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ABSTRACT
An extensive survey was carried out to understand the spatial distribution and possible sources of
soil heavy metals in a phosphorus-rich area. A total of 615 topsoil samples were gathered, utilizing a
regular sampling grid of 1×1 km squares, and the contents of arsenic (As), cadmium (Cd), cobalt (Co),
chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), vanadium (V) and zinc (Zn) were
analysed to investigate the spatial distribution of these heavy metals, identify their sources, and
assess levels of pollution. The results showed that the enrichment factor (EF) of the studied metals
decreased in the order Cd > As > Pb > Co > Ni > Cr = Cu > Zn, and the mean contents of Cd, As and Pb
were significantly higher than the background values. According to potential ecological risk (RI), 11.2%
of the study areas had considerable potential ecological risk and the other areas had low to moderate
potential ecological risk. The results of multivariate and geostatistical analyses indicated that Co, Cr, Ni
and V, and to a lesser extent Cu and Zn, mostly originated from natural sources; while As and Pb, and
to a lesser extent Cd, Cu and Zn, mainly originated from phosphorus-related industrial activities. The
results also showed that Cd was affected by water with Cd pollution from the Hanjiang River. These
results are useful for establishing policies for protecting local soil quality.
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INTRODUCTION

Soil is not only a medium for plants to grow, or a sink for
disposal of undesirable materials, but also acts as an impor-
tant environmental component closely associated with the
atmosphere, groundwater, and plant life (Cai et al. 2015,
Chen et al. 2008). Soil pollution has become an important
environmental issue. Among kinds of soil pollution, heavy
metal contamination is an important issue due to its charac-
teristics of non-biodegradability and persistence (Cai et al.
2015, Shan et al. 2013, Wang et al. 2014). Excessive accu-
mulation of heavy metals in soils may pose serious health
risks to humans and may have adverse impacts on the eco-
system (Chen et al. 2011).

The contents of heavy metals in soils are usually af-
fected by many factors such as parent material and human
activities (Shi et al. 2006, Zhang et al. 2009). In recent dec-
ades, the natural input of heavy metals to soils due to
pedogenesis has been exceeded by human input, even on a
regional scale (Chen et al. 2008, Shi et al. 2006). Under the
joint influences of natural and human inputs, the sources of
heavy metals may be complicated and difficult to interpret.
Meanwhile, because the soil itself has spatial heterogene-
ity, and the pollution sources vary geographically due to
differing local environments and development conditions,
the contents of heavy metals change conspicuously over
space (Luo et al. 2007b). Relying solely on multivariate
statistical analysis or geostatistics, it is difficult both to iden-
tify heavy metal sources and to characterize their spatial

variability and possible hotspots. Fortunately, a combina-
tion of these two methods provide an appropriate solution
and has been proved to be feasible in previous studies (Chen
et al. 2008, Wu & Zhang 2010).

With the rapid economic development of the last sev-
eral decades, soil pollution by heavy metals in China has
become a serious problem (Chen et al. 2011). Many pollu-
tion surveys about soil heavy metals have been carried out
in China (Yuan et al. 2014, Zhang et al. 2009, Zhong et al.
2012), but few studies have been performed in areas with
rich phosphate rock resources, where the sources of soil
heavy metals may be different from other areas. A phospho-
rus-rich area was selected as the study area. Local environ-
mental problems, especially soil heavy metal pollution, are
becoming increasingly serious. The primary objectives of
the study were (1) understand the contents of soil heavy
metals; (2) identify their possible sources; (3) identify the
contamination degree of soil heavy metals.

MATERIALS AND METHODS

Study area: The study area is in the central region of Hubei
Province, China (Fig. 1). The study area lies within 112°7’-
112°31’ E and 31°11’-31°33’ N, and the total area is about
777 km2. It belongs to the northern subtropical zone of the
monsoonal climate, with four distinct seasons. The Hanjiang
River flows alongside the southeastern part of the study
area, and is the major water resource for nearby regions for
agricultural, domestic and industrial uses (Fig. 1). The study
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area is an important agricultural region of Zhongxiang City,
and the main agricultural products are rice, corn and rape.

