the latter, with a value of 0.26. The experimental results have proved that photocatalysis could be a promising technology to reduce the refractory organics present in the tannery effluent.
S. Hema and S. Kavya
Potential of Heavy Metals and Microplastics Contamination in River Mpanga, Fort Portal, Kabarole District, Uganda
Anthropogenic environmental pollution is a major development challenge in Ugandan rivers and lakes, the key drivers being industrialization, agriculture, and urbanization. The aim of the study was to assess the potential of heavy metal and microplastic contamination in River Mpanga, Fort Portal, Uganda. Triplicate water and sediment samples were collected from three sampling sites, preserved, and analyzed at the Chemistry Department, Makerere University for heavy metals, while microplastics analysis was conducted at NaFIRRI, Jinja. Sediment heavy metal contamination was assessed from the geoaccumulation index, while microplastic characterization and quantification were determined from stereomicroscopy and morphological features. Arsenic was the most prevalent metal with a mean concentration of 13.2 ppm thus higher than permissible maximum limits of WHO. The mean concentrations (ppm) of copper, lead, and cadmium were 0.01, 0.01, and 0.001 respectively, and below the permissible maximum. Sediment samples revealed very strong arsenic contamination, strong contamination for copper, moderate to strong contamination for lead, and a potential lack of contamination for cadmium. The higher concentrations of the heavy metals in the sediments compared to water could be attributed to bioaccumulation, as evidenced by the high geoaccumulation values. Microplastics occurred throughout the river and included fragments, filaments, film, pellets, form, and fibers. The presence of heavy metals and microplastics was attributed to anthropogenic activities within the river vicinity, which discharged heavy metal-laden waste into River Mpanga. High arsenic concentrations and sediment accumulation of contaminants pose serious potential public health threats to the local communities.
C. Nyakoojo, W. Kabiswa, E. Najjuma, P. Matovu and H. Ocaya
Estimation of Surface and Groundwater Interaction by Stable Isotopic Techniques – A Case Study of Chengalpattu District, OMR Region
Isotopes are atoms of an element having the same atomic number but different mass numbers. Isotopes in hydrology and water resources are used for identifying its occurrence, movement, residence times, recharge, and discharge process. Stable isotopes of hydrogen(?2H) and oxygen(?2O) are used for identifying the surface and groundwater interactions as they constitute hydrogen and oxygen. In this study oxygen and hydrogen stable isotopes are used to identify surface and groundwater interaction in Old Mahabalipuram Road (OMR) regions of Chengalpattu district. The precipitation, lake, surface, and groundwater were collected during pre-monsoon, monsoon, and post-monsoon seasons. The collected sample is analyzed for stable isotopic compositions of oxygen and hydrogen seasonal-wise. The measured stable isotopic compositions during pre-monsoon season of stable oxygen are -4.29 to -2.00 and stable hydrogen are -29.39 to -24.67. The isotopic compositions during monsoon season range from -4.72 to -4.00 and for hydrogen ranges from -29.39 to -23.50. During monsoon season the depletion of isotopic composition is seen and the enrichment of isotopic composition is observed during pre-monsoon season. The variation in stable isotopic composition of oxygen and hydrogen are observed. A Groundwater Water Meteoric Water Line (GMWL) is developed for the study area, and it is compared with a Local Meteoric Water Line (LMWL) for better interpretation of the results. A slight deviation is observed from that of GMWL to LMWL mostly due to isotopic depletion and evaporation effects. From the analysis, a good correlation exists between precipitation and surface water in the study area indicating about recharge mechanism existing in the study area. The groundwater recharge is observed during monsoon seasons and discharge is more towards the pre-monsoon seasons.
Surendar Natarajan
The Risks and Safety Practices of Waste Pickers at Selected Dumping Sites in Pretoria, South Africa, During the COVID-19 Pandemic
Amid the COVID-19 outbreak, the accumulation of household waste continued to rise as the number of COVID-19 patients increased. COVID-19 can survive and be transmitted from contaminated surfaces, making waste pickers more vulnerable and at risk of contracting and spreading the virus through contact with infected household waste. The study assessed safety practices and risks related to waste picking during the COVID-19 pandemic at two selected dumping sites in the north of Pretoria. Structured questionnaires were used to collect data from 81 waste pickers at these landfill sites. Results showed that 100.0% of waste pickers at Site A and 86.7% at Site B collected plastics; 96.7% at Site A and 90.5% at Site B collected bottles; and 100% at Site B and 95.5% at Site A collected metals. The majority, 92.0% at Site A and 90.0% at Site B, were aware of the dangers and risks associated with waste handling if protective gear was not worn. From sites A and B, 97.0% and 90% of the waste pickers respectively had heard of COVID-19, although 51.9% from both sites believed they could not contract COVID-19 while handling waste. Only 18.0% of waste pickers from Site A and 82.0% from Site B faced challenges with purchasing their own PPE. All waste pickers at Site A wore facial masks, whereas 86.0% at Site B did so. Regarding testing for COVID-19, 22.0% from Site A and 19.0% from Site B were tested, with 2.0% from Site A and none (0.0%) from Site B testing positive. It is recommended that all waste pickers be educated about COVID-19 transmission and provided with PPE during the pandemic.
L. L. Mugivhisa, M. P. Mphitshana and J. O. Olowoyo
Effect of Heavy Metal Phytoremediation on Phytochemical Fingerprint and Bioactivity of Pistia stratiotes: A Quest for Re-routing Disposal to Commercial Application
Phytoremediation is one of the non-energy consuming processes of remediating polluted water. However, the disposal of post-remediated plants poses a threat of the re-introduction of pollutants back into the ecosystem. Re-routing remediated pollutants for commercial application could be one way to reduce the re-introduction of pollutants in an ecosystem. Heavy metal pollution in water bodies is one issue, which can be mitigated to an extent with phytoremediation. In the current study, the effect of heavy metal phytoremediation on the phytochemical fingerprint and bioactivity of Pistia stratiotes L. was investigated. Pistia stratiotes L. was subjected to different concentrations of iron (Fe) and lead (Pb), in the range of 5-20 ppm. Different parameters such as heavy metal estimation (in plants and water post-treatment), thin layer chromatography (TLC), antioxidant activity, and antiurolithic activity were measured. Post remediation, heavy metal concentration was found to be comparatively higher in roots (16.515 ± 0.008 mg.g-1 and 5.25 ± 0.086 mg.g-1 when treated with 15 ppm iron and lead respectively). TLC revealed differences between the fingerprints of treated and untreated plants. Some bands increased in intensity as the concentration of heavy metal increased, while some bands which were present in untreated, were absent in treated plant samples. Antioxidant activity of treated plants shows lesser IC50 values, compared to untreated, in that, treated leaves show better activity (IC50 = 1.8 ± 0.5220 mg.mL-1 of leaf treated with 2 ppm iron as opposed to IC50 > 5 mg.mL-1 of untreated leaf extract). The treated plants revealed good antiurolithic activity compared to untreated, in that, the percentage inhibition showed by Iron treated leaves and roots was better (96.87% and 98.95% exhibited by iron-10 ppm treated leaves and roots respectively), while the untreated showed a maximum of only 68.75% inhibition. The results suggest that the bioactivity of the plant extracts increases post-remediation. Potential applications of these extracts can be explored such as nanoparticle synthesis, drug discovery, etc.
