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ABSTRACT

The objective of the paper is to solve the problems of groundwater using partial differential equation 
(PDE). The finite element method is one of the most important solutions to the problems, which is applied 
to obtain the approximate solution of functions. The paper has applied the toolbox method to solve the 
problems of groundwater in the engineering of the planar two-dimensional (2D) steady flow and the 
planar 2D unsteady flow. In addition, the planar 2D steady flow includes the specific problems of fully 
penetrating well with the preset depth of the confined aquifer and the steady flow of the unconfined aquifer. 
Besides, the PDE toolbox has been applied to solve the practical groundwater problems in engineering, 
the results have shown that in terms of solving the groundwater problems, the MATLAB PDE toolbox is 
more convenient, simple, and accurate compared with the method of directly programming the original 
program. Therefore, in case of problems that cannot be solved by the graphical user interface of the 
PDE toolbox, the command functions in the MATLAB toolbox could be applied to perform numerical 
calculations on the problems.  

INTRODUCTION

In recent years, the significant development of the science 
and technology and the agriculture and industry, the continual 
expansion of cities, the rapid growth of population, and the 
massive pollution and waste of water resources have caused 
the continuous decrease of groundwater level, leading to 
the ever-reducing water resources for human consumption; 
consequently, water supply crises at different levels have 
appeared all around the world (Augeraud-Véron et al. 2017). 
Besides, as more mines are mined, the groundwater resources 
are also reduced. With the occurrence of the underground 
sewage incident brewed by a company in Weifang City, 
Shandong Province, China, people are more concerned about 
groundwater pollution (Wang & Gao 2017). According to 
national surveys, given the serious groundwater pollution, 
the situation of groundwater pollution has become very se-
rious, and the speed of water pollution has been increasing. 
Being an important natural water resource, groundwater is 
closely related to the daily lives of human beings; it is the 
only water supply in some cases (Meng et al. 2017, Nnolim 
2017). Therefore, the rational development and utilization 
of groundwater resource have become a problem that must 
be solved at present.

Currently, the mathematical models of more and more 
engineering and scientific problems could be classified as the 
determining solution of partial differential equation (PDE) 
(Bo et al. 2018). The processes of solving the determining 

solutions of PDE are relatively complicated; the research 
on numerical methods of PDE has become the primary re-
searching directions of PDE, as well as the core content of 
engineering and scientific calculations.

The partial differential equation toolbox (PDE toolbox) 
software has provided the researchers with a practical work-
ing environment and simple solution methods. The toolbox 
software is specially designed for both beginners and senior 
users (Wei et al. 2017). There are two applications of the 
toolbox software on PDE-associated problems: one is the 
direct application of the graphical user interface (GUI) in 
the PDE toolbox software. Enter “pdctool” on the command 
line of the MATLAB window and run it (Abdelrahman et al. 
2017). The graphical user interface of the PDE toolbox would 
be automatically generated, which is a separate graphical 
environment for solving problems with partial differential 
equations (Martelloni et al. 2017). Common applications 
could use specific physical conditions rather than abstract 
coefficients. The utilization of the pdctool requires no math-
ematical knowledge of MATLAB (Kovacic et al. 2017) in 
terms of solving the partial differential equations, it could be 
performed under the guidance of examples. The graphical 
user interface window allows following operations: drawing 
the geometric area of the partial differential equation, setting 
the type of the equation and the parameters of the equation, 
setting the type and parameters of the boundary condition, 
meshing the geometric area, solving the equation, and plot-
ting the chart.
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Currently, the mathematical models of more and more engineering and scientific problems could be 
classified as the determining solution of partial differential equation (PDE) (Bo et al. 2018). The processes of 
solving the determining solutions of PDE are relatively complicated; the research on numerical methods of PDE 
has become the primary researching directions of PDE, as well as the core content of engineering and scientific 
calculations. 