The study area has a great quantity of phosphate rock
resources and has a long history of mining of these resources.
The biggest industrial park in the study area, Jingxiang Phos-
phorus Industrial Park, lies 2 km west of the seat of the Huji
town government.

Soil sampling and chemical analysis: A total of 615 top-
soil samples (0-20 cm depth) were collected from the study
area in 2014. The sample sites were based on a regular grid
of 1×1 km, and each grid square had at least one sample site
(Fig. 1). Each soil sample was a mixture of 5 sub-samples,
and each sampling point was recorded by a GPS device. The
soil samples were air-dried at room temperature, and stones
and other debris were removed. Portions of soil samples

were ground in an agate grinder to pass through a 0.149 mm
sieve, and stored in plastic bags prior to analysis.

A small portion of each sample (2-5 g) was digested
with HNO

3
-HCl-HClO

4
 and the total contents of cadmium

(Cd), cobalt (Co), chromium (Cr), copper (Cu), nickel (Ni),
lead (Pb), vanadium (V) and zinc (Zn) were determined by
inductively coupled plasma-atomic emission spectrometry
(ICP-AES). Another small portion of each sample (about 0.5
g) was digested by aqua regia (1:1 HCl:HNO

3
) and the total

content of arsenic (As) was measured by atomic fluores-
cence spectrometry (AFS). The analytical precision for rep-
licate samples was within ±10% and the measurement errors
between determined and certified values ranged from 92%
to 108%.

Contamination degree and ecological risk: There are many

Fig. 1: The location of the study area and distribution of the sampling sites.
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kinds of evaluation methods for quantifying the pollution
level and potential eco-risks of heavy metals (Mirzaei et al.
2014). In this study, the enrichment factor (EF) was used to
determine the degree of enrichment of individual metals in
soils, and is calculated by the following formula (Wu et al.
2015):

EF = 퐶푥 퐶푟푒푓⁄
푠푎푚푝푙푒

(퐶푥 퐶푟푒푓⁄ )푏푎푐푘푔푟표푢푛푑           ...(1)

Where, EF is the enrichment factor of the heavy metal x,
C

x
 is the content of element x in the soil, C

ref
  is the content

of a reference element, and (C
x
/C

ref
 ) is the ratio of the con-

tent of heavy metal x to the content of the reference ele-
ment, either in the sample or background. When calculat-
ing the EF values, V was selected as the reference element
because it usually originates from the parent materials, and
showed weak correlation with the metals affected by an-
thropogenic factors (Wu et al. 2015). The heavy metal back-
ground content in the soils of Hubei Province was selected
as the background value. Considering the conventional grad-
ing standards and the characteristics of EF (Wu et al. 2015,
Yuan et al. 2012), pollution levels of metals are classified as
low (EF <1.5), middle (1.5 EF <3), or high (EF 3).

RI, which considers the potential toxic-response factors
of heavy metals, was first developed by Hakanson (1980),
and has been used by many researchers to evaluate heavy
metal ecological risk (Islam et al. 2015, Li et al. 2013, Mirzaei
et al. 2014). RI can be calculated as follows:

RI = 퐸푟푖 = 푇푟푖 × 퐶푓푖
푛

푖=1

= 푇푟푖
푛

푖=1

× 퐶표푖 퐶푛푖⁄
푛

푖=1 ...(2)

Where, RI is the sum of the all risk indices for elements
in the soil, 퐸푟푖 is the monomial potential risk index, and 푇푟푖  
is the metal toxic-response factor. The toxic-response fac-
tors for As, Cd, Co, Cr, Cu, Ni, Pb, V and Zn are 10, 30, 5, 2,
5, 5, 5, 2 and 1, respectively (Yuan et al. 2014). Ci

f
 is the

metal pollution factor, Ci
o
 is the heavy metal content in the

soil, and Ci
n
 is a reference value for metals. The value is

defined as low risk (Ei
r
<40), moderate risk (40  Ei

r
< 80),

considerable risk (80  Ei
r
<160), high risk (160  Ei

r
< 320),

and very high risk (Ei
r 
 320) (Hakanson 1980). The

following thresholds are classified for the RI value: RI<65,
low ecological risk; 65  RI <130, moderate ecological risk;
130  RI < 260, considerable ecological risk; RI 260, high
ecological risk (Hakanson 1980, Luo et al. 2007a).

