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       ABSTRACT
This detailed study assessed heavy metal contamination of sediments/soil near central 
India’s largest copper mining area using 38 sampling sites within 10 km of the mine using 
atomic absorption spectroscopy. This study utilized multivariate pattern recognition methods, 
namely hierarchical clustering analysis (HCA) and principal component analysis (PCA), for 
source identification. Twelve parameters, i.e., copper (Cu), manganese (Mn), cobalt (Co), 
zinc (Zn), nickel (Ni), lead (Pb), organic matter (OM), cation exchange capacity (CEC), 
soil pH, distance (D), and elevation (E) were analyzed. The hierarchical cluster analysis 
(HCA) was used to analyze the sample sites with similar metal contamination and principal 
component analysis (PCA) was used to analyze the relationship between the parameters 
as well as to identify sources of heavy metal pollution. Three major pollution hotspots 
were detected by AHC and were classified as unpolluted/low pollution sites (UPS: mean 
concentration factor of 1.35 for Cu), highly polluted sites (HPS: mean concentration factor of 
22 for Cu), and extremely polluted sites (EPS: mean concentration factor of 74 for Cu). PCA 
revealed three hidden factors/components, namely PC1 (explaining 38% of the variability), 
PC2 (18% of the variability), and PC3 (14% of the variability). Metals showed strong 
positive loading in PC1, explaining the highest variability. The mean content of Cu in soil/
sediment samples was 502.526 mg/kg. The mean copper content was 10 times higher than 
the natural crustal value of 45mg/kg, indicating severe pollution in several sites around the 
study area. Mapping of copper contamination was conducted to reveal the spatial distribution 
of copper contamination using QGIS. This study exposes the heavy metal contamination 
level in surface sediments/soil and the effectiveness of pattern recognition techniques for 
the assessment of multivariate datasets in discerning spatial disparities and identifying the 
contamination causes.

INTRODUCTION

The soil can store anthropogenic and natural contaminants. 
Under some conditions, soils can discharge hazardous 
compounds into the environment, contaminating groundwater 
food chains (Lu & Bai 2010, C. S. C. Wong et al. 2006). 
Heavy metals like Pb, Cu, Co, Ni, and others were found 
at elevated amounts in soils in numerous cities worldwide 
(Ajmone-Marsan & Biasioli 2010, Biasioli et al. 2006, Chen 
et al. 2005, Chirenje et al. 2004, Jarva et al. 2009, Lee et al. 
2006). Location and concentration data alone cannot uncover 
hidden heavy metal linkages and distribution patterns. 
Univariate statistics such as mean, median, mode, etc., 
cannot discern spatial patterns in soil/sediment heavy metal 
distribution. Spatial impact studies use multivariate statistics 
such as Agglomerative Hierarchal Clustering (AHC) and 

Principal Component Analysis (PCA). These methods can be 
used as suitable tools to identify the sources of contamination 
(Facchinelli et al. 2001, Li et al. 2013, Tariq et al. 2008). 
Mining of minerals causes the removal of rock located beneath 
the earth’s surface. When the mined mineral is brought to the 
surface, the minerals react with air and water (in the form of 
moisture), leading to various chemical interactions. If the rock 
mass contains sulfide minerals like iron pyrite (FeS2), it can 
react with oxygen and water to produce an acidic discharge 
known as Acidic Mine Drainage (AMD). Large open pit 
porphyry copper mines produce copper sulfides (Gordon et al. 
2006, Greenwood & Earnshaw 1984). Copper ore mining sites 
with sulfide content can, therefore, produce AMD (Shukla et 
al. 2018). Heavy metals in sediments, soil, and water around 
mining operations come from acid mine drainage (Meadows & 
Carpenter 1997, Swarnakar et al. 2023). This study investigates 
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heavy metal contamination levels in surface sediments/soil 
and the effectiveness of pattern recognition techniques for 
assessing and identifying the contamination causes around 
mine waste dumps.  

