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	       ABSTRACT
This study was conducted in Hezhang County, Bijie City, Guizhou Province. The soil in the 
zinc smelting area has been contaminated with cadmium, lead, and zinc. Therefore, these 
elements are the focus of this research. Rice husk biochar was used as the passivation 
material. The Fourier infrared spectrum was utilized to study the biochar’s morphology, 
element content, mineral composition, structure, and surface functional groups. Moreover, 
the physical and chemical properties of the biochar were analyzed to explore its passivation 
effect. Biochar is beneficial in the cleaning of cadmium, lead, and zinc minerals and can be 
used for the passivation of heavy metals in contaminated soil. This study aims to understand 
the detailed mechanism behind this process and provide experimental data and ideas for 
pollution control. The results indicate that the biochar contains many functional groups, 
including -OH, C-H, C-O, C=O, C=C, and C-O-C. It also consists of a significant quantity 
of potassium salt, calcite, and quartz. Biochar has a noticeable pore structure, and as the 
pyrolysis temperature increases, the pore structure becomes more developed and thinner, 
with a smooth surface. The main minerals in the soil are quartz, mica, zeolite, illite, and 
chlorite. The aromatic degree of biochar increased with pyrolysis temperature. In contrast, 
the aromatic degree and polarity first increased and then decreased. The 0.2-0.45 mm 
biochar exhibited the best passivation effect on cadmium, lead, and zinc.

INTRODUCTION

Soil is an important part of the human living environment. 
However, due to the rapid expansion of modern society, 
many heavy metal pollutants released during mining have 
contaminated the soil, resulting in severe soil heavy metal 
pollution. According to the 2014 National Soil Pollution 
Survey Bulletin, the soil is predominantly polluted by 
inorganic pollutants. Of all the sites with pollutant levels 
exceeding the limit, 82.8% are affected by inorganic 
pollutants. Among these, cadmium (Cd) is the primary heavy 
metal contaminant in China’s soil, with an over-limit rate of 
7%. The over-limit rates of lead (Pb) and zinc (Zn) are 1.5% 
and 0.9%, respectively (MEP & MLR 2014).

The zinc smelting industry in northwestern Guizhou 
Province has a history of more than 300 years. Historically, 
there was a greater focus on development than on 
environmental protection. This outdated smelting technique 
contributed to economic growth but at a significant 
environmental cost. Inadequate waste treatment led to the 
release of large quantities of toxic exhaust gases, soot, 

and heavy metal pollutants such as Cd, Pb, and Zn. These 
pollutants were discharged during smelting, causing serious 
soil contamination. As a result, over 20 million tons of waste 
and 1200 hectares of soil remain untreated (Lin 2009). To 
remediate and treat these contaminated areas, it is urgent to 
find appropriate methods.

At present, studies on heavy metal-contaminated soils 
in the historical legacy of zinc refining in northwest Qianxi 
primarily focus on investigating the current state of soils in 
the contaminated area. These studies analyze the distribution 
of heavy metal morphology and geochemical transport 
characteristics and evaluate the biological effectiveness of 
heavy metals in soils within the historically contaminated 
area using relevant methods and predictive models. They 
also explore the soil-crop system in the legacy contaminated 
area by heavy metals. However, there are few studies on the 
use of chemical passivation agents to remediate soil in the 
historical legacy of zinc refining in northwest Qianxi (Yang 
et al. 2003, Lin et al. 2009, Ao et al. 2009, Gao et al. 2017, 
Zhang et al. 2017a, Sun et al. 2013, Liu et al. 2020, Sun et 
al. 2006, Kang et al. 2015)	

Nat. Env. & Poll. Tech.
Website: www.neptjournal.com

Received: 14-11-2023
Revised:    13-12-2023
Accepted: 11-01-2024

Key Words:
Rice biochar
Historical pollution soil
Heavy metals   
Passivation repair

mailto:ddwll5201@163.com


1840 Ji Wang et al.

Vol. 23, No. 3, 2024 • Nature Environment and Pollution Technology  This publication is licensed under a Creative 
Commons Attribution 4.0 International License

This publication is licensed under a Creative 
Commons Attribution 4.0 International License

Soil remediation methods for heavy metal contamination 
can be divided into physical remediation, chemical 
remediation, and bioremediation (Derakhshan et al. 2017). 
Among chemical methods, in situ passivation remediation 
has received wide attention due to its high operability, cost-
effectiveness, and suitability for large-scale applications. In 
recent years, it has become a research hotspot for remediating 
soil polluted by heavy metals (Li et al. 2019).