Geostatistical analysis and multivariate analysis: In
multivariate statistics and linear geostatistics, the variables
under study will preferably be normally distributed
(Simasuwannarong et al. 2011). Data transformation was
carried out on all heavy metal contents. Among the many

transformation methods available, logarithmic transforma-
tion is frequently used (Simasuwannarong et al. 2011,
Webster & Oliver 2001). However, some studies have found
that environmental variables do not always follow the log
normal distribution (McGrath et al. 2004). In this study, a
power transformation, the Box-Cox transformation, was
employed to normalize the variables. More detailed
information related to the Box-Cox transformation can be
found in other references, such as Box & Cox (1964).

Geostatistics is based on the theory of a regionalized
variable (Matheron 1963), which has spatial coordinates
and exhibits spatial autocorrelation such that samples close
together in space are more alike than those that are further
apart (McGrath et al. 2004). Geostatistics employs a
semivariogram to measure the spatial variability of a re-
gionalized variable and provides input parameters for spa-
tial interpolation by kriging (Chen et al. 2008, McGrath et
al. 2004). In our study, a semivariogram was employed to
analyse discrete soil samples. The equation is expressed as:

훾(ℎ) =
1

2푁(ℎ)
[푍(푥푖 + ℎ) − 푍(푥푖)]2

푁(ℎ)

푖=1
        ...(3)

Where, N (h) is the number of observed pairs of sample
sites separated by the lag distance, and Z(x

i
) is the value of

the variable Z at the site. After analysing the semivariogram,
the best fit model and the corresponding parameters for
kriging interpolation can be obtained. Ordinary kriging was
selected to generate the spatial distribution maps of
transformed heavy metal contents, using the nearest 16
sampling sites and a maximum searching distance equal to
the range distance of the regionalized variable. More
detailed information on geostatistics can be found in other
references, such as Webster & Oliver (2001). The
geostatistical analysis was performed using GS+® (version
9.0), and based on the best fit semivariogram models, the
spatial distribution maps were generated with ArcGIS®
(version 9.3).

In this study, multivariate statistical methods (includ-
ing correlation analysis, PCA and CA) were used to assist
the interpretation of the environmental data set, and distin-
guish anthropogenic sources from natural sources (Mamat
et al. 2014, Wu & Zhang 2010). For the correlation analysis,
Spearman’s nonparametric correlation coefficient was em-
ployed because in some cases the heavy metal contents were
not normally distributed. PCA was used to extract the most
important information from the original data with a mini-
mum loss of useful information (Gu et al. 2012). To facili-
tate the interpretation of results, varimax rotation was used
to clarify the loading of heavy metals (Chen et al. 2008).
CA was used to classify environmental variables into groups
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and to assist PCA results (Wu & Zhang 2010). The results of
the hierarchical clustering procedure were visualized with a
dendrogram. Multivariate analysis was performed with SPSS
® (version 19.0).

RESULTS AND DISCUSSION

Descriptive statistics: A descriptive summary of the metal
contents of the soils is given in Table 1. The concentration
ranges of As, Cd, Co, Cr, Cu, Ni, Pb, V and Zn were 5.5-48.7,
0.059-0.577, 7.9-32.9, 50.6-119.0, 16.0-64.7, 19.1-70.4,
17.8-53.8, 61.6-164.7 and 40.0-142.3 mg.kg-1, respectively.
The mean contents of the metals studied in the soils fol-
lowed a descending order as follows: V> Cr > Zn >Ni >Cu
>Pb > Co>As >Cd. The coefficient of variation (CV) of the
heavy metal concentrations varied from 14.0% to 48.5%.
The CV values of the metal concentrations follow the order:
Cd> As> Pb> Zn> Co > Ni> Cu> V> Cr. Cd had the highest
CV value (48.5%), indicating Cd may have the highest pos-
sibility of being affected by extrinsic factors such as human
activities (Chen et al. 2008). Cr had the lowest CV value at
14.0%, implying that Cr had quite a homogeneous distribu-
tion (Cai et al. 2015).