STUDY AREA

The study area is a large central Indian mining project. It has 
40% of India’s copper reserves (Pandey et al. 2007). The 
study area covers an open-cast mine and an ore processing 
plant with two sites for the disposal of waste, namely a mines 
waste dump (MWD) and tailing storage facility (TSF), as 
shown in Fig. 1.  Chalcopyrite (CuFeS2) with a grade of 1% 
copper is the main ore mined. The open pit is 2200 meters 
in length and 500 m in width (Tiwari et al. 2017). The study 
region spans latitude 21.9406920 N to 22.0836800 N and 
longitude 80.6567170 E to 80.7607280 E. Fig. 2 shows two 
perennial rivers flowing in the neighborhood of the study area 
known as ‘Banjar’ River located in the north-east quadrant of 
the study area and ‘Son’ river located in the southern quadrant 
of the study area with sampling sites. Digital elevation model 
demarcated both the river basins and revealed that there was 
no cross contamination as the basins showed no intersection 
between the two rivers. 

MATERIALS AND METHODS

Sample Collection and Analysis

A Digital Elevation Model (DEM) was created using Shuttle 
Radar Topography Mission (SRTM) data files (N21E080.
SRTMGL1.hgt and N22E080.SRTMGL1.hgt) obtained 
from NASA’s Earthdata portal. This DEM was developed 
using QGIS software version LTR 3.10. Sampling locations 
for rivers and tributaries were chosen based on their natural 
topographic flow. Additionally, samples from the roadside 
or exposed soil were collected to analyze any additional 
pollution source present in the study area Fig. 2 & 3. In 

total, 38 samples were collected in duplicate at a depth of 
10 cm from various river and tributary points. To prevent 
contamination, each sample was collected using a plastic tool 
and then sealed in a marked polypropylene Ziploc bag. The 
precise locations of these samples were recorded with GPS. 
Any pebbles, rock fragments, or plant matter were removed 
from the samples. Subsequently, the samples were pulverized 
using an agate mortar, finely crushed, sifted through a 200-
mesh screen, and stored in polyethylene containers that had 
been pre-cleaned with a mixture of nitric acid and distilled 
water in a 3:1 ratio.

Each sample was dried to constant weight at 108°C. 
After drying, 1g of each sample was digested according to 
the technique recommended by the US EPA (Environmental 
Protection Agency, 1996). The leachate analysis was done 
using an Atomic Absorption Spectrophotometer (AAS, 
model AA8000 FG, Lab India). The samples were analyzed 
for Copper (Cu), Manganese (Mn), Cobalt (Co), Zinc (Zn), 
Nickel (Ni), Lead (Pb), and Iron (Fe). Soil pH, CEC, and 
OM were determined using standard methods (BIS 2720-22 
2020, BIS 2720-24 2020, BIS 2720-26 2021). 
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Fig. 2: SRTM digital elevation model clipped to study area and drainage channels. 
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Analysis of Data Set

The data set generated using the methodology mentioned in 
previous section was subjected to statistical treatment. Since 
different metals have different crustal abundance, therefore 
Contamination Factor (CF) was used instead of the actual 
concentration. It is defined as follows:

 

The data set generated using the methodology mentioned in section 2.1 was subjected to statistical 

treatment. Since different metals have different crustal abundance, therefore Contamination Factor (CF) 

was used instead of the actual concentration. It is defined as follows: 
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𝐶𝐶����������

�                                                                                                                   …(1) 

Where Ci is the contamination level of the metal ‘i’ under study, and C background is the background occurrence 

level of the same metal ‘i’(Varol 2011). The parameters with larger concentrations heavily skewed the 

analysis results, and the order and range of concentrations of the several physicochemical characteristics 

varied significantly, suggesting that the dataset is not distributed normally. The Shapiro-Wilks (S-W) test 

was used to test for normality, and it was found that, except for Zn, all metals failed the S-W normality test. 

Therefore, the Box-Cox (B-C) transformation of the data matrix was conducted to reduce the impact of 

outliers, and the dataset that had been B-C transformed provided the best match for the S-W normality test 

(Box & Cox 1964). The S-W test revealed that, with 95% confidence, all the variables for the B-C 

converted data were normally distributed. Kaiser-Meyer-Olkin (KMO) and Bartlett's tests assessed data 

appropriateness for PCA. KMO measures sampling adequacy by estimating latent factor variance in 

variables. Bartlett's sphericity test determines if the correlation matrix is an identity matrix, suggesting 

unrelated variables. The data analysis was performed in MS Excel® with XLSTAT® (Addinsoft 2023) 

add-in.  