Passivators used for treating soil with heavy metals are 
often categorized into inorganic passivators (such as lime, 
phosphate, metals and their oxides, and clay minerals) and 
organic passivators (including organic waste, organic acids, 
and biochar) (Zhao et al. 2021). Biochar, a highly carbon-
containing aromatized solid material prepared by pyrolysis 
under anoxic and relatively low-temperature conditions, 
is particularly effective. It has a complex pore structure, a 
large specific surface area, and abundant surface functional 
groups, making it excellent at absorbing and immobilizing 
heavy metal pollutants. Consequently, biochar has become 
a research hotspot in the environmental field in recent years 
(Shi et al. 2019).

According to the Ministry of Agriculture and Rural 
Affairs of China, current agricultural straw resources in 
China mainly include rice, corn, and wheat, which together 
account for 83.51% of the total straw resources. In 2021, 
China produced 900 million tons of straw, ranking first in 
the world. 

Moreover, the production is increasing at an annual 
rate of 3%, providing sufficient raw material for biochar. 
Therefore, biochar is a green and reasonable solution for 
recycling agricultural straw resources (Wei et al. 2019, 
Xie et al. 2010, Meng et al. 2018). Currently, many 
studies have analyzed biochar’s passivation effects on the 
remediation of soil polluted by heavy metals. However, 
most of them regard biochar as a homogeneous body and 
do not consider the influence of different sizes of biochar 
particles. Therefore, it is necessary to investigate biochar’s 
passivation effects on the remediation of polluted soil with 
different particle sizes. In the soil of the historical legacy of 
zinc refining in northwestern Qianxi, this investigation has 
practical application significance and aligns with the current 
development trend of national environmental ecology.

This paper focuses on the historical Zn refining area in 
northwest Guizhou province, where heavy metals, including 
Cd, Pb, and Zn, have contaminated the soil. The rice 
husk biochar was used as the test material for passivation 
remediation. We analyzed the biochar and the test soil 
samples using characterization techniques such as scanning 
electron microscopy, Fourier infrared spectroscopy, X-ray 
diffraction, specific surface area measurement, and organic 
elemental analysis. The study investigated the differences in 
the morphological structure, elemental content composition, 
and surface functional groups of the biochar. This paper aims 
to provide basic experimental data and pollution prevention 
ideas by investigating the rice husk biochar’s passivation 
effects on soil contaminated by heavy metals.

MATERIALS AND METHODS 

Test Materials 

The test soil was obtained from a 0-20 cm soil layer of a 
vegetable field in a soil refining area of Hezhang County, 
Bijie City, Guizhou Province. The collected soil samples 
were mixed well in a sealed bag, brought back to the 
laboratory, and laid flat on kraft paper. A rubber hammer 
was used to break up the lumpy soil to prevent clumping. 
After removing impurities, the samples were dried naturally 
at room temperature. The dried samples were then filtered 
through a 2 mm nylon sieve and sealed in bags for use. The 
basic physical and chemical properties are as follows: the 
soil type was loam, the moisture content after air-drying 
was 4.75%, the pH was 7.51, indicating weak alkalinity 
and the conductivity was 155.11 μs.cm-1, cation exchange 
was 8.78 cmol(+).kg-1, soil organic matter content was 
36.89 g.kg-1, total N and total P are 0.05 and 1.00 g.kg-1, 
respectively. The total amounts of Cd, Pb, and Zn were 
14.07, 4518.15, and 71,786.83 mg.kg-1, respectively. The rice 
husk biochar products, which were prepared by pyrolysis at 
300°C, 400°C, and 500°C, are noted as W300, W400, and 
W500, respectively. They were purchased from Henan Lize 
Environmental Protection Technology Co, with sizes of 
0.075-0.2mm, 2: 0.2-0.45mm, and 3: 0.45-1mm. Their basic 
physicochemical properties are shown in Table 1.