Yashvi Hemani, Trisha Malde, Yashika Puri, Shubhada Walvekar and Sharon D’souza
Characteristics, Abundance and Polymer Type of Microplastics in Anadara granosa (Blood Clam) from Coastal Area of Palopo City
Plastic waste in marine waters will undergo a degradation process that breaks down large plastic pieces into smaller particles called microplastics. The abundance of microplastics, caused by their small size (<5mm) can be easily indirectly consumed by aquatic animals. Anadara granosa is one of the bivalves that is quite vulnerable to microplastic contamination because it has the nature of a filter feeder which means it can sift particles and organic matter around it. The purpose of this study was to determine the characteristics, abundance, and types of microplastic polymers in blood clams (A. granosa). The results of microplastic observations made on 60 blood clams were 153 microplastic particles identified from 47 individuals (78%) of contaminated blood clams with an average microplastic abundance of 0.591 ± 0.083 item/gr. Fiber-type microplastics are the most dominant form found and blue is the most dominant color found in the sample. Based on the average abundance of microplastics in Anadara granosa in the coastal area of Palopo City, it is lower than several studies that have been conducted previously. Fourier Transform-Infra Red was conducted to determine the type of polymer in microplastics. Three types of polymers were found in the Anadara granosa samples polyethylene terephthalate (PET), polystyrene, and polyester. The three types of polymers have effects on human health such as respiratory problems, skin irritation, and genotoxicity. Action is needed to prevent microplastic pollution in Palopo City’s rivers before microplastic pollution becomes more severe in the future.
Abd. Gafur Rahman, Muhammad Farid Samawi and Shinta Werorilangi
Production of Amylase by Solid State Fermentation Using Agricultural Waste
This study presents a comprehensive investigation into the production of amylase, a crucial enzyme with wide-ranging industrial applications, using locally sourced substrates from Kachchh, Gujarat. The research employed the Bacillus licheniformis strain and substrates such as coconut, rice husk, wheat bran, paddy straw, and maize straw. The study found paddy straw to be the most promising substrate for amylase production. The research also systematically optimized various process parameters for amylase production in Solid-State Fermentation (SSF) using the One Variable at a Time (OVAT) method. These parameters included incubation period, temperature, inoculum level, additional carbon sources, starch concentrations, additional nitrogen sources, initial pH, different mineral salt ions, initial moisture level, and surfactants. The results showed that the optimal conditions for maximum amylase yield were an incubation period of 48 hours, an incubation temperature of 35°C, an inoculum level of 10%, starch as the additional carbon source, a starch concentration of 2.5%, yeast extract as the additional nitrogen source, an initial pH of 7, NaCl as the mineral salt, an initial moisture level of 75%, and Tween 80 as the surfactant. This research provides a reliable and sustainable approach to enzyme production, offering valuable insights for the optimization of the solid-state fermentation process for maximum amylase production.
M. M. Morbia, A. A. Pandey, P. K. Mahla and S. N. Gohil
Assessing Heavy Metal Accumulation in Urban Plants: Implications for Environmental Health and Traffic-Related Pollution in Al-Diwaniyah City, Iraq
This study aimed to compare the ability of five plant species, including (Conocarpus erectus, Acacia sensu lato (s.l.), Melaleuca viminalis, Dodonaea viscosa and Lantana camara) to absorb and accumulate heavy elements in their tissues, which were grown in the central islands in the city of Diwaniyah. This included areas of street in front of the medical college, Umm Al Khail First Street, Umm Al-Khail Street, near Abbas Attiwi Bridge, Al-Adly Street in the Euphrates District, and Clock Field Street, respectively. Results showed that soil samples S1 and S3 were contaminated by Pb, and the rest of the sites were contaminated with nickel only. This indicates through the table findings a rise in these heavy metals’ concentrations with a rise in traffic momentum. Thus, the Pb concentrations in the growing plants’ shoot parts with respect to this research had surpassed the allowed critical limit of 5.00 mg.kg-1 dry matter, in which the highest value was recorded at the site with respect to S3 as well as S2. Meanwhile, the findings indicate that Cd concentrations in S3 and S1 had increased and exceeded the allowable limit of 0.20 mg.kg-1 dry matter. In the meantime, the nickel concentrations were within the permissible limits of 67.90 mg.kg-1 dry matter. The Zn concentration exceeded the permitted limits of 60.00 mg.kg-1 dry matter except for plants (Acacia s.l. and Lantana camara) in sites S5 and S2. The results confirmed that the values of Heavy Metals Bioaccumulation Coefficient (BAC) for most of the study elements had recorded the highest value in the Dodonaea plant for Zn, Cd, and Pb, except for Ni. It was more accumulated in the Melaleuca viminalis plant, which indicates the superiority of the Dodonaea plant in accumulating Pb, Cd, and Zn over the rest of the study plants, as they took the following order: Lantana camara < Acacia s.l. < Conocarpus erectus < Melaleuca viminalis < Dodonaea viscosa. The best plants accumulated nickel in the following order: Acacia s.l. < Lantana camara < Conocarpus erectus < Dodonaea viscosa < Melaleuca viminalis.
Luma Abdalalah Sagban Alabadi, Wafaa Sahib Abbood Alawsy and Dunya A. AL-jibury
Stabilization of Dredged Soil by Compensating the Sand Content in the Jhelum River
River dredging is crucial for mitigating the risk of floods by enhancing the water-carrying capacity of rivers. Nevertheless, the key difficulty lies in the appropriate disposal of dredged material, resulting in escalated costs. Predominantly consisting of silt, the dredged material demonstrates constrained bearing capacity and strength. Nonetheless, there is a prospect to derive value from excavated sediments, with potential applications in diverse public works projects. The processed product derived from dredged material can serve diverse purposes, such as filling railway and highway embankments, as well as the subgrade of pavements. The comprehensive study involved analyzing the fundamental properties of the dredged material collected from the Allochibagh flood channel of the Jhelum River. The analysis focused on determining the basic geotechnical properties of the soil mass. The tests unveiled the fine and cohesive nature of the dredged soil. To enhance its properties, sand was introduced as a stabilizing agent in varying proportions. The investigation revealed an initial augmentation in compressive strength as the proportion of sand increased, attaining an optimal mixture whereafter the strength declined. This study explores the utilization of sand as a stabilizing agent for dredged soil to enhance its strength and optimize its application. The process of stabilizing dredged soil with sand demands a thorough examination of hydrogeological processes, the specific characteristics of the dredged soil, and the intricate transport of contaminants. This formal and multidisciplinary effort seeks to elevate the overall stability of the soil.