Cluster analysis: CA's fundamental goal is to organize data sets into clusters that are related yet distinct 

(Razmkhah et al. 2010). AHC is a bottom-up clustering algorithm. The contamination factor dataset was 

analyzed using Ward's AHC approach (Ward 1963) to find multivariate commonalities between sampling 

sites at different sampling points. Numerous researchers have reported using the CA approach to evaluate 

the quality of water (Astel et al. 2007, Hussain et al. 2008, Singh et al. 2005). Similarly, numerous 

studies have utilized AHC on soil data as well  (Dragović et al. 2008, Lamontagne & Camire 1987, 

Micó et al. 2006, Navas & Machı́n 2002, Pîrnău et al. 2020, Tume et al. 2006).  
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Fig. 3: (a) to (d) Affected area with green-colored deposits over soil surface adjoining a mine waste dump.
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Principal component analysis: PCA minimizes data 
variability to reveal patterns in the dataset and emphasize 
dissimilarities and reduction in variables. The eigenvalues 
and eigenvectors in PCA are extracted from the covariance 
matrix, which also reflects the dispersion of the observed 
parameters. When we multiply the initially correlated 
variables by a vector of coefficients (loadings or scores), 
we produce new orthogonal variables called principal 
components (PCs). The original variables are combined in a 
weighted linear fashion by the PCs (Wunderlin et al. 2001). 
Projecting data onto a new axis creates a new variable from 
a PC and an eigenvector. Although there are numerous PCs 
used as original variables, PCs that provide details on the 
most important traits, summarize the entire data set, and 
enable data reduction with little information loss are selected 
(Helena et al. 2000).  

RESULTS AND DISCUSSION

Agglomerative Hierarchal Clustering of Heavy Metals 
Dataset

The basic statistics of heavy metals contamination levels 
(mg.kg-1) and their respective contamination factor (CF) are 
provided in Table 1 & Table 2. Copper and Manganese had 
a greater mean and standard deviation than the other heavy 
metals, whereas Zn had the lowest standard deviation. Cu’s 
greater mean concentration and high standard deviation 
suggest abnormal distribution suggesting a multivariate 
statistical study. The background concentration for Cu, Mn, 
Co, Zn, Ni, and Pb is provided in  Table 3.

The contamination factor data was subjected to the AHC 
routine available in XLSTAT®. The AHC algorithm clustered 
data using Euclidean distance for Dissimilarity and Ward’s 
method for Agglomeration. This resulted in the clustering of 
the data set into three distinct clusters/groups (Fig. 4). A total 
of 38 sample locations were grouped into three clusters: 25 
unpolluted/low pollution sites (UPS), 11 highly polluted sites 
(HPS) and 2 extreme pollution sites (EPS). CA indicates that 
one sampling point per cluster is sufficient to represent the 
soil quality of the whole cluster spatially.  The central sample 
sites for each cluster are shown in Table 4.  

Table 1: Basic statistics of heavy metals concentration in the study area.

Cu [mg.kg-1] Mn [mg.kg-1] Co [mg.kg-1] Zn [mg.kg-1] Ni [mg.kg-1] Pb [mg.kg-1]

Mean 502.526 702.00 24.84 24.21 28.76 23.55

Median 83.5 395.00 23.25 23.00 24.00 19.50

Min 5 10.00 7.00 5.00 7.00 5.00

Max 3408 5030.00 55.00 50.00 99.00 97.00

Std dev. (n-1) 846.809 898.23 13.20 9.67 18.47 17.23

Table 2: Sample-wise contamination factors in the study area.

Samples CF(Cu) CF(Mn) CF(Co) CF(Zn) CF(Ni) CF(Pb)