The aromaticity, hydrophilicity, and polarity magnitudes 
of biochar can be expressed by the ratios of the organic 

Table 1: Physical and chemical properties of biochar.

Biochar 
type

Water 
content

pH EC 
[μs.
cm-1]

Ash Specific 
surface 
area[m2.g-1]

Total 
pore 
volume
[cm3.g-1]

Average 
pore 
size[nm]

C[%] H[%] N[%] O[%] S[%]

W300
W400
W500

3.67%
3.88%
0.67%

11.56
10.44
12.28

8475
5335
14500

53.51%
51.88%
50.21%

61.89
67.53
130.28

0.166
0.165
0.309

4.39
4.25
4.90

28.24
34.80
42.59

2.77
1.07
1.34

0.43
0.54
0.75

8.36
9.62
12.37

0.58
0.73
1.05
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components’ H/C, O/C, and (O+N)/C. The ratio of H/C 
atoms is negatively correlated with the degree of biochar 
aromaticity (Lin et al. 2017). Conversely, the ratios of O/C 
and (O+N)/C are positively correlated with the aromaticity 
and polarity of biochar (Chen et al. 2013, Wu et al. 2015, 
Hseu 2006). Based on the analysis of organic elements in 
rice husk biochar, the aromaticity of rice husk biochar in 
this study increased with temperature. The aromaticity and 
polarity showed an increasing trend before experiencing a 
downturn.

Material Characterization Analysis 

Soil mineral types were analyzed using an X-ray diffractometer 
(XRD) (BrukerD8advance, Bruker, Germany). The surface 
morphology of biochar was determined using a scanning 
electron microscope (SEM) (ZEISSGemini300, Carl Zeiss 
AG, Germany). The organic elemental composition of 
biochar was analyzed with an organic elemental analyzer 
(EA) (ElementarvarioEl III, Erimenta, Germany). A fully 
automatic specific surface and porosity analyzer (BET) 
(McASAP2460, McMurritic Instruments Co., Ltd., USA) 
was used to determine the specific surface area, pore size, and 
pore volume of the biochar. A Fourier infrared spectrometer 
(FTIR) (FTIR-850 Ltd.) was used to qualitatively analyze 
the surface functional groups of biochar.

Design of Experiments

The experiment was conducted on January 14, 2021, at the 
Key Laboratory of Karst Mountain Ecology and Environment 
of Guizhou Normal University. It aimed to analyze the 
soil’s static passivation. The soil in the pots was mixed with 
biochar. First, an appropriate amount of ultra-pure water 
was added to the pots to moisten the soil to 60% of the field 
water-holding capacity. During incubation, lost water was 
replenished using the weighing method. After 100 days of 
incubation, the soil samples were removed, air-dried, ground, 
and sieved for analysis and testing.

Analytical Methods and Instruments

Using the potentiometric method (water-soil ratio 2.5:1), 
the soil’s pH was determined by the pH meter (PHS-320, 
Shanghai Yidian Scientific Instruments Co., Ltd.). Soil 
electrical conductivity refers to the electrical conductivity of 
a solution within a unit distance. Using the electrode method, 
the soil’s electrical conductivity (EC) was determined by 
the electrical conductivity meter (DDSJ-308F, Shanghai 
Yidian Scientific Instruments Co., Ltd.). Cation exchange 
capacity (CEC) is a measure of the total negative charges 
within the soil that adsorb plant nutrient cations. The 
leaching-spectrophotometric method, adopting hexamine-
cobalt trichloride, was used to determine the soil’s cation 

exchange capacity (CEC). The automatic interrupted 
chemical analyzer (CleverChem200+, DeChem-Tech 
GmbH, Germany) was used to determine the total nitrogen 
(TN) and total phosphorus (TP), using sulfuric acid boiling 
sodium salicylate and sulfuric acid boiling-molybdenum 
antimony resistance, respectively.  The ultraviolet-visible 
spectrophotometer (UV-5500, Shanghai Yuananalysis 
Instruments Co., Ltd.) was used to determine the content 
of soil organic matter (SOM) using the hydrated thermal 
potassium dichromate oxidation-colorimetric method. The 
total amount of soil Cd, Pb, and Zn was evaluated using 
tetraacid digestion (HCl-HNO3-HF-HClO4), the plant active 
Cd, Pb, and Zn (DTPA-Cd, DTPA-Pb, and DTPA-Zn) were 
extracted using diethylenetriaminepentaacetic acid (DTPA) 
leaching. The toxic leached Cd, Pb, and Zn (TCLP-Cd, 
TCLP-Pb, and TCLP-Zn) were extracted by acetic acid 
(CH3COOH). The total amount and the other two forms were 
determined by the flame atomic absorption spectrometer 
(GGX-800, Beijing Haiguang Instruments Co., Ltd.).