The mean contents of Co, Cr, Cu, Ni, V and Zn were
close to the background values, whereas the mean contents
of As, Cd and Pb were significantly higher than the back-
ground values (Liu & Ma 2012). The average contents of
As, Cd, Cr, Cu, Ni, Pb and Zn all fall within the guidelines
based on the Environmental Quality Standard for Soils in
China (SEPAC 1995). However, 4.5% and 14.0% of sam-
ples for As and Cd, respectively, exceeded their correspond-
ing guideline values, indicating that As and Cd might have
pollution issues. 4.9% of samples had Ni concentrations
above the guideline value, but this might be because Ni had

a high background value (Table 1).

Geostatistical analysis: Prior to multivariate analysis and
geostatistical analysis, the normality of the nine metal con-
tents were tested. The parameters of skewness, kurtosis, and
the significance level of the Kolmogorov-Smirnov test for
normality (K-S p) for raw, log-transformed and Box-Cox
transformed data are presented in Table 2. In this study, it
can be observed that only Co, Cr and Pb passed the
Kolmogorov-Smirnov normality test (K-S p> 0.05) before
data transformation, and some metals, such as As and Cu,
were skewed, with skewness significantly higher than 0,
meaning that these metals have several extremely high val-
ues (Zhang et al. 2009). Their kurtoses were also sharp, caused
by the fact that the majority of samples were clustered at
relatively low values (Zhang et al. 2009). Log-transforma-
tion and Box-Cox transformation were employed to nor-
malize the raw data. As Table 2 shows, compared with log-
transformation, the Box-Cox transformation generally re-
sulted in smaller skewness values, pushing them toward “0”.
Although As, Cu, Ni and V did not pass the normality test
after the Box-Cox transformation, low skewness values
meant their transformed distributions were very close to the
normal distribution.

Spatial structure analysis: Soil heavy metals are regional-
ized variables as they are distributed in geographical space.
They have spatial structure, with spatial auto correlation
(Chen et al. 2011). In our study, geostatistics was employed
to analyze the spatial structure and visualize the interpola-
tion results. The semivariograms and the best fit models for
the nine metals are shown in Fig. 2. The attributes (includ-
ing nugget variance, sill variance, Nugget/Sill ratio, range
value and coefficients of determination) of the
semivariogram for each metal are summarized in Table 3.

Table 1: Summary statistics for soil heavy metal contents (mg.kg-1).

Elements As Cd Co Cr Cu Ni Pb V Zn

Mean 15.17 0.198 17.00 85.75 30.39 38.31 30.10 107.65 76.46
Maximum 48.7 0.577 32.9 119.0 64.7 70.4 53.8 164.7 142.3
Minimum 5.5 0.059 7.9 50.6 16.0 19.1 17.8 61.6 43.0
SD 5.08 0.10 3.48 11.97 5.67 7.43 9.30 16.73 16.74
CV(%) 33.5 48.5 20.5 14.0 18.7 19.4 30.9 15.5 21.9
Skewness 2.52 1.40 0.26 -0.18 1.30 -0.01 0.92 0.60 0.94
Kurtosis 10.71 1.92 1.42 0.27 4.93 0.77 3.71 1.18 1.16
Background valuea 10.5 0.114 14.6 79.0 28.2 34.7 25.7 104.2 77.5
Guideline valueb 2 5 0.3 - 300 100 5 0 300 - 250
Samples exceeding 4.5 14.0 - 0.0 0.0 4.9 0.0 - 0.0
guideline value (%)

aHeavy metal background value in soils of Hubei Province (Liu & Ma 2012).
bEnvironmental Quality Standard for Soils in China (Grade II), i.e. the maximum allowable content of heavy metals in farmland soils, including
arable land (vegetable, tea and fruit) and grazing land, formulated by the State Environmental Protection Administration of China (SEPAC
1995).
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The semivariograms show that As and Co were fitted for a
spherical model; V was fitted for a liner model; Cd, Cr, Cu,
Ni and Pb were fitted for an exponential model; and Zn was
fitted for a Gaussian model.