s1 0.11 0.43 0.42 0.21 0.32 0.65

s2 0.11 0.43 0.53 0.20 0.30 0.50

s6 0.27 0.72 1.05 0.31 0.34 0.80

s7 0.27 0.53 1.50 0.16 0.26 0.45

s8 0.29 0.65 1.11 0.18 0.20 0.40

s11 0.51 0.71 1.03 0.40 0.40 0.65

s14 1.24 1.00 1.58 0.32 0.94 1.60

s15 1.33 0.13 1.11 0.20 0.62 1.30

s16 1.27 0.83 0.71 0.14 0.40 0.85

s17 1.33 0.12 0.39 0.05 0.14 0.25

s18 1.42 0.18 1.97 0.25 0.98 1.55

s19 1.44 0.24 0.63 0.17 0.40 0.70

s21 2.40 0.23 0.39 0.08 0.14 0.25

s22 2.76 0.29 1.50 0.23 0.72 2.35

s23 16.07 1.30 1.66 0.29 0.78 1.10

s24 3.69 2.57 2.89 0.29 1.98 2.45

s26 5.73 0.54 0.87 0.27 0.70 1.45

s27 17.53 1.19 1.50 0.23 1.16 1.80

s28 9.82 0.30 0.79 0.11 0.22 0.40

s34 27.11 2.68 2.68 0.24 1.14 1.80

s35 33.07 1.83 1.11 0.23 0.68 1.65

s36 51.33 1.44 2.61 0.24 0.56 1.45

s37 72.29 0.45 1.58 0.48 0.54 0.90

s38 75.73 0.25 0.79 0.53 0.78 1.55

s3 0.11 0.43 0.74 0.21 0.30 0.30

s4 0.13 0.50 0.58 0.19 0.22 0.35

s5 0.22 0.16 0.37 0.41 0.34 0.75

s9 0.31 0.45 1.18 0.35 0.30 0.65

s10 0.44 0.48 1.50 0.26 0.36 0.70

s12 0.80 1.28 1.82 0.29 1.00 1.40

s13 1.11 1.06 1.97 0.31 0.90 1.15

s20 2.27 0.01 0.71 0.14 0.22 0.75

s25 4.09 0.08 1.26 0.23 0.52 2.00

s29 10.87 0.42 1.42 0.26 0.70 1.05

s30 12.51 0.45 1.34 0.22 0.44 1.55

s31 20.29 1.06 2.68 0.26 0.76 4.85

s32 21.04 1.07 2.45 0.41 0.34 0.45

s33 23.02 0.02 1.26 0.32 0.76 1.95
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abundance and Sample 37 represents cluster EPS with CFCu 
of 72.29 indicating extremely high copper accumulation in 
cluster C3). The summary of each cluster is presented in 
Table 5.

Sample s16 represents cluster UPS (unpolluted sample 
sites with all CFs close to 1.00), Sample 33 represents 
cluster HPS (highly polluted sample sites with CFCu of 
23.02, meaning Cu concentration was 23 times the crustal 

Table 3: Background concentration of metals in the study.

Metal Background concentration 
[mg.kg-1]

Metal Background concentration 
[mg.kg-1]

Copper (a) 45 Zinc (a) 95

Manganese (a) 850 Nickel (b) 50

Cobalt (a) 19 Lead (a) 20

(a): (Turekian & Wedepohl 1961), (b) (HS1191/HS1191: Nickel 
Nutrition in Plants)

Table 4: Central sample for each cluster.

Cluster CF(Cu) CF(Mn) CF(Co) CF(Zn) CF(Ni) CF(Pb)

1 (s16) 1.270 0.830 0.710 0.140 0.400 0.850

2 (s33) 23.020 0.020 1.260 0.320 0.760 1.950

3 (s37) 72.290 0.450 1.580 0.480 0.540 0.900

Table 4: Central sample size for each cluster. 

Cluster CF(Cu) CF(Mn) CF(Co) CF(Zn) CF(Ni) CF(Pb) 
1 (s16) 1.270 0.830 0.710 0.140 0.400 0.850 
2 (s33) 23.020 0.020 1.260 0.320 0.760 1.950 
3 (s37) 72.290 0.450 1.580 0.480 0.540 0.900 

Sample s16 represents cluster UPS (unpolluted sample sites with all CFs close to 1.00), Sample 33 

represents cluster HPS (highly polluted sample sites with CFCu of 23.02, meaning Cu concentration was 23 

times the crustal abundance and Sample 37 represents cluster EPS with CFCu of 72.29 indicating extremely 

high copper accumulation in cluster C3). The summary of each cluster is presented in Table 5. 

 
Fig. 4: Dendrogram showing spatial similarities of sampling sites. 