Yasir Hamid, Owais Shafi Malik, Huma Khan, Gauhar Mehmood and Amina Zakiah
Waste Generation and Recovery in a Developing Country: A Case Study of Western Province, Sri Lanka
The study’s findings serve as a crucial foundation for policymakers, environmentalists, and stakeholders to take necessary actions and develop sustainable waste management strategies tailored to the specific challenges faced in the Western Province of Sri Lanka, contributing to broader global efforts to mitigate the growing waste crisis. It’s a significant concern that the volume of waste is expected to triple by 2050, and the current waste management practices seem insufficient to handle this growth sustainably. The study indicates a per capita waste generation of 0.43 kg in Sri Lanka, with the Western Province at a higher rate of 0.53 kg. This data points to the urgency of addressing waste management practices in this region, especially considering its significance in the country’s GDP. The results also show that the total municipal waste generation in the Western Province is 3248 kg per day whereas the recovery is only 25% (803 kg) in terms of recycling and composting. Burning, burying, and open dumping are highlighted as other prevailing practices for managing waste, which have adverse impacts on the environment and public health. Further research is recommended to identify and address these unaccounted waste streams, especially those at the household level.
N. A. Hemali and A. A. P. De Alwis
PM2.5 Concentration Estimation Using Bi-LSTM with Osprey Optimization Method
Outdoor air pollution causes a lot of health problems for humans. Particulate Matter 2.5 (PM2.5), due to its small size, can enter the human respiratory system with ease and cause significant health effects on humans. This makes PM2.5 significant among the various air pollutants. Hence, it is important to measure the value of PM2.5 accurately for better management of air quality. Algorithms for deep learning and machine learning can be used to forecast air quality data. A model that minimizes the prediction error of the PM2.5 forecast is needed. In this paper, a PM2.5 concentration estimation model using Bi-LSTM (Bidirectional Long Short-Term Memory) with meteorological data as predictor variables is proposed. For a better estimation of PM2.5 values, the hyperparameters of the Bi-LSTM model used are tuned using the Osprey Optimization Algorithm (OOA), a recent meta-heuristic algorithm. The model that works with the optimal values of hyperparameters identified by OOA performed better than the other models when they are compared based on evaluation metrics like Mean-Squared Error and R2.
S. Saminathan and C. Malathy
Potential Use of Portulaca Plant Species in Removing Estradiol Hormone Pollutants in the Surface Water of Bengawan Solo River
Bengawan Solo River water is a source of drinking water and raw materials for the government of Surakarta city, but the water has been mixed with domestic, industrial, and agricultural wastes. The waste contains estradiol-17 derived from urine and feces, both from livestock and humans as well as industries around the sub-watershed Bengawan Solo River. The content of estradiol-17 in the Bengawan Solo sub-watershed is quite high. This study is the first conducted in Bengawan Solo River to look at natural estrogens that are very rarely studied in the environment, which are likely could cause several health effects in humans and wildlife due to their relatively strong estrogenic potential and high levels in wastewater and river water. Therefore, research on the elimination of these compounds using effective, energy-efficient, and low-maintenance technologies for water treatment such as phytoremediation is highly expected. The purposes of this study were to identify estradiol, to measure the estradiol levels through HPLC tests as well as to test the effectiveness of phytoremediation with Portulaca plant as biological agents. The results show that the water of Bengawan Solo River contained estradiol substances ranging from 3.88 ppm to 5.76 ppm. The Portulaca plant species was effective at eliminating estrogenic waste up to 99.89%.
Siti Khoiriyah, Suranto, Prabang Setyono, Evi Gravitiani and Agung Hidayat
Performance Evaluation of Advanced Wastewater Treatment Technologies in Herbal Processing and Extraction Industry
"Due to enormous quantities with hazards and complexity in nature is a big challenge for effective treatment of wastewater from pharmaceutical processes including herbal extraction through conventional methods of distillation. The situation is further aggravated in countries facing high rising population, urbanization, and industrialization resulting in the generation of industrial wastes. The study has been carried out in the herbal extraction industry by conducting stage-wise sampling of ETP based on the conventional method and further coupled with ozonation as an advanced treatment to comply with regulatory standards. Additionally, the same process was studied that implementing the best available technology (BAT) by providing ETP with advanced technology modules such as MBR (membrane bioreactor) + RO + O3 has not only resulted in compliance with standards but also reuse of treated wastewater into the process and utilities has been proved to be techno-economically a viable and sustainable option. Modifying existing aeration tanks and advanced oxidation through ozone injection post-biological treatment has resulted in COD and BOD reduction of 96.42% and 99.0% respectively. Whereas in the case of MBR + RO + O3, the values of pH, BOD, COD, TSS, and sulfide have been observed as 8.32, 2.0 mg.L-1, 14.0 mg.L-1, 1.0 mg.L-1 and 0.0 mg.L-1 respectively and 98% recovery of treated effluent, thus saving 44 KL.day-1 of freshwater resulting into significant financial benefits of Rupees 12.59 acs annually, which otherwise was outsourced through tankers."
Avinash Kumar Sharda, Varinder S. Kanwar and Ashok Sharma
Evaluating the Stages of Environmental Pollution and Vital Indicators in the Qayyarah Refinery Area, Mosul, Iraq
Oil spills can have varying degrees of impact on the aquatic environment depending on factors such as the type of oil spilled, the volume released, and the ecosystem affected because crude oil and refined petroleum contain harmful substances such as hydrocarbons, heavy metals, and toxic chemicals. When released into the water, these substances can have immediate and long-term effects on marine life. This research aims to find the factors affecting the degree of pollution from oil spills on the aquatic environment and the areas adjacent to the Qayyarah refinery in northern Iraq. Combines the fuzzy comprehensive evaluation method and the analytical hierarchy process to evaluate the degree of pollution from oil spill incidents in the areas adjacent to the refinery. The statistical analysis showed that there were statistically significant differences and that the value of the correlation coefficient was positive between exchanged cadmium, residual cadmium, exchanged lead, where the lead exchange rate ranged correlation coefficient at a minimum R² 0.674 and a clear increase in the number of bacteria indicating contamination the total number of bacteria coli, fecal coliform bacteria, and fecal strep bacteria (where the numbers of coliform bacteria ranged 102 × 102- (cells/011 mL, and fecal coliform bacteria were between 160 × 102 cells/011 mL. These rates are environmental and vital indicators of the presence of significant levels of organic pollution and evidence of the presence of microorganisms dangerous to the health of residents and living organisms.