In geostatistics, the Nugget/Sill ratio can be assumed to
be a criterion to classify the spatial dependence of soil prop-
erties, such as heavy metal concentrations. If the ratio is
less than 0.25, the variable shows strong spatial depend-
ence. If the ratio is between 0.25 and 0.75, the variable
shows moderate spatial dependence. If the ratio is greater
than 0.75, the variable has weak spatial dependence
(Cambardella et al. 1994). It has been indicated that strong
spatial dependence can be ascribed to intrinsic factors (soil
formation factors, e.g. soil parent materials, soil types and
topography) and weak spatial dependence can be attrib-
uted to extrinsic factors (human contamination) (Cambardella
et al. 1994). The Nugget/Sill ratio of Cu, lower than 0.25,
indicated that Cu had a strong spatial dependency, and the
spatial dependence of Cu may be attributed to natural
factors. The Nugget/Sill ratios of the other eight metals,
between 0.25 and 0.75, indicated that they have moderate
spatial dependence.

The range value is considered as a measure of extension
where spatial autocorrelation exists (Wu & Zhang 2010).
The spatial structures of Cu had short ranges (3,120 m) and
those of As, Cd, Pb and Zn had moderate ranges (5,467-
8,370 m), whereas the variation of Co, Cr, Ni and V was
dominated by long range spatial correlation (11,105-20,942
m). The shortest range of spatial correlation, presented by
Cu, was 3,120 m, confirming the rationale of the sampling
design, which used a 1×1 km grid for the precise environ-
mental investigation of the nine heavy metals in our study.
The sample grid length could thus be increased for the met-
als with longer ranges such as Ni and V. The short-range
spatial correlation of Cu indicated anthropogenic factors
influencing Cu. However, the low Nugget/Sill ratio (0.084),
and the mean content close to the background value, sug-
gested that natural factors are also affecting Cu distribu-
tion. Therefore, it is reasonable to conclude that Cu is con-
trolled by both anthropogenic factors and natural factors.
Of the nine heavy metals, V had longest effective range,
meaning that V had better spatial structure and less variabil-
ity due to extrinsic factors. According to the descriptive
statistics, the mean content of V was close to the background

Fig. 2: Experimental semivariograms of heavy metals with best fit models.
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level, indicating that natural sources play an important role
in controlling V content.

Spatial distribution: In order to understand the spatial dis-
tribution of the heavy metals, Ordinary Kriging interpola-
tion was employed to generate the filled contour maps (Fig.
3). Co, Cr, Ni and V showed similar spatial trends, with high
contents in the southern, southeastern and northwestern parts
of the study area, and low contents in other regions. When
considering the whole spatial distribution pattern, Cu and
Zn were similar to Co, Cr, Ni and V. However, unlike Co, Cr,
Ni and V, Cu and Zn had a hotspot, situated in the northern
part of the study area where the contents of Cd, Pb and As
were also clearly higher than in surrounding areas. As had
another hotspot in the northwestern part of the study area.
According to spatial distribution maps, Cd had higher con-
tents in the soils adjacent to the Hanjiang River, and as the
distance to Hanjiang River increased, the Cd contents de-
creased sharply, indicating the influence of the river.

Pollution and eco-risk assessment: EFs of the metals are
presented in Table 4. The mean EFs of Co, Cr, Cu, Ni and Zn
were approximately 1.13, 1.05, 1.05, 1.06 and 0.96, respec-
tively. About 96.7%, 99.8%, 99.0%, 99.3%, 98.9% of sam-
ple of Co, Cr, Cu, Ni and Zn, respectively, were classified as
being at a low pollution level, indicating that these metals

did not pose obvious pollution problems. The EF of Pb
ranged from 0.64 to 2.24, suggesting that there may be Pb
pollution in soils. About 25.7% and 51.4% of samples of As
and Cd, respectively, were at a middle or high pollution
level, indicating the occurrence of As and Cd contamina-
tion in soils. According to previous studies, As and Cd con-
tributes significantly to pollution, and a high pollution level
of As and Cd may be attributed to the addition of such
metals from anthropogenic sources (Cai et al. 2015, Mirzaei
et al. 2014).