Data Processing

Excel 2019 was used for data processing and calculation, 
and Origin 2019 b was used for the plotting.

RESULTS AND DISCUSSION

Effect of Biochar on Soil Physicochemical Properties

Biochar W3 (300), W2 (400), W2 (500), and W3 (500) 
treatments have clear effects of pH reduction. However, 
biochar of different particle sizes generates different results 
of soil CEC. The CEC in soil treated by rice husk biochar 
at 300℃ increased first and then decreased as the biochar’s 
particle size grew. While at 400℃, the CEC showed a 
descending trend along with the increase of the biochar’s 
particle size. At 500℃, the CEC trend was opposite to that 
at 400℃. The W3 (500) treatment resulted in the highest 
CEC of 9.16 cmol+.kg-1, followed by the W2 (300) treatment. 
At 400°C, the maximum CEC of the rice husk biochar 
treatment was 8.92 cmol+.kg-1. At 300℃ and 400℃, the 
EC of soil treated with rice husk biochar tended to decrease 
as the biochar particle size decreased. At 300°C and 400℃, 
the CEC of soil treated with rice husk biochar decreased 
as biochar particle size reduced. However, the EC of soil 
in the W2(500) treatment was the largest and could reach  
466.21 μs.cm-1 (Table 2).

Effect of Biochar on the Effective State Cd, Pb, and Zn 
Content

The total content of heavy metals in soil indicates their 
potential hazard. The DTPA-extracted state of heavy metals 
is closely related to the plant-available fraction. It can be used 
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to measure the content of heavy metal elements in soil that 
are effective for plants (Cao et al. 2009). Effective state Cd, 
Pb, and Zn in soil accounted for 28.57%, 24.47%, and 7.51% 
of the total, respectively. Biochar has the most significant 
effect on the content of DTPA-Pb in soil (Fig. 1). Under the 

W1 (400) treatment, the content of DTPA-Cd is reduced 
by 15.85%. Under the W2 (300) treatment, the reduced 
percentages of DTPA-Pb and DTPA-Zn were 40.92% and 
23.94%, respectively. Overall, biochar with a size of 0.2-0.45 
mm had the most significant effect on all three heavy metals 
in their effective states. Pb is less mobile in soil and has a 
strong affinity for the soil’s mucilage and organic matter. 
Even under acidic conditions, Pb is easily precipitated with 
phosphoryl chloride (Sauve et al. 2000). Previous studies 
have shown that different factors can account for the solid 
phase-solution partitioning of heavy metals in soil (Buchter 
et al. 1989, Gao et al. 2018).

Effect of Biochar Addition on the Content of TCLP- 
Cd, Pb, and Zn

The TCLP method (Toxicity Characteristic Leaching 
Procedure) can easily, quickly, and effectively evaluate the 
ecological risk of heavy metals in solids and is often used to 
assess soil heavy metal pollution and remediation effects (Wu 
et al. 2017). TCLP-Cd, Pb, and Zn accounted for 17.27%, 
35.77%, and 24.8% of the total, respectively (Fig. 2). The 
passivation effect of different particle size biochar treatments 
on toxic leaching state heavy metals was similar to that of 
the effective state. The passivation effect on Pb and Zn was 
better than that on Cd. The W2(400) treatment showed the 

Table 2: Physical and chemical properties of soil under different treatments.