Juomana Jabbar Saeed, Maryam Jasim Hasan, Estabraq Mohammed Ati, Reyam Naji Ajmi, Abdalkader Saeed Latif and Hala Ahmed Rasheed
Carbon Dioxide Adsorption by Variation in Operating Parameters of Sound Assisted Fluidization Using Coal Based Fine Activated Carbon
This research delves into the promising domain of CO2 capture through fine solid activated carbon adsorbent, offering a more energy-efficient alternative to traditional adsorption methods. The central challenge addressed here is the utility of cheaper CO2 adsorbent, fine powder materials whose properties can be precisely tailored via molecular-level fictionalization. Equally vital is selecting an optimal fluidizing column configuration that maximizes CO2 interaction with adsorption particles and enhances adsorption efficiency. The proposed solution is a fluidized bed column uniquely equipped with integrated acoustic vibrations to counteract interparticle forces common in fine powders. For adsorption evaluations, sound-assisted fluidized-bed experimentation on a laboratory size was set up. Adsorbent material activated carbon made up of coal underwent rigorous testing between a range of 20 Hz-200 Hz and 20 dB-135 dB. Results reveal the beneficial effects of acoustic enhancement of fluidization quality and adsorption efficiency, increased adsorption capacity, enhanced bed utilization, and accelerated adsorption rates. Extensive research has been conducted on the detailed effects of major operational variables on adsorption performance, notably frequency, sound intensity, and minimum fluidization velocity. The findings highlight the pivotal role of particle size with mean size 75 microns range as a determinant of adsorption capacity at 100 Hz and 125 dB. At the end of experimentation, the adsorbent considered for the experiment is compared to the study adsorption capacity at operating conditions. The research concludes with a discussion on the effects of influencing parameters for adsorption on employing sound vibrations using fluidization technique adsorption for CO2 capture.
A. P. Ganorkar and A. M. Langde
Assessment of Microplastic Pollution in Fresh Fish and Pindang Fish and its Potential Health Hazards in Coastal Communities of Banyuwangi Regency, Indonesia
This study aimed to analyze the microplastic contamination of fresh and pindang fish and its health impact on the coast of Muncar, Banyuwangi Regency, Indonesia. In this study, a total of 115 respondents participated, providing questionnaire data on their fish consumption habits and health problems. Subsequently, spearman’s correlation coefficient, a non-parametric statistical test, was used to analyze the questionnaire data. This study also included 100 samples of marine fish, consisting of 89 fresh fish and 11 pindang fish from various types of marine species. The content of microplastic polymers detected through FTIR (Fourier-Transform Infrared Spectroscopy) was around 3-5 microplastic polymers/fish samples, and the most dominant were Polyethylene, Polyester, Polycaprolactam (Nylon 6) and Polyamide. This study showed that 94 percent of fish samples contained microplastics and only 6 percent of samples did not contain microplastics. The intensity of pindang fish consumption was positively correlated with respondents’ health symptoms and problems. Subsequently, implementing effective waste management systems and educational programs in the coastal areas is crucial in reducing the pollution of seawater resulting from inadequate waste disposal practices.
Lilis Sulistyorini, Novi Dian Arfiani, Muhammad Addin Rizaldi, Leka Lutpiatina and Nurul Izzah Abdul Samad
Effects of Rainfall Intensity, Kinetic Energy and Slope Angle to the Upslope, Downslope, and Lateral Slope Components of Splash Erosion in Hillslope Agriculture: A Case in Badiangan, Ajuy, Iloilo
This study was conducted in Barangay Badiangan, Ajuy, Iloilo City, Philippines (11°10’N, 122°58’E) to determine the effects of rainfall intensity and other rainfall-derived parameters on the directional components of splash erosion in hillslopes. There are five experimental set-ups with slope angles ranging from 0% to 48% were tested under natural rainfall conditions using a modified splash collector. The data collected shows that kinetic energy, slope, and rainfall intensity have shown significant effects on splash erosion. The models obtained using regression analysis are ????????????????????????????????=0.0093(????????????????0.80) and ???????????? ????????????????????????????????=0.060(????????????????0.107)(????????0.700)(????????200.700) . The model equation performance has been validated using the Standard Error of Estimates with values of 12 and 9.4 for splash detachment and splash transport, respectively. The constants used for kinetic energy in detachment and slope in transport align with the research by Quansah (1981) for sandy soil, which is similar (the characteristics) to the soil at our research site. Additionally, rainfall intensity, especially with a 20-min duration, generated the best model as it yielded the lowest SEE value for all cases.
Shevanee Ruth G. dela Cruz and Ricardo L. Fornis
Research Insights into Punjab’s Stubble Burning Menace
The current investigation endeavors to evaluate the prevalence of stubble burning in India, with a special focus on the state of Punjab. The study emphasizes the enormity of stubble burning by examining farm fire incidents, pollutant emissions, its detrimental impacts. It supports the effective management of crop residue along with proposing alternatives to stubble burning. The article conveys the message that stubble burning can result in deleterious effects on the environment, human health, crop growth, natural ecosystems, visibility, and physical infrastructure. The key solutions lie in education, functional literacy, a heightened awareness of environmental laws, rights and duties, stringent governance, and socially responsible public, promoting adherence to the National Green Tribunal’s guidelines for managing crop residue and enlightening farmers about the ill effects of stubble burning on animal, soil, human health, crop biodiversity, and climate change. The available data of districts of Punjab indicates the recent waning trend in stubble burning, thus heralding a positive indication of environmental preservation. Decreased stubble burning is the reward of untiring government initiatives, support and subsidies, awareness programs, advanced research and technology, and enforcement of stringent regulations combined with recognition of the deleterious environmental impacts of stubble burning. This research article indicates that there is still a need for efforts to be made to eliminate stubble burning altogether.
Ruchi Kohli, Anu Mittal and Amit Mittal
Spatial and Temporal Variation of Air Quality Index in Amman-Zarqa Urban Area
This paper aimed to investigate the Spatial and Temporal Variation of the air quality index (AQI) in the Amman and Zarqa Metropolitan Areas during the period 2016-2022 following the method adopted by the Environmental Protection Agency of the United States of America (EPA). Air quality data for PM10, PM2.5, O3, NO2, SO2, and CO recorded at five monitoring stations were downloaded from the official website of the Jordanian Ministry of Environment. Calculated AQI values were generally between the Good class (AQI <50) and the Moderate class (AQI 50-100) at all stations, the AQI calculations for PM10 demonstrated a noticeable increase during autumnal months, likely due to natural dust. PM2.5 demonstrated seasonal variation, with higher values in winter months where residents burn fossil fuel for heating. Stabel air in winter due to the cooled land surface, and the weak natural air mix and ventilation contribute to the deterioration of air quality. Calculated individual AQI for SO2 and NO2 reveals that all extent of the study area falls in the Good AQI class. Similarly, CO and ozone-based AQI values fluctuate within the “Good” class, with occasional episodes of compromised air quality at specific stations.