Table 5: Basic statics of each cluster. 
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Mean 1.35 0.56 1.11 0.23 0.52 0.97 

Standard deviation (n-1) 1.44 0.53 0.62 0.09 0.40 0.64 
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HPS) 
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Mean 22.06 1.07 1.77 0.26 0.69 1.64 

Standard deviation (n-1) 11.96 0.77 0.70 0.07 0.29 1.19 

Cluster C3 
(Extremely 

Polluted 
Samples Sites) 

No. of Samples 2 
Mean 74.01 0.35 1.19 0.51 0.66 1.23 

Standard deviation (n-1) 2.43 0.14 0.56 0.04 0.17 0.46 
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Fig. 4: Dendrogram showing spatial similarities of sampling sites.

Table 5: Basic statics of each cluster.

Statistic CF(Cu) CF(Mn) CF(Co) CF(Zn) CF(Ni) CF(Pb)

Cluster C1 (Unpolluted 
Sample Sites – UPS)

No. of Samples 25

Mean 1.35 0.56 1.11 0.23 0.52 0.97

Standard deviation (n-1) 1.44 0.53 0.62 0.09 0.40 0.64

Cluster C2 (Highly Polluted 
Sample Site – HPS)

No. of Samples 11

Mean 22.06 1.07 1.77 0.26 0.69 1.64

Standard deviation (n-1) 11.96 0.77 0.70 0.07 0.29 1.19

Cluster C3
(Extremely Polluted Samples 
Sites)

No. of Samples 2

Mean 74.01 0.35 1.19 0.51 0.66 1.23

Standard deviation (n-1) 2.43 0.14 0.56 0.04 0.17 0.46
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According to spatial similarity, three clusters  
(Table 4 & Fig. 4) are formed with increasing order of metal 
contamination. The UPS cluster (s1, s2, s6, s7, s8, s11, s14, 
s15, s16, s17, s18, s19, s21, s22, s24, s26, s3, s4, s5, s9, s10, 
s12, s13, s20, s25) contains points which are unaffected by 
the mining waste dump activity because of distance from 
the mine site. The HPS cluster (s23, s27, s28, s34, s35, s36, 
s29, s30, s31, s32, s33) contains sample locations that are 
located near the mine site and receive contamination via the 
drainage network present in the study area. The EPS cluster 
contains two locations, namely, s37 and s38, with extremely 
high copper content because these two locations are adjacent 
to the mine waste dump (Fig. 2). It can be observed that 
AHC has segregated the spatial observations in data. The 
clusters HPS & EPS are polluted sites in the study area and 
may require attention. 

Principal Component Analysis of the Dataset

With the help of a few independent variables, PCA, a potent 

pattern recognition approach, can be used to explain the 
variation of a large dataset made up of many intercorrelated 
variables. (Ramadan et al. 2000). As demarcated by HCA, the 
effects of MWD and TSF drainages are critically evaluated 
through PCA. To evaluate the effects of mining waste dumps 
(MWD) and tailing storage facilities (TSF), respectively, 
PCA was used on contamination factor data sets.  

Cluster HPS & Cluster EPS served as markers for 
polluted sites. The PCA was conducted on two data sets. 
The first dataset included all the clusters named as MWISP 
dataset (Mine Waste Including Seepage Points), and the 
second dataset was created by excluding the HPS and EPS 
clusters MWESP dataset (Mine Waste Excluding Seepage 
Points). Results of KMO and Bartlett’s test are provided in 
Table 6.

PCA-spatial impact studies on cluster MWISP (mine 
waste including seepage points): PCA was applied to 
the MWISP dataset, which contains all the sample points 
collected in the study area. The scree plot indicated 3 PCs 

Table 6: Results of KMO and Bartlett’s test.

Bartlett’s sphericity Test
(p-Value < 0.05)

Kaiser-Meyer-Olkin measure of sampling adequacy (adequate KMO > 0.500)

MWISP 
Dataset

Chi-square (Observed value) 248.287

Chi-square (Critical value) 73.311

DF 55

p-value (Two-tailed) <0.0001

alpha 0.050

KMO = 0.628 (Test Passed)

MWESP 
Dataset

Chi-square (Observed value) 168.134

Chi-square (Critical value) 73.311

DF 55

p-value (Two-tailed) <0.0001

alpha 0.050

KMO = 0.541 (Test Passed)

MWESP 
Dataset 

Chi-square (Observed value) 168.134 
Chi-square (Critical value) 73.311 

DF 55 
p-value (Two-tailed) <0.0001 

alpha 0.050 
 

KMO = 0.541 (Test Passed) 

PCA-spatial impact studies on cluster MWISP (mine waste including seepage points): PCA was 
applied to the MWISP dataset, which contains all the sample points collected in the study area. The scree 
plot indicated 3 PCs explaining 70% of the total variance in data, although 4 PCs had eigenvalues more 
than 1.0. Fig. 5 shows the scree plot of PCs generated by the PCA method on the MWISP dataset. 