The partial differential equation toolbox (PDE toolbox) software has provided the researchers with a practical 
working environment and simple solution methods. The toolbox software is specially designed for both beginners 
and senior users (Wei et al. 2017). There are two applications of the toolbox software on PDE-associated 
problems: one is the direct application of the graphical user interface (GUI) in the PDE toolbox software. Enter 
“pdctool” on the command line of the MATLAB window and run it (Abdelrahman et al. 2017). The graphical 
user interface of the PDE toolbox would be automatically generated, which is a separate graphical environment 
for solving problems with partial differential equations (Martelloni et al. 2017). Common applications could use 
specific physical conditions rather than abstract coefficients. The utilization of the pdctool requires no 
mathematical knowledge of MATLAB (Kovacic et al. 2017) in terms of solving the partial differential equations, 
it could be performed under the guidance of examples. The graphical user interface window allows following 
operations: drawing the geometric area of the partial differential equation, setting the type of the equation and the 
parameters of the equation, setting the type and parameters of the boundary condition, meshing the geometric 
area, solving the equation, and plotting the chart. 

EXPERIMENTAL PROCEDURE 

For advanced non-standard applications, it is possible to describe areas and boundary conditions in the 
MATLAB workspace. The toolbox function of partial differential equations is applied to manage data on 
unstructured grids, generate meshes, and perform finite element method discretization of partial differential 
equations, etc. While applying the graphical user interface of PDE toolbox software to solve the numerical 
solutions, certain difficulties could appear, therefore, a solver could be designed to solve it, or the finite element 
method (FEM) could be applied to solve the non-standard problem of more complex algorithms. 

As Fig. 1 shows, the fully penetrating well is of the confined aquifer. The well is homogeneous and isotropic, 
its thickness is M, its osmotic coefficient is K, the original water level of the confined aquifer is H0, after the 
pumping reaches a stable state, the water level in the well is hw, the radius of the water filter pipe is rw, and the 
influence radius of pumping well is R hypothetically. The values of coefficients mentioned above are as follows: 
W=0.8m/d; M=100m; R=300m; H0=170m; rw=80m; hw=120m. 

 
Fig. 1: Complete aquifer of the confined aquifer. 

One of the basic types of partial differential equations solved by the PDE toolbox is the elliptic equation, 
whose basic form is: 

−𝛻𝛻 ⋅ (𝑐𝑐𝛻𝛻𝑢𝑢) + 𝑎𝑎𝑢𝑢 = 𝑓𝑓, 𝑖𝑖𝑖𝑖    𝛺𝛺                                                      …(1) 

Where,   is the planar area. The equation coefficient c, a, and f as well as the unknown function u are all 
real functions (or complex functions) defined on the . 

The boundary conditions of PDE are: 

1. Dirichlct boundary condition 

Fig. 1: Complete aquifer of the confined aquifer.

MATERIALS AND METHODS

For advanced non-standard applications, it is possible to 
describe areas and boundary conditions in the MATLAB 
workspace. The toolbox function of partial differential 
equations is applied to manage data on unstructured grids, 
generate meshes, and perform finite element method discre-
tization of partial differential equations, etc. While applying 
the graphical user interface of PDE toolbox software to solve 
the numerical solutions, certain difficulties could appear, 
therefore, a solver could be designed to solve it, or the 
finite element method (FEM) could be applied to solve the 
non-standard problem of more complex algorithms.

As Fig. 1 shows, the fully penetrating well is of the 
confined aquifer. The well is homogeneous and isotropic, 
its thickness is M, its osmotic coefficient is K, the original 
water level of the confined aquifer is H0, after the pumping 
reaches a stable state, the water level in the well is hw, the 
radius of the water filter pipe is rw, and the influence radius of 
pumping well is R hypothetically. The values of coefficients 
mentioned above are as follows: W = 0.8m/d; M = 100m; 
R = 300m; H0 = 170m; rw = 80m; hw = 120m.

One of the basic types of partial differential equations 
solved by the PDE toolbox is the elliptic equation, whose 
basic form is:

       ,-—◊ —( ) + =c u au f in W  …(1)

Where, W  is the planar area. The equation coefficient c, a, 
and f as well as the unknown function u are all real functions 
(or complex functions) defined on the W.

The boundary conditions of PDE are:

 1. Dirichlct boundary condition

  hu r=

 2. Ncumann boundary condition

  
�
n c u qu g◊ —( ) + =

 3. Hybrid boundary condition: the combination of 
Dirichlct boundary condition and Ncumann boundary 
condition.

Where the 
�
n  is the normal vector out of the unit on the 

∂ W, the boundary condition coefficient h, r, q, and g are the 
functions on the ∂ W. Note: In the finite element method, 
the Dirichlet boundary condition could also be called as the 
essential boundary condition (or the first type of boundary 
condition), and the Neumann boundary condition could 
also be called as the natural boundary (or the second type 
of boundary condition).