A. Al-Kraimeen, S. Hamasha and M. Abu-Allaban
Water Treatment: Evaluation of Maleic Acid-Acrylamide Copolymer Inhibitor Efficiency on Calcite Scale by Response Surface Methodology
Mineral scales of calcite are common in the oil field and pose a serious integrity problem in the wellbore, flow lines, and equipment. It is also a challenge faced by industries such as refineries and power plants. Scale deposition is a complex process depending on various factors such as concentration of scaling species, temperature, pH, and flow rates. Deterministic models are used to predict the scale formation from the level of supersaturation of the scaling species in the water at the operating conditions. However, due to the complexity of the interaction of variables affecting the scaling and inhibition by chemicals, it is suitable to be represented by statistical models. This work focused on applying statistical analysis techniques such as response surface methodology to understand the effect of different operating parameters on the inhibition efficiency of maleic acid-acrylamide copolymer on CaCO3 scales. The copolymer was synthesized, and its inhibition efficiency on the calcite scale was tested using static jar tests at different pH, temperature, and inhibitor concentrations. The effect of the critical parameters on the inhibition efficiency was analyzed using the statistical technique of Response Surface Methodology (RSM). The design of experiments (DoE) was created using a Box–Behnken design with three levels for each factor. The linear and the quadratic effects of the factors were studied and the interaction effects were analyzed using analyses of variance (ANOVA) and RSM. A desirability function was used to optimize the performance for the combination of the variables. The analysis showed that the linear effect of the parameters had the highest impact on the inhibition efficiency. Significant interaction effects were also identified between the operating variables. A transfer function was used to model the experimental data of inhibitor performance.
Balasubramanian Senthilmurugan and Jayaprakash Sandhala Radhakrishnan
Microbes Breaking Down Plastic: Insights for Sustainable Waste Management
This research investigates the microbial degradation of low-density polyethylene (LDPE) and high-density polyethylene (HDPE) plastics by Bacillus sp., Proteus sp., Pseudomonas sp., and Salmonella sp. The study employs a systematic approach, isolating microorganisms from plastic-contaminated soil and subjecting them to a series of biochemical tests for identification. The research evaluates the weight loss of LDPE and HDPE over two months, revealing varying degrees of degradation among the bacterial strains. Results suggest a potential greater susceptibility of HDPE to microbial degradation. Scanning Electron Microscopy (SEM) analysis provides high-resolution images of the plastic surface, indicating structural changes and biofilm formation during degradation. The findings highlight the unique enzymatic capabilities of each strain and underscore the significance of SEM in elucidating microbial interactions with plastics. The study prompts discussions on optimization, synergistic effects, and the identification of key enzymes in plastic degradation, emphasizing the importance of microbial strategies for waste management. Overall, this research contributes valuable insights into the potential of bacterial strains for addressing plastic pollution challenges.
C. J. Patel, R. H. Kansagara, D. V. Modi, N. J. Dudhat, K. H. Sojitra and D. M. Babaria
Investigation of Rosemary Oil as Environmentally Friendly Corrosion Inhibitor of Aluminum Alloy
The inhibitory effect of Rosemary oil on the corrosion of aluminum alloy EN AW-2011 in 1M H2SO4 solution was studied by weight loss and electrochemical methods such as open circuit potential (OCP), linear sweep voltammetry (LSV) and linear polarization resistance (LPR). The inhibition efficiency increases with increasing the concentration and shows maximum inhibition efficiency (70.7 %) at optimum concentration (0.05 g.L-1). The linear polarization resistance measurements show that the presence of Rosemary oil in 1M H2SO4 solution influences polarization resistance increasing and corrosion current decreasing. The voltammetric curve shows that Rosemary oil reduces the anodic process. Open circuit potential results confirmed that organic compounds present in Rosemary oil can form a protective layer on aluminum surfaces. The inhibitive effect was probably caused by the adsorption of organic compounds such as 1,8-cineole, ?-pinene, borneol, limonene, and myrcene on aluminum surfaces which are non-toxic and environmentally friendly. This study showed that the essential oil of Rosemary could be used as an environmentally friendly inhibitor of the corrosion of alloy EN AW-2011 in an acidic medium.
K. V. Kamarska
Decolorization of Textile Dyes by Extracellular Enzymes Produced from Trametes sanguinea and Perenniporia taephropora Immobilized on Natural Media
The color of textile wastewater is still a main problem in wastewater treatment by biological processes. The colored effluents from textile factories usually exceed effluent standards. Therefore, various innovations were developed to treat textile wastewater for decolorization in the effluents. This research aims to decolorize textile wastewater by immobilizing white rot fungi degradation. At first, the 11 fungal stains were tested to find the decolorized efficiency then the high decolorized efficiency fungal stains were immobilized on four material media, namely water hyacinth stalks, coconut husk, corn cob, and loofah. After that, the immobilized fungi were cultivated in the culture media at 30, 60, and 120 C/N ratios, respectively. The results showed that Trametes sanguinea and Perenniporia tephropora were two stains with a high decolorized efficiency of 68.8% and 67.5% respectively, and the decolorized efficiency was increased when immobilized on loofahs and fed with 120 C/N ratio medium. In a comparison of two fungal stains, P. tephropora was found more suitable for the decolorization of textile wastewater than T. sanguinea because T. sanguinea could produce red-orange pigments that induced the colored enhancement in wastewater over time. Finally, immobilized P. tephropora was cultivated in a 120 C/N ratio medium within a 10 L continuous stirred tank reactor (8 L working volume) to investigate the decolorized efficiency, enzymatic activity, and repeated batch. It was found that three repeated cycles were carried out by reusing the immobilized P. tephropora and the highest decolorized efficiency was 63.4%. The enzymatic activity of laccase, manganese peroxidase, and lignin peroxidase was 15.5 U/L, 85.9 U/L, and 0 U/L, respectively
Siriorn Boonyawanich, Nipon Pisutpaisal and Saowaluck Haosagul
Effect of Fly Ash in Pyrolysis of HDPE, LDPE and PP Plastic Waste
Fly ash is generally obtained as a by-product from the combustion of coal and other waste materials. It is used for making bricks, but it has few limitations. The fly ash consists of Silica, Alumina, and other metal oxide components in minor quantities. Fly ash particles are observed in the range of nanometers to micrometers and can act as a catalyst in various reactions. The use of low-cost catalysts in the pyrolysis of thermoplastic waste would achieve a high percentage of low molecular weight fractions in liquid form which increases its applicability in commercial sectors. Hence, there is a need to enhance these fractions to achieve a sustainable approach in the catalytic pyrolysis process. fly ash, being a side product, is very cheap, so its effect on the plastic waste pyrolysis process has been studied. In the present research paper, Physical & chemical characterization of fly ash has been carried out. As fly ash consists of different metal oxides in proportion, its applicability in the process of pyrolysis of HDPE, LDPE, and PP waste has been studied. The different weight percent of fly ash (i.e., 5, 10, 15, 20) have been tried in all pyrolysis experiments. It has been observed that 5 wt % fly ash is effective for enhancing the yield of liquid fuel as compared to that without a catalyst. Liquid fuel obtained from catalytic pyrolysis of HDPE, LDPE, and PP waste with Fly ash consists of a high percent of low molecular weight fractions as compared to that of liquid fuel without catalyst, which has been concluded by calorific values & GC-MS result.