 
Fig. 5: Scree plot for PCA on MWISP data set. 
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Fig. 5: Scree plot for PCA on MWISP data set.
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explaining 70% of the total variance in data, although 4 
PCs had eigenvalues more than 1.0. Fig. 5 shows the scree 
plot of PCs generated by the PCA method on the MWISP  
dataset.

Table 7 & Fig. 6 provides the factor loadings for the 
PCA analysis on different Principal Components (PCs). In 
order to be classified as “strong,” “moderate,” and “weak,” 
loadings must correspond to absolute loading levels of 

>0.75, 0.75-0.50, and 0.50-0.30, respectively, according to 
((Liu et al. 2003).

The loading plots demonstrated the association between 
the parameters; the closer the endpoint of variables, the more 
strongly the values were correlated. (see Fig. 6). It can be 
observed from Table 7 that the loading for Cu (0.773), Co 
(0.779), Ni (0.864), and Pb (0.837) in PC1 (explains 37.4 
% variance) was strongly positive (factors loadings > 0.75) 
and for Zn (0.526) and Mn (0.527) the factor loading was 
moderately positive. It lies between 0.50 – 0.75. The factor 
loading for the distance(D) parameter was moderately 
negative (-0.716). This can be explained by the fact that the 
study area is located near an eco-sensitive zone, and no other 
means of heavy metal pollution are present. Therefore, being 
the only source in the study area, the pollution decreases 
as the distance from the mine site increases. Also, Table 2 
shows that the contamination factor is highest for copper 
with a mean of 11.17, whereas CF for Mn, Co, Zn, Ni, and 
Pb show a mean value of 0.70, 1.31, 0.25, 0.58 & 1.18, 
respectively. Indicating high copper contamination in the 
samples. Therefore, copper dominates over other elements 
in the polluted samples, and it may also explain the relatively 
lower loading for PCs of Mn and Zn, which are essential 
soil elements.

PC1 explains that heavy metal pollution has occurred in 
the study area with copper contamination to a high degree. 

Table 7: Factor loadings for the MWISP dataset (loadings magnitude>0.5 
highlighted in bold).

PC1 PC2 PC3

CF(Cu) 0.773 -0.540 -0.013

CF(Mn) 0.526 0.481 0.341

CF(Co) 0.779 0.189 0.313

CF(Zn) 0.527 0.223 -0.499

CF(Ni) 0.864 0.247 0.130

CF(Pb) 0.837 0.006 0.068

OM -0.333 0.559 -0.637

CEC 0.147 0.834 0.003

pH -0.331 0.367 0.666

distance -0.716 0.332 0.206

elevation 0.394 0.265 -0.415

The loading plots demonstrated the association between the parameters; the closer the endpoint of variables, 

the more strongly the values were correlated. (see Fig. 6). It can be observed from Table 7 that the loading 

for Cu (0.773), Co (0.779), Ni (0.864), and Pb (0.837) in PC1 (explains 37.4 % variance) was strongly 

positive (factors loadings > 0.75) and for Zn (0.526) and Mn (0.527) the factor loading was moderately 

positive. It lies between 0.50 – 0.75. The factor loading for the distance(D) parameter was moderately 

negative (-0.716). This can be explained by the fact that the study area is located near an eco-sensitive zone, 

and no other means of heavy metal pollution are present. Therefore, being the only source in the study area, 

the pollution decreases as the distance from the mine site increases. Also, Table 2 shows that the 

contamination factor is highest for copper with a mean of 11.17, whereas CF for Mn, Co, Zn, Ni, and Pb 

show a mean value of 0.70, 1.31, 0.25, 0.58 & 1.18, respectively. Indicating high copper contamination in 

the samples. Therefore, copper dominates over other elements in the polluted samples, and it may also 

explain the relatively lower loading for PCs of Mn and Zn, which are essential soil elements. 