The potential ecological risks of metals are displayed in
Table 4, and the potential ecological risk map is depicted in
Fig. 4. The RI values for all the metals were ranked in the
following order: Cd > As >Pb >Co >Ni >Cu >Cr >V >Zn.
The Ei

r 
values for Co, Cr, Cu, Ni, Pb, V and Zn in all soil

samples were under 40, indicating that these heavy metals
posed a low potential risk. Conversely, the Ei

r
 values for As

and Cd had a broader range. For Cd, 62.9% of the samples
had a moderate or considerable ecological risk. The RI val-
ues of samples were computed to evaluate pollution from
multiple heavy metals. The RI values for 88.8% of the study
areas were less than 130, meaning that most areas had low or
moderate ecological risk from heavy metals. The RI values
varied from 130 to 260 for 11.2% of the study areas, indicat-

Table 2: Skewness, kurtosis and significance level of the Kolmogorov-Smirnov test (K-S p) of the raw, log-transformed and Box-Cox
transformed data sets of heavy metal concentrations.

Data set Parameter              As              Cd             Co Cr Cu Ni Pb V Zn

Raw data Skewness 2.52 1.40 0.26 -0.18 1.30 -0.01 0.92 0.60 0.94
Kurtosis 10.71 1.92 1.42 0.27 4.93 0.77 3.71 1.18 1.16
K-S p 0.00 0.00 0.10 0.14 0.00 0.00 0.05 0.01 0.00

Log Skewness 0.47 0.25 0.19 -0.76 -0.07 0.26
Kurtosis 2.53 -0.13 1.88 0.94 1.07 0.30
K-S p 0.00 0.11 0.00 0.00 0.02 0.02

Box-Cox Skewness 0.11 -0.09 0.19 -0.16 -0.07 0.10
Kurtosis 2.12 -0.14 1.88 0.67 1.07 0.36
K-S p 0.00 0.38 0.00 0.02 0.02 0.08

 -0.32 -0.13 0.00 0.80 0.00 -0.50

Table 3: Best fit semivariogram models of heavy metals and their parameters.

Element Model C0 C+C0 C0/(C+C0) Range (m) R2

As Spherical 6.9E-4 1.6E-3 0.445 8370 0.859
Cd Exponential 2.2E-3 5.1E-3 0.429 6710 0.817
Co Spherical 8.4E+0 1.3E+1 0.635 12646 0.911
Cr Exponential 8.7E+1 1.5E+2 0.599 11105 0.949
Cu Exponential 2.6E-3 3.0E-2 0.084 3120 0.706
Ni Exponential 4.8E+0 8.7E+0 0.546 14130 0.952
Pb Exponential 7.1E+0 2.1E+1 0.342 5467 0.872
V Linear 1.7E-2 2.5E-2 0.662 20942 0.907
Zn Gaussian 8.3E-5 1.5E-4 0.561 8046 0.954

C0: nugget variance, C: structural variance, C+C0: sill variance, R2: coefficient of determination.
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ing that some areas had considerable potential ecological
risk. Fig. 4 shows that the highest RI values were situated in
the areas adjacent to the Hanjiang river. It is apparent that
the content of Cd was the decisive factor in evaluating the
potential ecological risk in the soils of the study area (Table
4 and Fig. 3).

Correlation analysis: In order to obtain important infor-
mation on heavy metal sources and pathways, Spearman’s
nonparametric correlation coefficients between the nine
metals are presented in Table 5. Strong correlations were
found between Co, Cr, Ni and V, implying that these metals
may have similar sources. This can be confirmed by the fact
that they have similar spatial trends. Cu and Zn showed
moderate correlation with Co, Cr, Ni and V, consistent with
having similar whole spatial distributions to these elements.
It is reasonable to conclude that the distribution maps can
provide a spatial refinement for reconfirming the correla-
tion analysis. Arsenic (As) showed a significant positive
correlation with Pb, indicating that they may share com-

Fig. 3: Spatial distribution maps of heavy metals.Fig. 3: Spatial distribution maps of heavy metals.

mon sources. Cd was relatively poorly correlated with other
metals, indicating that the sources of Cd were considerably
different from those of other metals. These results indicate
that there are several different sources influencing soil heavy
metal contents in the study area.