The equation for the groundwater problem in engineer-
ing is:
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The Equation (2) of the problem is an elliptic partial 
differential equation, whose corresponding coefficients c, a, 
and f in the elliptic basic equations are c = KM, a = 0, and 
f = 0, respectively. The area W is the bounded area of the 
ring-like plane; in addition, the boundaries of the two circles 
in the ring are the first type of boundary conditions (the Di-
richlet boundary conditions). In the area of x2 + y2 = R2, the 
coefficients h and r are respectively h=1 and r=170; in the 
area of x2 + y2 = rw

2, the coefficients h and r are respectively 
h = 1 and r = 120.

RESULTS AND DISCUSSION

Planar two-dimensional steady flow problem: Fig. 2 is 
a planar graph where two rivers meet and the two faults 
intersect to form a trench-shaped valley. The South fault is a 
descending fault, which tends to the Northeast, and its South 
side is a giant granite wall; the West fault is also a descending 
fault, which tends to the Southeast, and its West side is also 
a giant granite wall. On the East and North sides of the area, 
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ℎ𝑢𝑢 = 𝑟𝑟 

2. Ncumann boundary condition 

�⃗�𝑛 ⋅ (𝑐𝑐𝛻𝛻𝑢𝑢) + 𝑞𝑞𝑢𝑢 = 𝑔𝑔 

3. Hybrid boundary condition: the combination of Dirichlct boundary condition and Ncumann boundary 
condition. 

Where the �⃗�𝑛  is the normal vector out of the unit on the , the boundary condition coefficient h, r, q, and g 
are the functions on the . Note: In the finite element method, the Dirichlet boundary condition could also be 
called as the essential boundary condition (or the first type of boundary condition), and the Neumann boundary 
condition could also be called as the natural boundary (or the second type of boundary condition). 

The equation for the groundwater problem in engineering is: 

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝐾𝐾𝐾𝐾 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕) + 𝜕𝜕
𝜕𝜕𝜕𝜕 (𝐾𝐾𝐾𝐾 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕) = 0                                                  …(2) 

The Equation (2) of the problem is an elliptic partial differential equation, whose corresponding coefficients 
c, a, and f in the elliptic basic equations are c=KM, a=0, and f=0, respectively. The area Ω is the bounded area of 
the ring-like plane; in addition, the boundaries of the two circles in the ring are the first type of boundary conditions 
(the Dirichlet boundary conditions). In the area of x2+y2=R2, the coefficients h and r are respectively h=1 and 
r=170; in the area of x2+y2=rw

2, the coefficients h and r are respectively h=1 and r=120. 

RESULTS AND DISCUSSION 

Planar two-dimensional steady flow problem: Fig. 2 is a planar graph where two rivers meet and the two faults 
intersect to form a trench-shaped valley. The South fault is a descending fault, which tends to the Northeast, and 
its South side is a giant granite wall; the West fault is also a descending fault, which tends to the Southeast, and 
its West side is also a giant granite wall. On the East and North sides of the area, two respective tributaries of the 
East River and the North River pass through, merging into the main river channel in the Northeast corner. Fig. 3 
is the geological section of the valley area. It can be inferred from Fig. 3 that the west side of the valley is a granite 
wall, whose top is covered with a layer of aquiferous sandstone, with a small amount of water supplying to both 
the alluvium and the sedimentary layers in the long-term; in the river valley, the bottom of the alluvium and the 
sedimentary layers are dense layers of shale; in the middle and lower reaches of the river valley, the top of the 
alluvium and sedimentary aquifers is covered with an impervious overburden layer, whose thickness is about 8m. 

 
                        Fig. 2: Floor plan of the valley area.                                              Fig. 3: Geological section of the valley area. 