Processing 
Category

pH CEC 
[cmol+.
kg-1]

EC [μs.
cm-1]

TN [mg.
kg-1]

TP 
[g.kg-1]

CK 7.51 8.78 155.11 46.67 1.00

WF(300) 7.38 8.39 355.71 2.00 0.61

W1(300) 7.41 8.15 318.71 87.23 0.23

W2(300) 7.46 8.93 302.21 19.19 0.23

W3(300) 7.19 7.19 262.71 8.91 0.72

WF(400) 7.38 8.92 334.21 52.54 0.59

W1(400) 7.35 8.52 375.71 18.07 0.38

W2(400) 7.25 8.07 266.21 10.16 0.53

W3(400) 7.30 6.96 167.81 5.72 0.48

WF(500) 7.44 7.65 446.71 15.41 0.24

W1(500) 7.46 7.74 367.71 26.55 0.22

W2(500) 7.17 6.68 466.21 26.97 0.26

W3(500) 7.22 9.16 346.71 - 0.71

Note: “-” means not detected.
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Fig. 1: Changes of DTPA-Cd, Pb, and Zn contents after different rice biochar treatments. 

Effect of Biochar Addition on the Content of TCLP- Cd, Pb, and Zn 
The TCLP method (Toxicity Characteristic Leaching Procedure) can easily, quickly, and effectively 

evaluate the ecological risk of heavy metals in solids and is often used to assess soil heavy metal pollution 
and remediation effects (Wu et al. 2017). TCLP-Cd, Pb, and Zn accounted for 17.27%, 35.77%, and 24.8% 
of the total, respectively (Fig. 2). The passivation effect of different particle size biochar treatments on 
toxic leaching state heavy metals was similar to that of the effective state. The passivation effect on Pb 
and Zn was better than that on Cd. The W2(400) treatment showed the best passivation effect on Cd and 
Zn, reducing TCLP-Cd and TCLP-Zn by 25.81% and 36.13%, respectively. The W2(300) treatment 
demonstrated the best passivation effect on TCLP-Pb, with a reduction rate of 51.62%. Overall, biochar 
with a size of 0.2-0.45 mm had the most significant passivation effect, significantly reducing the two 
effective forms of the three heavy metals. 

Fig. 1: Changes of DTPA-Cd, Pb, and Zn contents after different rice biochar treatments.
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crystals SiO2 (Zhong et al. 2019), CaCO3, and KCl. SiO2 
corresponded to the highest diffraction peak, indicating 
that its content was greater than that of the other inorganic 
compounds. As the pyrolysis temperature increased, 
inorganic ions such as SiO2, Ca, K, and Mg sintered and 
fused into inorganic minerals and alkali metals. At higher 
temperatures, the presence of K converts some Ca elements 
into silicates, which may lead to a decrease in CaCO3 
(Zhang et al. 2017b). The characteristic peaks of cellulose 
and hemicellulose appeared at 2θ = 15-20° (Feng et al. 
2009). During the charring of biochar, these characteristic 
peaks gradually widened, and their intensity decreased as 
the temperature increased. The charring process destroyed 
the microcrystalline structure of cellulose, and the volatile 
components continued to escape. At lower temperatures, the 
biochar made from rice straw lacked characteristic peaks of 
cellulose and was amorphous. The characteristic peaks at 26° 
and around 43° correspond to the (002) and (100) crystalline 
surfaces of graphite, reflecting the degree of graphitization. 

After charring, as the temperature increased, the 
diffraction peaks of the rice husk biochar shifted toward 

best passivation effect on Cd and Zn, reducing TCLP-Cd and 
TCLP-Zn by 25.81% and 36.13%, respectively. The W2(300) 
treatment demonstrated the best passivation effect on TCLP-
Pb, with a reduction rate of 51.62%. Overall, biochar with 
a size of 0.2-0.45 mm had the most significant passivation 
effect, significantly reducing the two effective forms of the 
three heavy metals.