Y. B. Sonawane, M. R. Shindikar and M. Y. Khaladkar
Exploring the Adsorption Efficiency of Local Apricot Seed Shell as a Sustainable Sorbent for Nitrate Ion
Locally available apricot seed shell as agro-waste was used for the preparation of adsorbents. The biochar was prepared at 370°C via pyrolysis and 80 mesh particle sizes were modified by 1N HCl. Nitrate adsorption and effect of co-ions from aqueous solution were studied under batch model using apricot seed shell powder (ASSP), apricot seed shell biochar (ASSB), and activated apricot seed shell biochar (AASSB). FTIR and pHPZC measurements were used to characterize the adsorbents. Based on the experimental findings, the optimum conditions follow pH 2, 0.3g dosage, initial concentration of 50 mg.L-1, and contact time of 90 min. The three forms of adsorbent exhibited good adsorption for nitrate. However, the maximum percentage removal of nitrate ions from the aqueous solution followed the order AASSB>ASSB>ASSP. The adsorption kinetic of nitrate ion was best fitted by pseudo 2nd order, and the parameters of adsorption isotherms elucidated favorable and improved sorption. This agro-waste could be used to develop sustainable adsorbents in water and wastewater treatment methods and has great potential to replace commercially available sorbents.
Mohd Ishaq, R. C. Chhipa, Anupama Sharma, Gh. Ali and Riyaz-ul Hussain
Novel Bacterial Consortium for Mitigation of Odor and Enhance Compost Maturation Rate of Municipal Solid Waste: A Step Toward a Greener Economy
Composting is an integral component of sustainable Municipal Solid Waste (MSW) management within the circular bio-economy platform. However, it faces challenges due to malodorous emissions that impact environmental and societal equilibrium. The present study aims to minimize odorous emissions and expedite compost maturation using a novel, efficient microbial consortium. Bacteria sourced from open dump sites in Sri Lanka were carefully screened based on concurrent enzyme production. Five developed consortia were tested for their performance in reducing malodors during the composting process of MSW. Consortium No. 5 (C5), comprised of Bacillus haynesii, Bacillus amyloliquefaciens, and Bacillus safensis, demonstrated outstanding performance with a significant (p < 0.05) reduction in odorous emissions. Additionally, consortium C5 exhibited impressive control over gas emissions, maintaining VOC, CH4, NH3, and H2S concentrations within ranges of 0.5-6 ppm, 0.5-0.8 ppm, 0.3-0.5 ppm, and 0.5-0.6 ppm, respectively, compared to control concentrations of 4.5-10.2 ppm, 0.5-5.5 ppm, 0.3-5.5 ppm, and 0.5-6.4 ppm, respectively. Additionally, comprehensive Electronic nose (E-nose) analysis substantiated C5’s efficiency in attenuating Methane-Aliphatic compounds, Sulfur and Aromatic compounds, along with low-polarity aromatic and alkane compounds, all with statistical significance (p < 0.05). Further, the developed consortium could reduce the composting time from 110 ± 10 days to 17 ± 3 days, offering a sustainable solution for global MSW management.
P.A.K.C. Wijerathna, K.P.P. Udayagee, F.S. Idroos and Pathmalal M. Manage
Nephrotoxicity of Cylindrospermopsin (CYN) and Microcystin-LR (MC-LR) on Mammalian Kidney: Wistar Rat as a Model Assessment
Naturally derived cyanotoxins, cylindrospermopsin (CYN), and microcystin-LR (MC-LR) have shown hepatotoxic and nephrotoxic effects in several studies. The present study aimed to determine the possible nephrotoxicity of MC-LR and CYN on mammalian kidneys using male Wistar rats as an animal model. Potential nephrotoxicity was evaluated at different doses of CYN (0.175 ?g.kg-1, 0.140 ?g.kg-1, 0.105 ?g.kg-1) and MC-LR (0.105 ?g.kg-1, 0.070 ?g.kg-1, 0.035 ?g.kg-1) was observed. Water samples from dug wells contaminated with CYN (0.161 ?g.kg-1) and MC-LR (0.091 ?g.kg-1) from the Padaviya area in Anuradhapura, Sri Lanka were used as environmental samples. The control groups were treated with distilled water. The exposure time of rats to the toxin was 90 days. Evaluation of urinary creatinine, serum creatinine, and Kidney Injury Molecule-1 (KIM-1) were estimated using standard protocols. A significant increase in serum creatinine levels was observed in all CYN and MC-LR treated groups (p<0.05) after 7 and 42 days of exposure, respectively, compared to control. It was found a decrease of urine creatinine when rats were treated with different concentrations of CYN and MC-LR (p<0.05) after 7 days compared to the control. The highest KIM-1 concentrations were recorded at 0.175 ?g.kg-1 of CYN and 0.105 ?g.kg-1 of MC-LR. The concentrations of KIM-1 in the control groups for CYN-treated and MC-LR-treated were not detected. Luminal protein, nuclear pyknosis, mild tubular epithelial swelling, vascular congestion, and interstitial inflammation in CYN and MC-LR treated groups were common. No predominant changes were observed in the control groups treated with CYN and MC-LR. The results of the present study confirm that the consumption of CYN and MC-LR-contaminated water may lead to kidney injury in Wistar rats.
H.A.S.N. Abeysiri, J.K.P. Wanigasuriya, T.S. Suresh, D.H. Beneragama and P.M. Manage
Fuzzy Logic Harmony in Water: Mamdani Inference System Applied to Evaluate Pristine Pond Water Quality
Aquatic ecosystems that are subject to urbanization and environmental changes, such as the Kapaleeswarar and Chitrakulam tanks, depend on evaluating water quality. Their complicated data present challenges for conventional approaches. The usefulness of the Mamdani fuzzy inference system in determining the water quality in these tanks is investigated in this work. It creates a comprehensive assessment based on subject-matter expertise by handling ambiguous descriptors with linguistic variables and fuzzy sets. The system’s procedures for implementation are described in detail, with an emphasis on how well they can manage interrelated variables. The study shows how well the system measures the water quality in tanks and suggests ways to improve it. Tank evaluation that incorporates the Mamdani system encourages comprehensive resource management and cultural preservation.