Fig. 4 is the longitudinal section of the aquifer. It is assumed that the shape of the section that is parallel to the 
direction of the West fault line is constant, therefore, the variation of the alluvium and the sedimentary aquifers 
in the entire area could be observed. Fig. 5 is the vertical slope line of the two rivers. The annual average water 
level at the intersection of the two rivers is 168.0m; starting from the average level and pushing back to the 

    Fig. 2: Floor plan of the valley area.                                                                 Fig. 3: Geological section of the valley area.

two respective tributaries of the East River and the North 
River pass through, merging into the main river channel in 
the Northeast corner. Fig. 3 is the geological section of the 
valley area. It can be inferred from Fig. 3 that the west side 
of the valley is a granite wall, whose top is covered with a 
layer of aquiferous sandstone, with a small amount of water 
supplying to both the alluvium and the sedimentary layers in 
the long-term; in the river valley, the bottom of the alluvium 
and the sedimentary layers are dense layers of shale; in 
the middle and lower reaches of the river valley, the top of 
the alluvium and sedimentary aquifers is covered with an 
impervious overburden layer, whose thickness is about 8 m.

Fig. 4 is the longitudinal section of the aquifer. It is 
assumed that the shape of the section that is parallel to the 
direction of the West fault line is constant, therefore, the 
variation of the alluvium and the sedimentary aquifers in 
the entire area could be observed. Fig. 5 is the vertical slope 
line of the two rivers. The annual average water level at the 
intersection of the two rivers is 168.0m; starting from the 
average level and pushing back to the upstream of the two 
rivers at the same time, in accordance with the actual meas-
urement data of the water levels of the river control points, 
the surface longitudinal slopes of the rivers are consistent.

The upper reach of the river valley area, i.e. the East side 
of the West fault, is the irrigation channel area of the river. 
In accordance with the descriptions above, the boundary 
conditions and supplying conditions are: the East River and 
the North River are two known head boundaries; the South 
fault is granite, therefore, it could be regarded as an imper-
vious boundary; the supply boundary of the groundwater in 

the Western sandstone layer is the boundary of the known 
supply flow; the shale layer at the bottom of the alluvium 
and the sedimentary aquifer is the impervious bottom layer; 
the upper reach of the valley is the precipitation supply rate 
ε and the area receiving irrigation. Due to the impervious 
cover layer, the remained water of irrigation and precipitation 
is the surface runoff that doesn’t participate in the flow of 
groundwater in the aquifer.

It can be inferred from the descriptions of the boundary 
conditions that the South fault is an impervious boundary, 
thus, the flow of boundary inflow supply QC is 0; the West 
fault is the known supply flow boundary, the flow of boundary 
inflow supply QC, based on the actual measurement and esti-
mation, is 10L/(s∙km) on average annually, and QC=0.864m3/
(d∙m) could be obtained through unit conversion.

Through the description of groundwater problems in 
engineering, it can be inferred that the groundwater problem 
should be a planar two-dimensional (2D) steady flow osmotic 
problem. In accordance with the derivation of the basic equa-
tion of groundwater, it is observed that in terms of the steady 
flow problems, the equations of both unconfined flow and 
confined flow could be written in the following basic form:
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If the steady flow is the confined flow, in Equation (3), 
T = kh, where, k is the osmotic coefficient, k = 50; besides, 
h is the depth of water, h = 80, T = 4000. If the steady flow 
is the unconfined flow, in Equation (3), T = kM, where k is 
the osmotic coefficient and M is the thickness of the aquifer. 
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upstream of the two rivers at the same time, in accordance with the actual measurement data of the water levels 
of the river control points, the surface longitudinal slopes of the rivers are consistent. 

 
Fig. 4: The longitudinal section of the aquifer. 

 

Fig. 5: Two rivers vertical slope line. 

The upper reach of the river valley area, i.e. the East side of the West fault, is the irrigation channel area of 
the river. In accordance with the descriptions above, the boundary conditions and supplying conditions are: the 
East River and the North River are two known head boundaries; the South fault is granite, therefore, it could be 
regarded as an impervious boundary; the supply boundary of the groundwater in the Western sandstone layer is 
the boundary of the known supply flow; the shale layer at the bottom of the alluvium and the sedimentary aquifer 
is the impervious bottom layer; the upper reach of the valley is the precipitation supply rate ε and the area receiving 
irrigation. Due to the impervious cover layer, the remained water of irrigation and precipitation is the surface 
runoff that doesn’t participate in the flow of groundwater in the aquifer. 