Characterization and Analysis of Biochar and Soil 
Samples

X-ray diffraction analysis: According to the X-ray 
diffraction analysis, the minerals contained in the test soil 
mainly included quartz, feldspar, mica, zeolite, illite, and 
chlorite (Fig. 3). The surface of some minerals in the soil 
could adsorb and immobilize heavy metals, thereby reducing 
their mobility and impact on the environment (Miguel et al. 
2002, Li et al. 2007). In this study, the rice husk biochar 
primarily contained potassium salt (KCl), calcite (CaCO3), 
and quartz (SiO2). This finding is consistent with the research 
of Liu et al. (2017) and Zhong et al. (2019). The sharp 
diffraction peaks in the plots mainly represented inorganic 
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Fig. 2: Changes of TCLP-Cd, Pb, and Zn contents after different rice biochar treatments. 
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minerals in the soil could adsorb and immobilize heavy metals, thereby reducing their mobility and 
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primarily contained potassium salt (KCl), calcite (CaCO3), and quartz (SiO2). This finding is consistent 
with the research of Liu et al. (2017) and Zhong et al. (2019). The sharp diffraction peaks in the plots 
mainly represented inorganic crystals SiO2 (Zhong et al. 2019), CaCO3, and KCl. SiO2 corresponded to 
the highest diffraction peak, indicating that its content was greater than that of the other inorganic 
compounds. As the pyrolysis temperature increased, inorganic ions such as SiO2, Ca, K, and Mg 
sintered and fused into inorganic minerals and alkali metals. At higher temperatures, the presence of K 
converts some Ca elements into silicates, which may lead to a decrease in CaCO3 (Zhang et al. 2017b). 
The characteristic peaks of cellulose and hemicellulose appeared at 2θ = 15-20° (Feng et al. 2009). 
During the charring of biochar, these characteristic peaks gradually widened, and their intensity 
decreased as the temperature increased. The charring process destroyed the microcrystalline structure 
of cellulose, and the volatile components continued to escape. At lower temperatures, the biochar made 
from rice straw lacked characteristic peaks of cellulose and was amorphous. The characteristic peaks at 
26° and around 43° correspond to the (002) and (100) crystalline surfaces of graphite, reflecting the 
degree of graphitization.  

After charring, as the temperature increased, the diffraction peaks of the rice husk biochar shifted 
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higher theta angles. Due to further charring of the biomass, 
the aromaticity of carbon increased, and the stacking mode 
between aromatic lamellae tended to become more ordered. 
Therefore, biochar prepared at high temperatures had less 
volatile organic carbon and more aromatized carbon. The 
functional groups remaining on the carbon structure were 
more stable, enhancing the chemical stability of the biochar. 
This explains why biochar is suitable for the passivation of 
heavy metals in contaminated soil and benefits remediation 
(Lin et al. 2016, Ma 2019). Rice prefers Si and absorbs a large 
amount of Si during its life cycle. Therefore, rice husk is rich 
in Si, consistent with previous research (Liang et al. 2006, 
Wu & Gong 2010, Xiao et al. 2014). The broad half-peak of 
the diffraction indicated that the prepared biochar particles 
were small and rich in irregular pores, which helped increase 
the specific surface area of the material (Yu et al. 2019).

Swept surface electron microscopy analysis: The scanning 
electron microscope showed the images of rice husk biochar 

(Fig. 4). At different pyrolysis temperatures, all the images 
of biochar exhibited obvious pore structures. However, the 
degree of porosity varied. When the pyrolysis temperature 
was 300℃, the rice husk biochar was flaky without well-
developed pores. Instead, the pores were few and irregular, 
and the surface of the biochar was covered with granular 
material. When the temperature was raised to 400 or 500℃, 
the rice husk biochar had a more developed pore structure. 
The structure was evenly distributed with stable sized round 
pores with a smooth and flat surface. The biochar became 
lighter and thinner, which was good for the passivation and 
fixation of heavy metal pollutants.

Fourier infrared spectral analysis: The preparation of 
biochar by pyrolysis had four steps: water evaporation, 
transition, decomposition of organic matter, and charring. 
In this study, the rice biochar consisted of hemicellulose, 
cellulose, and lignin. The cracking temperature of different 
components varied. Hemicellulose could be cracked at low 

toward higher theta angles. Due to further charring of the biomass, the aromaticity of carbon increased, 
and the stacking mode between aromatic lamellae tended to become more ordered. Therefore, biochar 
prepared at high temperatures had less volatile organic carbon and more aromatized carbon. The 
functional groups remaining on the carbon structure were more stable, enhancing the chemical stability 
of the biochar. This explains why biochar is suitable for the passivation of heavy metals in contaminated 
soil and benefits remediation (Lin et al. 2016, Ma 2019). Rice prefers Si and absorbs a large amount of 
Si during its life cycle. Therefore, rice husk is rich in Si, consistent with previous research (Liang et al. 
2006, Wu & Gong 2010, Xiao et al. 2014). The broad half-peak of the diffraction indicated that the 
prepared biochar particles were small and rich in irregular pores, which helped increase the specific 
surface area of the material (Yu et al. 2019). 
. 