 
Fig. 6: Loading plot of PCA on MWISP dataset. 
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Soil pH is negatively correlated with the metal content 
indicating that the acidic discharge for mine waste dump 
and tailing storage facility has high metallic content.  PC2 
explains 18.12% of the variance in the data. It exhibits 
moderate negative loading of Cu (-0.540), whereas Mn 
(0.481), Co (0.189), Zn (0.223), Ni (0.247), and Pb (0.006) 
had low/weak factor loadings. OM (0.559) and CEC (0.834) 
have moderate and strong positive loading, respectively. The 
capacity of a particle to exchange positive bases in response 
to its surroundings is known as the CEC. From the surfaces 
of clay minerals and organic materials, cations can swap 
for another positively charged ion (Aprile & Lorandi 2012). 
Therefore, the presence of OM can increase the CEC of soil. 
In PC2, negative loading of Cu with positive loading of 

OM and CEC indicates that acidic discharge from the mine 
may deplete the OM initially present in the soil and, in turn, 
accumulate copper in the soil matrix. 

The PCA analysis can delineate the process of soil 
degradation by acidic mine drainage. Initially, fertile soil 
with high OM is attacked by the acidic discharge consuming 
the OM. Thus, the pH value of the discharged solution rises, 
which in turn precipitates heavy metal in the soil. PC3 
explains 14% of the variance in the data, with pH (0.666) 
and OM (-0.637) showing moderate positive and negative 
loadings. By releasing hydrogen ions associated with 
organic anions or by nitrifying in an open system, organic 
matter typically reduces soil pH (Porter 1980). The biplot 
of PC1 and PC2 with sample data and parameters provides 

 
Fig. 7: Biplot of PCs with Sample Locations. 

PCA-spatial impact studies on MWESP (mine waste excluding seepage points): PCA was conducted 
on a dataset excluding the seepage points, namely MWESP (Mine Waste Excluding Seepage Points). The 
scree plot indicated 3 PCs explaining 70% of the total variance in data, although 4 PCs had eigenvalues 
more than 1.0. Fig. 8 shows the scree plot of PCs generated by the PCA method on the MWESP dataset. 

 
Fig. 8: Scree plot of PCs. 
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a spatial distribution of heavy metals in the study area  
(Fig. 7).

PCA-spatial impact studies on MWESP (mine waste 
excluding seepage points): PCA was conducted on a dataset 

excluding the seepage points, namely MWESP (Mine Waste 
Excluding Seepage Points). The scree plot indicated 3 PCs 
explaining 70% of the total variance in data, although 4 PCs 
had eigenvalues more than 1.0. Fig. 8 shows the scree plot of 
PCs generated by the PCA method on the MWESP dataset.

Table 8 provides the factor loadings of PCs after PCA 
analysis on the MWESP dataset. It can be observed that 
Copper had a strong positive loading of 0.773 in PC1 of 
the MWISP dataset, whereas it falls even below 0.5 to 
0.441 in PC1 of the MWESP dataset. This indicates that 
sample locations directly receive AMD drainage emanating 
from mine waste dumps and tailing storage facilities. 
AMD contains Copper and these locations are affected 
by it. The dataset MWESP contains unpolluted or very 
low contamination sites; therefore, typical soil behavior is 
observed with CEC-linked metal content in the soil with a 
moderate positive loading of 0.589 in PC1. 

PC2 explains 21% of the variance in the dataset, where 
OM is positively correlated with Zn and Mn and a strongly 
negative correlation with Cu. High OM loadings mean un-

Table 8: Factor loadings for the MWESP dataset (loadings >0.5 highlighted 
in bold).

 F1 F2 F3

CF(Cu) 0.441 -0.820 0.181

CF(Mn) 0.609 0.462 -0.250

CF(Co) 0.833 -0.066 -0.286

CF(Zn) 0.612 0.505 -0.055

CF(Ni) 0.933 -0.114 -0.195

CF(Pb) 0.844 -0.321 -0.088

OM 0.005 0.792 0.414

CEC 0.589 0.491 0.270

pH 0.070 0.128 -0.544

distance -0.360 0.418 -0.639

elevation 0.364 0.145 0.680

 
Fig. 9: Spatial map of copper contamination factor using inverse distance weighing method. 
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disturb soil with positive correlation with essential elements 
like Zn, Mn and Co. PC3 explains 14% of the variance 
in data with moderate negative loading of pH (-0.544), 
Distance (-0.639) and moderate positive loading of elevation 
(0.680). The negative correlation between elevation and pH 
is because the mining area is located at a relatively higher 
elevation; therefore, soil quality near the mine site is acidic 
due to the impact of acidic discharge by the mine waste  
sites.  