M. Priya and R. Kumaravel
Green Nanotech: A Review of Carbon-Based Nanomaterials for Tackling Environmental Pollution Challenges
In recent times, nanotechnology has experienced widespread acclaim across diverse sectors, including but not limited to tissue engineering, drug delivery systems, biosensors, and the mitigation and monitoring of environmental pollutants. The unique arrangement of carbon atoms in sp3 configurations within carbon nanomaterials endows them with exceptional physical, mechanical, and chemical characteristics, driving them to the forefront of materials research. Their appeal lies in their efficacy as superior adsorbents and their exceptional thermal resistance, making them versatile in various applications. The present review extensively explores a range of carbon-based nanomaterials, delving into their synthesis methods and examining their multifaceted applications in addressing environmental pollutants. It is crucial to emphasize that the popularity of carbon-based nanomaterials arises from their potential to serve as superior adsorbents, coupled with their outstanding thermal resistance properties. These attributes contribute to their applicability in diverse environmental contexts. Looking ahead, carbon-based nanomaterials are poised to emerge as environmentally friendly and cost-effective materials, representing promising and potential avenues for the advancement of sustainable technology.
Rameeja Shaik, Buddhadev Ghosh, Harish Chandra Barman, Arijit Rout and Pratap Kumar Padhy
Alternate Chemical Compounds as a Condensation Nucleus in Cloud Seeding
Cloud seeding involves boosting precipitation by releasing substances into the air that act as cloud condensation or ice nuclei. These substances encourage the development of clouds and precipitation. It’s like giving Mother Nature a gentle push to assist with rainfall in specific areas. The current work aimed to suggest Al2O3 as an alternate compound in cloud seeding rather than silver iodide. In this research, a unique approach is used to identify condensation nuclei, which play a crucial role in cloud formation and droplet growth. Various samples and four sources were included in the current study; refrigerated helfa powder, Himalayan salt, generator powder, and pollen, were analyzed using different physicochemical instruments. The proportions of chemical compounds in the samples show that there is 1.392% of Al2O3 in Refrigerated helfa which is the highest than in the other 3 sources, while the proportions of elements in the samples indicate that refrigerated helfa contains the lowest toxic compound, and although Al2O3 is insoluble in water, it is hygroscopic and can absorb 6.4% of humidity within 24 hours. As for the surface tension, refrigerated helfa shows lower density and surface tension than the other three sources with values of 0.9480 and 47.89 respectively. Al2O3 shows high humid absorptivity and refrigerated helfa can be used as a main source for Al2O3 which has a low effect on biota and is recommended for use in cloud seeding. However further work is recommended to be carried out in using Al2O3 as an alternative compound to silver iodide in cloud seeding.
Hasan M. Azeez, Nagham T. Ibraheem and Hazim H. Hussain
Sewage Treatment by Kolkata’s Natural Wetland System
The metropolis of Kolkata stands uniquely positioned to implement a natural sewage treatment paradigm through the utilization of waste stabilization ponds, specifically within the East Kolkata Wetlands (EKW). These shallow oxidation ponds harness solar irradiation and algae bacteria symbiotic processes to effectively treat incoming sewage. Concurrently, nutrient-rich effluents are assimilated through fish production, converting available nutrients into protein—a hallmark of nature-based treatment. A portion of raw sewage is used to cultivate a chunk of vegetables before treatment in fish ponds, and the reclaimed water after treatment is used for vegetable and paddy cultivation downstream. This investigation explains the delineation of a sewage flow system to EKW, a Ramsar-designated site. Substantively, it offers quantitative insights into the sewage volumes and quality undergoing treatment. The sewage flow is higher in the winter months (909.07 MLD) compared to the summer months (709.34 MLD). In general, the sewage from the Kolkata city flowing to the EKW is moderately polluted. Extensive scrutiny of sewage from pond inlets and outlets serves as a quantitative metric for evaluating treatment efficacy. EKW efficiently treats the sewage, demonstrating 59.1% Biological Oxygen Demand (BOD) removal and a 99.28% reduction in fecal coliform. The natural treatment system excels in removing ammoniacal nitrogen (80.38%) and phosphate (90%). The treated water’s quality along the EKW boundary, culminating at the Kulti Gong River discharge point, was systematically assessed. Analytical findings indicate that all measured concentrations in the treated water adhere to prescribed inland surface water discharge standards prescribed by the Central Pollution Control Board, India, barring a marginal elevation in BOD during winter. Evidently, the EKW system adeptly manages substantial sewage volumes, fostering efficient treatment while concurrently facilitating resource recovery through fish production, yielding economic dividends. Despite its substantial land footprint, preserving this inherently sustainable wastewater management paradigm is imperative.
I. Khan, D. Das Gupta and A. Gupta
Effects of Carbon Dioxide and Nitrogen Oxides on Climate Change in Afghanistan
Climate change is a global threat to the environment and human health. Two of the main greenhouse gases that cause the greenhouse effect and raise global temperatures are carbon dioxide and nitrogen oxides. In this review paper, we investigated the effects of carbon dioxide and nitrogen oxides on climate change and the effects of climate change on Afghanistan. We found that high concentrations of carbon dioxide, which is now CO2 levels, have increased by 50% than before the Industrial Revolution, contributing to a rise in global temperature and precipitation. At the same time, Nitrous oxide is an important greenhouse gas, with 310-fold higher potential for global warming than CO2 and leads to the depletion of stratospheric Ozone and other Nitrogen oxides, has a significant impact on plant health, including effects on chlorophyll levels, oxidative stress, and antioxidant responses. Afghanistan’s climate change is predicted to increase the country’s prevalence of illnesses linked to dust storms and poor air quality, especially in Kabul, the nation’s capital. In addition, air pollution in Kabul is also likely to increase as a result of climate change. The alarming impacts of air pollution, with more than 3,000 deaths attributed to air pollution annually. Additionally, at least 700,000 individuals in Kabul have experienced various respiratory diseases. Due to climate change, Afghanistan’s total glacier area has shrunk by 13.8%. In 2023, Afghanistan experienced early snow melt and below-average precipitation, causing second-season and irrigated crops to have less access to water. Reducing emissions and coping with the changing climate are essential steps towards tackling the complex issues these gases present and their wider effects on the environment and human health.
Mairaj Khan
Quantification of the Few Parameters and Metallic Elements in the Quaternary Sediments of “Baie Du Repos” and their Interrelation
Mauritania is a fishing country. However, the Mauritanian coast is increasingly exposed to environmental issues mainly due to anthropogenic activities such as the mining, gas, oil, and fishing industries, as well as new agricultural practices that unreasonably use inputs. Environmental monitoring of the Mauritanian coast faces several challenges; thus, improving the fisheries sector begins with enhancing the state of marine ecosystems and implementing environmental monitoring adapted to climatic conditions and local needs. This study aims to evaluate the quality of the sediments of the “Baie du Repos” in the town of Nouadhibou, Mauritania, through the study of organic matter and the quantification of trace metallic elements in the Quaternary sediments of the Bay. Six samples deemed representative of this Bay were taken and transported to the laboratory. The physicochemical analysis of these samples shows that the superficial horizons of 30 cm depth have overall organic matter contents higher than the average threshold value proposed by the literature for 4 out of 6 of the points studied. The contents recorded for the different metallic trace elements indicate that point 1 is the most exposed to contamination, with the highest concentrations of cadmium, lead, copper, iron, and zinc. The ACP (Principal Component Analysis) showed that the metallic trace elements Pb, Cu, Fe, Cd, and Zn are closely related and evolve positively in the same direction. Additionally, it was found that the points studied are divided into three groups: Group 1 contains only point 1, which is the most exposed to contamination by these toxic elements (Pb, Cu, Zn, Fe, and Cd). Group 2 contains points 3, 5, and 6, which are moderately contaminated by metallic elements with a significant dominance of organic matter (OM). Finally, Group 3 is the least contaminated, with a very high content of organic matter (OM).