20 40 60 80

In
te

ns
ity

(a
.u

.)

CK    2θ/(°)

6

4

1

3
4

4
13

3

2

3

322
3

5

20 40 60 80

I
n
te

ns
it

y
(a

.u
.
)

Rice 300℃，0.2-0.45 mm  2θ/(°)

KCl

KCl

CaCO3

SiO2

CaCO3

CaCO3

KCl

 

20 40 60 80

In
te

ns
it

y
(a

.u
.)

Rice 400℃，0.2-0.45 mm  2θ/(°)

KCl

SiO2

CaCO3

KClCaCO3

CaCO3

KCl

20 40 60 80

In
te
n
s
it
y(
a.
u.
)

Rice 500℃，0.45-1 mm  2θ/(°)

SiO2

SiO2

CaCO3

KCl

KCl

CaCO3

CaCO3
CaCO3

 
1：Quartz (SiO2)，2：Feldspar (SiO2, Al2O3, K2O, Fe2O3, Na2O, CaO)，3：Mica (KAl2(AlSi3O10)(OH)2)，4：Zeolite 

(Na(AlSi2O6)·H2O, Ca(Al2Si3O10)·3H2O)，5：Illite (KAl2[(SiAl)4O10]·(OH)2·NH2O)，6：Chlorite 

(Y3[Z4O10](OH)2·Y3(OH)6) (Y: mainly represents Mg, Fe & Al；Z: mainly Si and Al) 

Fig. 3: XRD patterns of CK and three kinds of biochar. 

Swept surface electron microscopy analysis: The scanning electron microscope showed the images of 
rice husk biochar (Fig. 4). At different pyrolysis temperatures, all the images of biochar exhibited obvious 
pore structures. However, the degree of porosity varied. When the pyrolysis temperature was 300 ℃, the 
rice husk biochar was flaky without well-developed pores. Instead, the pores were few and irregular, and 
the surface of the biochar was covered with granular material. When the temperature was raised to 400 

1: Quartz (SiO2), 2: Feldspar (SiO2, Al2O3, K2O, Fe2O3, Na2O, CaO), 3: Mica (KAl2(AlSi3O10)(OH)2), 4: Zeolite (Na(AlSi2O6)·H2O, Ca(Al2Si3O10)·3H2O), 
5: Illite (KAl2[(SiAl)4O10]·(OH)2·NH2O), 6: Chlorite (Y3[Z4O10](OH)2·Y3(OH)6) (Y: mainly represents Mg, Fe & Al; Z: mainly Si and Al)

Fig. 3: XRD patterns of CK and three kinds of biochar.
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temperatures, and cellulose and lignin gradually started to 
decompose as the pyrolysis temperature increased (Jian et al. 
2015). From the analysis of IR spectra (Fig. 5), the surface 
of rice husk biochar contained functional groups such as 
carbonyl, hydroxyl, methylene, and aromatic rings (Zhu et al. 
2021). At 3440 cm-1, there was a broad and strong absorption 
peak. The absorption peak in this band can be explained 
by the hydrogen-bonded phenolic hydroxyl-OH stretching 
vibration. The effect of pyrolysis’ temperature effect on 
this absorption peak was not significantly obvious. At  
2939 cm-1, there was an absorption peak with lower intensity. 
This was caused by the asymmetric C-H stretching vibration 

of the aliphatic methylene CH2. The source of this functional 
group included aliphatic compounds, alicyclic compounds, 
and carbohydrates in organic matter. The weakening of the 
peak intensity of rice husk biochar at 400 and 500°C might 
be related to the decomposition of aliphatic-CH2 (Chun et al. 
2004). The functional groups at 1644 cm-1 were polycyclic 
aromatic hydrocarbons C =C and C=O (Que et al. 2018). 
The absorption peak functional group at 1428 cm-1 was 
methylene-CH2. The absorption peak functional group at 
1104 cm-1 was caused by cellulose or hemicellulose C-O-C 
(Keiluweit et al. 2010). In this study, the functional groups 
C=C, C=O, and C-H were higher in rice husk biochar at 

or 500 ℃, the rice husk biochar had a more developed pore structure. The structure was evenly distributed 
with stable sized round pores with a smooth and flat surface. The biochar became lighter and thinner, 
which was good for the passivation and fixation of heavy metal pollutants. 