It can be inferred from the descriptions of the boundary conditions that the South fault is an impervious 
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of the basic equation of groundwater, it is observed that in terms of the steady flow problems, the equations of 
both unconfined flow and confined flow could be written in the following basic form: 

                                     𝜕𝜕𝜕𝜕𝜕𝜕 (𝑇𝑇
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕) +

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝑇𝑇

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕) + 𝜀𝜀 = 0                                           …(3) 

If the steady flow is the confined flow, in Equation (3), T=kh, where, k is the osmotic coefficient, k=50; 
besides, h is the depth of water, h=80, T=4000. If the steady flow is the unconfined flow, in Equation (3), T=kM, 
where k is the osmotic coefficient and M is the thickness of the aquifer. The parameter ε in the equation is the 
stable vertical osmotic supply rate occurring in the irrigation section, ε = 0.0003 m/d for the problem. For the 
impervious layer covered sections without irrigation and precipitation, the basic equation could be expressed as: 

                                    𝜕𝜕𝜕𝜕𝜕𝜕 (𝑇𝑇
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𝜕𝜕𝜕𝜕) +

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝑇𝑇

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕) = 0                                                  …(4) 

Fig. 4: The longitudinal section of the aquifer.
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The upper reach of the river valley area, i.e. the East side of the West fault, is the irrigation channel area of 
the river. In accordance with the descriptions above, the boundary conditions and supplying conditions are: the 
East River and the North River are two known head boundaries; the South fault is granite, therefore, it could be 
regarded as an impervious boundary; the supply boundary of the groundwater in the Western sandstone layer is 
the boundary of the known supply flow; the shale layer at the bottom of the alluvium and the sedimentary aquifer 
is the impervious bottom layer; the upper reach of the valley is the precipitation supply rate ε and the area receiving 
irrigation. Due to the impervious cover layer, the remained water of irrigation and precipitation is the surface 
runoff that doesn’t participate in the flow of groundwater in the aquifer. 

It can be inferred from the descriptions of the boundary conditions that the South fault is an impervious 
boundary, thus, the flow of boundary inflow supply QC is 0; the West fault is the known supply flow boundary, 
the flow of boundary inflow supply QC, based on the actual measurement and estimation, is 10L/(s∙km) on average 
annually, and QC=0.864m3/(d∙m) could be obtained through unit conversion. 

Through the description of groundwater problems in engineering, it can be inferred that the groundwater 
problem should be a planar two-dimensional (2D) steady flow osmotic problem. In accordance with the derivation 
of the basic equation of groundwater, it is observed that in terms of the steady flow problems, the equations of 
both unconfined flow and confined flow could be written in the following basic form: 
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𝜕𝜕
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If the steady flow is the confined flow, in Equation (3), T=kh, where, k is the osmotic coefficient, k=50; 
besides, h is the depth of water, h=80, T=4000. If the steady flow is the unconfined flow, in Equation (3), T=kM, 
where k is the osmotic coefficient and M is the thickness of the aquifer. The parameter ε in the equation is the 
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                                    𝜕𝜕𝜕𝜕𝜕𝜕 (𝑇𝑇
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𝜕𝜕𝜕𝜕) = 0                                                  …(4) 

Fig. 5: Two rivers vertical slope line.

The parameter e in the equation is the stable vertical 
osmotic supply rate occurring in the irrigation section, e = 
0.0003 m/d for the problem. For the impervious layer cov-
ered sections without irrigation and precipitation, the basic 
equation could be expressed as:
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Planar two-dimensional unsteady flow problem: The 
planar two-dimensional unsteady flow problem has been 
deduced in the books of engineering groundwater. In terms 
of the unsteady flow problem, whether it is the unconfined 
flow or the confined flow, the basic equations could be ex-
pressed as:
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If the unsteady flow is the unconfined flow, in the Equa-
tion (5), T = ch, S = μ, where K is the osmotic coefficient, 
k = 50; h is the depth of water, h = 80, therefore, T = kh 
= 4000, μ is the yield of water, μ = 0.17. If the unsteady 
flow is the confined flow, in the equation, T = kM, S = 
SS ∙ M, where, K is the osmotic coefficient, SS is the vertical 
hydraulic conductivity that approximates 0 here, M is the 
thickness of the aquifer.