Principal components analysis: In order to reduce the high
dimensionality of the variable space, and better understand
the relationships between the eight heavy metals, PCA was
used to the Box-Cox transformed data. The results of the
PCA are shown in Table 6. Two principal components (PC)
with eigen values greater than 1 were extracted, which ex-
plained about 72% of the total variance. The first principal
component (PC1) explained 37.88% of the total variance
and was dominated by Co, Cr, Cu, Ni, V and Zn. The second
principal component (PC2), dominated by As, Cd, Cu, Pb
and Zn, explained 33.73% of the total variance.

Cluster analysis: The heavy metal contents of the soils were
standardized, and Pearson coefficients for similarities among
variables were calculated. Then hierarchical clustering was
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carried out on the standardized data using between-groups
linkage (Fig. 5). It can be observed that the dendrogram for
the nine heavy metals has four distinct clusters: (1) Co-Cr-
Ni- V, (2) Cu-Zn, (3) As-Pb, (4) Cd.

Source identification: Co, Cr, Ni and V, and to a lesser
degree Cu and Zn, could be considered to be largely de-
rived from natural sources. V is usually originated from par-
ent material, and according to the geostatistical analysis V

had better spatial structure, and less variability due to ex-
trinsic factors such as human contamination (Wu et al. 2015).
Co, Cr, Ni and V are generally controlled by the geological
background, which indicates that their concentrations in
the soils might be largely influenced by natural sources
(Mamat et al. 2014, Šajn et al. 2011). Besides, their mean
contents were close to the background values and their CVs
were low. Therefore, the high contents of Co, Cr, Ni, Cu, and
Zn in southern, southeastern and northwestern parts of the
study area may be attributed to input from natural sources.

Heavy metals such as As, Cd, Pb, and to a lesser degree
Cu and Zn, were related to anthropogenic sources. As, Cd
and Pb had higher CVs, which clearly demonstrates the in-
fluence of anthropogenic sources. In addition, according to
the geostatistical analysis, the variation of As, Cd, Pb, Cu
and Zn was dominated by short-range spatial correlation,
which indicates that these metals were affected by extrinsic
factors, such as human contamination. As Fig. 3 shows, As,
Cd, Pb, Cu and Zn had a hotspot in the northern part of the
study area where the Jingxiang Phosphorous Industrial Park
is situated, and their contents were obviously higher here
compared to the surrounding areas. Thus, the hotspot of As,
Cd, Pb, Cu and Zn in the northern part of the study area is
most likely ascribed to phosphorus-related industrial ac-
tivities. Sulphuric acid is routinely used in the phosphorus
industry, and during sulphuric acid production, wastewater
and residues that contain many kinds of heavy metals, such

Table 4: Statistical results for the enrichment factor (EF) and the potential ecological risk (RI) of heavy metals.

Element                                 EF                     Percentage of samples (%)

Min Max Mean Low Middle High

As 0.58 5.10 1.41 74.3 23.7 2.0
Cd 0.41 6.16 1.70 48.6 46.3 5.1
Co 0.51 2.05 1.13 96.7 3.3 0.0
Cr 0.78 1.88 1.05 99.8 0.2 0.0
Cu 0.62 2.32 1.05 99.0 1.0 0.0
Ni 0.61 2.21 1.06 99.3 0.7 0.0
Pb 0.64 2.24 1.19 87.8 12.2 0.0
Zn 0.60 2.40 0.96 98.9 1.1 0.0

                                                                                   Potential ecological risk of all the nine heavy metals
Heavy metal Potential ecological index range (Ei

r ) Mean(Ei
r ) SD

As 5-46 1 4 4.84
Cd 16-152 5 2 25.36
Co 3-11 6 1.19
Cr 1-3 2 0.30
Cu 3-11 5 1.01
Ni 3-10 6 1.07
Pb 3-10 6 1.81
V 1-3 2 0.32
Zn 1-2 1 0.22
RI 51-222 9 4 27.84

Fig. 4: The potential ecological risk map for heavy metals.
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Fig. 5: Dendrogram of the cluster analysis of heavy metals, using the between-groups linkage method.

Table 5: The nonparametric correlation coefficients between contents of the nine heavy metals.