 

 

 
Fig. 4: SEM image of W2(300), W2(400) and W3(500). 

Fourier infrared spectral analysis: The preparation of biochar by pyrolysis had four steps: water 
evaporation, transition, decomposition of organic matter, and charring. In this study, the rice biochar 
consisted of hemicellulose, cellulose, and lignin. The cracking temperature of different components 
varied. Hemicellulose could be cracked at low temperatures, and cellulose and lignin gradually started 
to decompose as the pyrolysis temperature increased (Jian et al. 2015). From the analysis of IR spectra 
(Fig. 5), the surface of rice husk biochar contained functional groups such as carbonyl, hydroxyl, 
methylene, and aromatic rings (Zhu et al. 2021). At 3440 cm-1, there was a broad and strong absorption 
peak. The absorption peak in this band can be explained by the hydrogen-bonded phenolic hydroxyl-OH 
stretching vibration. The effect of pyrolysis’ temperature effect on this absorption peak was not 
significantly obvious. At 2939 cm-1, there was an absorption peak with lower intensity. This was caused 
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300 °C and 400 °C. However, the original composition and 
structure in rice husk biochar were gradually decomposed at 
500 °C. High temperatures significantly reduced the number 
of functional groups. The oxygen-containing functional 
groups -OH and C=O could react with heavy metal ions 
(Chen et al. 2008, Torri & Fabbri 2014). The absorption 
peaks at 888 and 788 cm-1 were caused by the bending 
vibrations of the aromatic ring C-H. The absorption peaks 
of rice husk biochar increased with pyrolysis temperature, 
indicating that the aromatic rings were formed and the 
aromatization increased during the pyrolysis. This was 
consistent with the results of organic elemental analysis.

CONCLUSION 

	 1.	 Biochar had little effect on soil pH. Biochar with 
different particle sizes had variable effects on the soil’s 
CEC. Under W3(400) treatment, the CEC of soil became 
as high as 9.16 cmol.kg-1. W2(500) treatment achieved 
the best effect on the soil’s EC, which increased by 
466.21 μs.cm-1.

	 2.	 Rice husk biochar had a better passivation effect on 
DTPA-Pb compared to others. Under the W2(300) 
treatment, the content of DTPA-Pb was reduced by 
40.92%. When heavy metals were in a toxic leaching 
state, the biochar’s passivation effects were better for 
Pb and Zn than for Cd. The W2(400) treatment reduced 
the TCLP-Cd and TCLP-Zn contents by 25.81% and 
36.13%, respectively. The W2(300) treatment was the 
most effective for TCLP-Pb, reducing it by 51.62%. 
The medium-sized rice husk biochar, which was 0.2- 
0.45 mm, had the best passivation effect on all three 
heavy metals.

	 3.	 According to the characterization analysis, the minerals 
in the test soil included quartz, feldspar, mica, zeolite, 
illite, and chlorite. The rice husk biochar contained 
KCl, CaCO3, and SiO2, with SiO2 being more prevalent 
than the other inorganic compounds. Scanning electron 
microscope images showed that rice husk biochar at  
300°C was flaky, with an underdeveloped pore structure. 
As the pyrolysis temperature increased, the biochar 
became lighter and thinner, with more developed pores 
and smoother surfaces. The functional groups in the rice 
husk biochar included carbonyl, hydroxyl, methylene, 
and aromatic rings.

Future research should focus more on natural environment 
experiments to investigate the in situ remediation effects of 
biochar on polluted sites. The duration of passivation should 
be adjusted to measure the content of different forms of heavy 
metals at various time points. The dynamic changes in heavy 
metals over different time ranges should be explored. It is 
also recommended to study the relationship between biochar 
aging and its passivation effect.
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