M. T. Moulaye Taher, A. M. El Mokhtar, E. C. S’Id and A. Mahfoudh
Effect of Rice Biochar on Typical Cadmium, Lead and Zinc Form in Contaminated Soil in Northwest Guizhou Province, China
This study was conducted in Hezhang County, Bijie City, Guizhou Province. The soil in the zinc smelting area has been contaminated with cadmium, lead, and zinc. Therefore, these elements are the focus of this research. Rice husk biochar was used as the passivation material. The Fourier infrared spectrum was utilized to study the biochar’s morphology, element content, mineral composition, structure, and surface functional groups. Moreover, the physical and chemical properties of the biochar were analyzed to explore its passivation effect. Biochar is beneficial in the cleaning of cadmium, lead, and zinc minerals and can be used for the passivation of heavy metals in contaminated soil. This study aims to understand the detailed mechanism behind this process and provide experimental data and ideas for pollution control. The results indicate that the biochar contains many functional groups, including -OH, C-H, C-O, C=O, C=C, and C-O-C. It also consists of a significant quantity of potassium salt, calcite, and quartz. Biochar has a noticeable pore structure, and as the pyrolysis temperature increases, the pore structure becomes more developed and thinner, with a smooth surface. The main minerals in the soil are quartz, mica, zeolite, illite, and chlorite. The aromatic degree of biochar increased with pyrolysis temperature. In contrast, the aromatic degree and polarity first increased and then decreased. The 0.2-0.45 mm biochar exhibited the best passivation effect on cadmium, lead, and zinc.
Ji Wang, Die Xu, Xiongfei Cai and Shuai Zhao
Navigating the Global Environmental Agenda: A Comprehensive Analysis of COP Conferences, with a Spotlight on COP28 and Key Environmental Challenges
The purpose of the research work is to explore the objective and competence of COP (Conference of Parties) in the context of environmental issues and climate change management and this is performed by evaluating respective articles published in the context of the subject. COP is found efficient in empowering global nations to be aligned with the objective of sustainable growth by making corrective negotiations and agreements as per the current and future environmental issues like the greenhouse effect and air pollution. COP helps ensure environmental issues are fixed by conducting benchmark index-based performance reviews and analyses. It has been observed that the agenda significantly contributes to the green economy, as it promotes sustainable change and development in the environment, society, and economy. A significant innovative strategy was developed at the conference to reduce global temperatures and emissions. In this context, the development of the EV sector plays a crucial role in mitigating environmental impact. The COP28 conference is addressing the climate and nature crisis, considering it a global health emergency. Methodology states that the literature search is conducted from peer-reviewed journal articles from authentic sources like Wiley’s Online Library and Science Direct Pages. Only the journals that were published after the year 2019 have been used in the study. Also, it is seen that COP28 (2023) conventions focused on global warming, climate change, and the production of a green economy, which is continuously being considered, and also, the implications and steps that are required to be taken are discussed.
Sabina Akhtar, S. Shaima, G. Rita, A. Rashid and A. J. Rashed
Full Issue
Volumes & Issues
- Vol 23, No 4, Dec 2024
- Vol 23, No 3, Sep 2024
- Vol 23, No 2, Jun 2024
- Vol 23, No 1, Mar 2024
- Vol 22, No 4, Dec 2023
- Vol 22, No 3, Sep 2023
- Vol 22, No 2, Jun 2023
- Vol 22, No 1, Mar 2023
- Vol 21, No 4, Dec 2022
- Vol 21, No 3, Sep 2022
- Vol 21, No 2, Jun 2022
- Vol 21, No 1, Mar 2022
- Vol 20, No 4, Dec 2021
- Vol 20, No 3, Sep 2021
- Vol 20, No 2, Jun 2021
- Vol 20, No 1, Mar 2021
- Vol 19, No 4, Dec 2020
- Vol 19, No 3, Sep 2020
- Vol 19, No 2, Jun 2020
- Vol 19, No 1, Mar 2020
- Vol 18, No 4, Dec 2019
- Vol 18, No 3, Sep 2019
- Vol 18, No 2, Jun 2019
- Vol 18, No 1, Mar 2019
- Vol 17, No 4, Dec 2018
- Vol 17, No 3, Sep 2018
- Vol 17, No 2, Jun 2018
- Vol 17, No 1, Mar 2018
- Vol 16, No 4, Dec 2017
- Vol 16, No 3, Sep 2017
- Vol 16, No 2, Jun 2017
- Vol 16, No 1, Mar 2017
- Vol 15, No 4, Dec 2016
- Vol 15, No 3, Sep 2016
- Vol 15, No 2, Jun 2016
- Vol 15, No 1, Mar 2016
- Vol 14, No 4, Dec 2015
- Vol 14, No 3, Sep 2015
- Vol 14, No 2, Jun 2015
- Vol 14, No 1, Mar 2015
- Vol 13, No 4, Dec 2014
- Vol 13, No 3, Sep 2014
- Vol 13, No 2, Jun 2014
- Vol 13, No 1, Mar 2014
- Vol 12, No 4, Dec 2013
- Vol 12, No 3, Sep 2013
- Vol 12, No 2, Jun 2013
- Vol 12, No 1, Mar 2013
- Vol 11, No 4, Dec 2012
- Vol 11, No 3, Sep 2012
- Vol 11, No 2, Jun 2012
- Vol 11, No 1, Mar 2012
- Vol 10, No 4, Dec 2011
- Vol 10, No 3, Sep 2011
- Vol 10, No 2, Jun 2011
- Vol 10, No 1, Mar 2011
- Vol 9, No 4, Dec 2010
- Vol 9, No 3, Sep 2010
- Vol 9, No 2, Jun 2010
- Vol 9, No 1, Mar 2010
- Vol 8, No 4, Dec 2009
- Vol 8, No 3, Sep 2009
- Vol 8, No 2, Jun 2009
- Vol 8, No 1, Mar 2009
- Vol 7, No 4, Dec 2008
- Vol 7, No 3, Sep 2008
- Vol 7, No 2, Jun 2008
- Vol 7, No 1, Mar 2008
- Vol 6, No 4, Dec 2007
- Vol 6, No 3, Sep 2007
- Vol 6, No 2, Jun 2007
- Vol 6, No 1, Mar 2007
- Vol 1, No 4, Dec 2002
- Vol 1, No 3, Sep 2002
- Vol 1, No 2, Jun 2002
- Vol 1, No 1, Mar 2002