As Cd Co Cr Cu Ni Pb V Zn

As 1
Cd -0.105a 1
Co 0.578a -0.056 1
Cr 0.533a -0.114a 0.673a 1
Cu 0.418a 0.256a 0.512a 0.681a 1
Ni 0.565a 0.004 0.759a 0.894a 0.713a 1
Pb 0.634a -0.037 0.497a 0.343a 0.357a 0.322a 1
V 0.420a 0.073 0.648a 0.862a 0.691a 0.819a 0.197a 1
Zn 0.316a 0.436a 0.423a 0.455a 0.755a 0.594a 0.210a 0.590a 1

aSignificant at the 0.01 probability level (two-tailed)

Table 6: Total variance explained and component matrix for heavy metal contents.

Component                              Initial eigenvalues             Rotation sums of squared loading

Total % of variance Cumulative (%) Total % of variance Cumulative (%)

1 4.837 53.75 53.75 3.409 37.88 37.88
2 1.608 17.86 71.61 3.036 33.73 71.61
3 0.987 10.97
4 0.509 5.65
5 0.421 4.68
6 0.258 2.87
7 0.192 2.13
8 0.139 1.55
9 0.049 0.54

Element                                             Component matrix                                                Rotated component matrix

PC1 PC2 PC1 PC2

As 0.834 0.232 0.468 0.728
Cd 0.341 0.799 -0.277 0.823
Co 0.741 -0.338 0.778 0.240
Cr 0.878 -0.176 0.773 0.452
Cu 0.914 -0.126 0.766 0.514
Ni 0.552 -0.402 0.680 0.067
Pb 0.761 0.499 0.237 0.879
V 0.485 -0.555 0.731 -0.092
Zn 0.867 0.191 0.520 0.719
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As, Cd, Pb, Cu and Zn, are released into soils. In addition, a
great deal of phospho-gypsum is sometime stacked in the
vicinity of the phosphate rock mining enterprises, and also
affects local soil quality. These findings should be taken
into account in decision making regarding changes to the
phosphorus chemical industry. Old arsenic enterprises were
situated in another hotspot in the northwestern part of the
study area. Although these arsenic enterprises were closed,
and local government has prioritized the improvement of
the soil quality in recent years, complete elimination of As
pollution in this area still requires a long period of time.

For Cd, as the distance to the Hanjiang River increases,
its content decreases sharply. These findings agree with the
spatial trends that had been discovered for the distribution
of Cd in paddy soils around Dongting Lake, central-south
China (Zhong et al. 2012). The water quality of the Hanjiang
River is substantially effected by wastewater discharge from
cities along the river (Lei et al. 2015). It was found that the
sediments of the middle and lower Hanjiang River were
seriously polluted by Cd, and the enrichment factor of Cd
was up to 300 (Gao et al. 2011), indicating that there was Cd
pollution in the water of the middle and lower Hanjiang
River. Unavoidably, irrigation with water from the Hanjiang
River may induce Cd pollution of the soil.

To summarize, Co, Cr, Ni and V, and to a lesser extent
Cu and Zn, mostly originate from natural sources, while As
and Pb, and to a lesser extent Cd, Cu and Zn, mainly origi-
nate from phosphorous-related industrial activities; and Cd
in the soils adjacent to the Hanjiang River originates in
polluted water from that river.

CONCLUSIONS

The mean contents of Co, Cr, Cu, Ni, V and Zn were close to
the background  values in the soils, whereas As, Cd and Pb
were significantly higher than local background values. Of
the nine heavy metals, Cd had the highest CV value, reach-
ing 48.5%. EF value of the metals studied decreased in the
order Cd > As > Pb > Co > Ni > Cr = Cu > Zn. According to
the EF values, Co, Cr, Cu, Ni and Zn are not causing obvi-
ous pollution, but As, Cd and Pb were in the middle or high
pollution range. It was found that Cd was the decisive ele-
ment for evaluating the degree of potential ecological risk
in this study area. The results of multivariate and
geostatistical analyses were similar to the EF results, which
indicated that Co, Cr, Ni and V, and to a lesser degree Cu
and Zn, mostly originated from natural sources, while As
and Pb, and to a lesser degree Cd, Cu and Zn, mainly origi-
nated from phosphorus-related industrial activities.
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