For the sections that are covered with impervious layers 
(or the non-irrigation and non-precipitation sections), the 
basic equation is:
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The equation for such groundwater problems in engineer-
ing belongs to the parabolic partial differential equations. 
The basic form of the parabolic equation is:

           d
u

t
c u au f

∂
∂

- —◊ —( ) + =  …(7)

The c, a, f, and d in the equation corresponds to equation 
(6), c = T =  4000, a = 0, f = 0, and d = S = μ = 0.17.

Plane three-dimensional groundwater problem: The 
groundwater aquiferous system in nature is often a trans-
boundary aquifer system that contains various aquitards 
and aquifers. While pumping water from a certain aquifer, 
variations would happen to the aquifer and its adjacent 
aquitards and aquifers. Since the whole system is real and 
the groundwater flow field is three-dimensional, theoretically, 
the closest situation to the actual situation is to establish a 
three-dimensional mathematical model for the multi-layer 
aquifer system, the aquitards and the aquifers in the three-
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dimensional groundwater aquiferous system with the porous 
medium are generally in alternative layer distribution. The 
clay with a small osmotic coefficient and the sand with a 
large osmotic coefficient respectively constitute the aquitard 
and the aquifer, therefore, the parameters in the vertical 
direction are mutagenic. Meanwhile, each aquitard and each 
aquifer simultaneously on the plane is often heterogeneous, 
hence, the parameters are gradual in the horizontal direction. 
The PDE toolbox method could be applied to solve three-
dimensional groundwater flow problems.

M file for PDE: In terms of the certain practical problems 
of engineering and scientific fields, it is often necessary to 
communicate with other finite elements and plotting software 
to complement the solutions.

The most commonly applied method is to convert each 
other through DXF files, while the transmission requires 
graphics. The DXF file is a graphical interactive file. It is a 
graphical interactive file that can be accepted by software 
such as MICROSTATION, SSAP, and AUTOCAD. DXF is 
a writable ASCII format. The M file and DXF file format in 
PDE are identical. Therefore, if the geometric descriptions of 
the M file of the partial differential equation is generated and 
then written into the DXF physical segment, the interface of 
the M file of the partial differential equation to the DXF file 
could be formed; through reversing the process, the interface 
of the DXF file to the M file of the partial differential equation 
could be formed. In terms of solving the problems by using 
the graphical user interface of the toolbox software, the M 
file of the solving processes could be generated by clicking 
the command “Save As” under the menu File to open the 
Save As dialogue box, selecting the save path of the file, 
naming the file such as pmwdl input by the keyboard, and 
then clicking the “Save” button to generate the file pmwdl.m. 
M files of such type could be saved and opened through the 
file menu. The MATLAB function is not an M file of the 
script type. Such kind of file avoids the use of functions and 
name conflicts between variables in the main workspace. 
The name of the file must match the model name so that it 
can be called by other programs.

CONCLUSION

The paper has mainly introduced the relevant knowledge 
principles of PDE toolbox and finite element method, as 
well as applying the graphical user interface (GUI) of PDE 
toolbox to groundwater. The paper has performed numerical 
calculations of problems including the planar two-dimension-
al steady flow and the planar two-dimensional unsteady flow 
of groundwater. It can be inferred from the problem-solving 

processes and results that the method proposed in the paper 
is simple and convenient in the application; besides, it also 
shows great advantages in both calculation accuracy and 
calculation efficiency. However, the method is also of several 
deficiencies including the difficulty in storing the solutions, 
which would in further affect the subsequent calculations. In 
addition, in the calculation processes of the inverse problems, 
it is necessary to continuously call the original files and apply 
the calculated results.

In terms of solving the problem of partial differential 
equations related to groundwater pollution, in addition to 
the graphical user interface of MATLAB PDE toolbox soft-
ware, the command function in the toolbox software could 
also be applied to solve the problem by creating an M file 
that describes the geometry. There are some difficulties in 
solving specific problems which cannot be solved by using 
the PDE tool graphical user interface. For example, when 
the geometric areas are not composed of lines, arcs, elliptical 
arcs, and the combined graphics of them, in order to solve 
the problem, only the command function in the toolbox could 
be applied to perform the numerical calculations, which is 
much simpler and faster than programming the original 
program directly.
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