 Spatial Mapping of Copper Contamination Using 
Geostatistical Inverse Distance Weighing Method

The Inverse Distance Weighting (IDW) method is a spatial 
analysis and geo-statistics technique primarily used for 
interpolation. IDW is based on the premise that spatial 
entities that are close to each other are more alike than those 
further apart (Shepard 1968). The general formula for IDW 
is as follows:

 

𝑍𝑍p =  
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�� ����

���
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��
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���

  

Here, Zp is the estimated value at point (p), Zi is the known value at the (i)-th point, (di) is the distance 

between the point (i) and (p), and (p) is a power parameter that dictates the rate at which influence decreases 

with distance. The distance is typically calculated using Euclidean distance, though other distance metrics 

can be used. IDW is employed in various fields such as meteorology, geology, agriculture, and 

environmental science for interpolating data like temperature, mineral concentrations, and pollution levels. 

The copper contamination is shown in the red-shaded region in Fig. 9. 

A spatial map of copper contamination was generated using the Inverse Distance Weighing method in QGIS 

software. It can be observed that a significant elevation of copper content is present in the vicinity of the 

Mine Waste Dump and Tailing Storage Facility within 1.25 kilometers of waste sites in the study area. 

 Here, Zp is the estimated value at point (p), Zi is the 
known value at the (i)-th point, (di) is the distance between 
the point (i) and (p), and (p) is a power parameter that dictates 
the rate at which influence decreases with distance. The 
distance is typically calculated using Euclidean distance, 
though other distance metrics can be used. IDW is employed 
in various fields such as meteorology, geology, agriculture, 
and environmental science for interpolating data like 
temperature, mineral concentrations, and pollution levels. 
The copper contamination is shown in the red-shaded region 
in Fig. 9.

A spatial map of copper contamination was generated 
using the Inverse Distance Weighing method in QGIS 
software. It can be observed that a significant elevation of 
copper content is present in the vicinity of the Mine Waste 
Dump and Tailing Storage Facility within 1.25 kilometers 
of waste sites in the study area.

CONCLUSIONS

The study revealed that 13 out of the 38 samples (HPS & 
EPS Clusters) showed signs of contamination however, it 
is contained to flow paths. The soil samples not located 
on the flow paths indicated little to no contamination. The 
contaminated sites are situated along the drainage routes 
for AMD seepage emanating from the two mine waste 
sites (MWD & TSF), indicating that such flow paths are 
particularly vulnerable to Acid Mine Drainage (AMD) 
effects.

This study examined how mine waste dumps/storages 
and drainage from tailing storage facilities affected surface 
soil/sediments using multivariate statistical approaches. 
PCA and HCA were used to evaluate spatial variation in 
the complicated data. AHC categorization found three 
statistically significant soil heavy metal clusters. The PCA 
analysis between MWISP and MWESP datasets shows 
that excluding seepage spots from mining waste dumps 
and tailing storage facilities reduces pollution throughout 
the study area. PCA found several correlations: (1) Heavy 
metal content returns to normal with an increase in distance 
from the mining site. (2) Copper dominates other elements 
in polluted samples and lowers PC loadings of soil elements 
such as Mn and Zn. (3) Acidic mine discharge may deplete 
soil OM and increase soil matrix copper by precipitation and 
mechanical deposition. PCA analysis shows how acidic mine 
drainage degrades soil quality. The acidic discharge attacks 
fertile soil with high OM, consuming it and raising the pH, 
which precipitates heavy metals in the soil. Multivariate 
statistical methods helped analyze complicated data and 
understand their spatial variance by eliminating redundant 
data variables. 

The TSF and MWD were identified as probable AMD 
sites during the field survey; therefore, mine waste is an 
environmental hazard and must be taken seriously. The 
majority of heavy metal accumulation associated with Acid 
Mine Drainage (AMD) in the study area was attributed to 
the Tailings Storage Facility (TSF) and Mine Waste Dumps 
(MWD). It is essential to segregate these areas from nearby 
drainage systems and ensure that their discharge is confined 
within the boundary of the mine site. 
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