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ABSTRACT
The aim of the study was to identify the hotspots of heavy metals in sediments for exploring possible
sources and understand the relationship between heavy metals and environmental variables. West
Chaohu Lake was selected as the study area, 38 surface sediment samples and 4 river mouth
sediment samples were obtained and analysed for three typical metals (i.e. Co, Mn and Pb). Local
indicators spatial associate (LISA) analysis detected spatial clusters and spatial outliers of enrichment
factor (EF) values of the three metals and found the samples with pollution belong to high-high
clusters, low-low clusters, even low-high outliers. Geostatistics and local Moran’s I were combined,
and the results indicated that Co is mainly from natural sources, Mn is influenced by upward migration
and reprecipitation, and Pb is influenced by anthropogenic sources. Furthermore, Pb was chosen as
an example to understand the relationship between heavy metals and environmental variables. Compared
to ordinary least squares (OLS) model, spatial autoregressive regression (SAR) model performed
better and accounted for the phenomenon of spatial autocorrelation. Grain particle percent, loss on
ignition (LOI), distance to Nanfei River mouth has a significant influence on the variation of Pb
concentrations in sediments. Hotspots identification and spatial regression analysis can play an
important role in understanding the pollution process for pollution management and restoration.
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INTRODUCTION

Heavy metals are non-biodegradable and can pose a large
ecological risk, so their pollution has been an environmental
issue of public concern (Wang et al. 2012). When entering
aquatic systems, heavy metals in water column would
ultimately accumulate in sediments (Dassenakis et al. 2003).
If the physico-chemical conditions of the water-sediment
interface were changed, heavy metals may be desorbed from
sediments, and then threaten food chains and the ecosystems,
ultimately endangering human health (Hu et al. 2014, Senesi
et al. 1999). So, it is very important to identify hotspots and
reveal the relationship between heavy metals and
environmental variables for pollution control and policy
making.

Previous studies have usually employed contour to iden-
tify hotspots of heavy metals, e.g. Yuan et al. (2014) found
some metals had two hotspots with high concentrations in
soils of typical urban renewal area in Beijing, China. Never-
theless, the hotspots identification based on the contour is
influenced by many factors, such as the number of levels
and the range of each level. Furthermore, the significance of
hotspots identified by contour cannot be tested. Fortunately,
there exists another method, spatial autocorrelation analy-

sis method, which also can be implied to identify hotspots
of pollutants and to test the significance of hotspots.

Liu et al. (2013) and Huo et al. (2011) have implied
local Moran’s I, a kind of spatial autocorrelation analysis
method, to identify hotspots of pollutants resulting from
anthropogenic sources in soils. However, different from soils,
hotspots of pollutants in sediments can be caused by up-
ward migrations and reprecipitation due to geochemical
characteristics in addition to anthropogenic sources (Yuan
et al. 2012). Due to the complexity of pollutant sources in
sediments, the feasibility of local Moran’s I in the explora-
tion of possible sources of pollutants in sediments was un-
known.

For metals influenced by anthropogenic sources, it is
important to measure the relationship between their con-
centrations and the influencing environmental variables for
better understanding the pollution process. There have been
only a few studies that explored the relationship. In this
study, spatial autoregressive regression (SAR) model was
employed to understand the relationship, which accounts
for spatial autocorrelation phenomenon, i.e., that values
close together in space are generally more similar than val-
ues located farther apart. SAR model has been popularly
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used in many aspects, including homicide patterns (Ye &
Wu 2011), invasive alien plants (Dark 2004) and land use
(Overmars et al. 2003).

In this paper, West Chaohu Lake was selected as the
study area. Previous studies have found that Co in sediments
of Chaohu Lake is mainly from natural sources, Mn might
be affected by upward migrations, and Pb is influenced by
anthropogenic sources (Liu et al. 2012b, Zheng et al. 2011).
The three metals were focused in this study. Moran’s I, SAR
model, enrichment factor (EF) and geographic information
system (GIS) were combined. The purpose was to: 1. test
whether exploration of the possible sources of Co, Mn and
Pb based on local Moran’s I is feasible or not; 2. reveal the
relationship between heavy metal concentrations and envi-
ronmental variables.

MATERIALS AND METHODS

Study area: Chaohu lake, one of the five largest freshwater
lakes in China, lies within 117°16’54”-117°51’46” E and
31°25’28”-31°43’28” N, and is located in the middle-lower
reaches of Yangtze River watershed and central Anhui Prov-
ince. Chao Lake has an average depth of 2.7 m, with a water
surface area of about 770 km2 and a watershed area of 13,350
km2. The watershed of this lake has an annual mean tem-
perature of 16°C and an annual mean rainfall of 996 mm
with a subtropical monsoon climate. The lake has 33 inflow
rivers, of which Hangbu River, Nanfei River and Baishishan
River are the three largest rivers, accounting 85.4% of the
annual runoff. There is only one outflow river (Yuxi River),

which is located east of the lake and feeds the Yangtze River.

In the last 3 decades, Chaohu Lake has witnessed sig-
nificant economic growth and urban development in its
watershed. Meanwhile, this lake, especially west Chaohu
Lake, has experienced serious pollution, because of the dis-
charge of massive industrial and domestic sewage (Liu et al.
2012b). For example, in 1997, the discharge of sewage into
this lake was estimated to about 1.9 × 108 tons, 80% of
which was from Hefei City, the biggest city in the watershed
(Dang 1998). The pollution of Nanfei River, the main sew-
age discharge channel for Hefei city and Feidong county, is
more serious than that of other rivers.

Sediment sampling and analysis: Thirty-eight and four sur-
face (0-2 cm) sediment samples were obtained from the west
Chaohu Lake and at the river mouth, respectively, using a
gravity corer with latitudes and longitudes positioned us-
ing Global Positioning System (GPS) in April 2016. Sam-
pling sites are depicted in Fig. 1. The samples were trans-
ferred into plastic bags and placed in an icebox temporar-
ily. After transported to the laboratory, these sediments were
stored at 4°C.

Sediments were freeze-dried and ground with agate mor-
tar, and then totally digested with HCl-HNO

3
-HF-HClO

4
.

Metal concentrations were determined by the inductively
coupled plasma-atomic emission spectrometry (ICP-AES).
The accuracy and precision of the experiment were ensured
using blanks, replicates and standard reference sediments
offered by the Chinese Academy of Geological Sciences,
throughout the analysis. Grain size distribution of sediment

Fig. 1: Study area and distribution of sampling sites.
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samples was determined by a Malvern Mastersizer 2000
after removing of organic matter with 20% HCl, washing,
and ultrasonic dispersion. The organic matter content was
determined as a loss on ignition (LOI) following 4-h igni-
tion (550°C).

Enrichment factor: Metal concentrations in sediment were
influenced by grain size effects, which may complicate the
pollution determination only based on the concentrations.
Enrichment factor (EF), an effective method for reducing
these effects, can be employed (Wang et al. 2015) and the
EF value reflects the environment pollution status. The equa-
tion of EF can be written as follow:

)/N)/(M/N(MEF backgroundbackgroundsmaplesample          ...(1)

Where, sampleM  is the concentration of evaluated metal
in interested sediments, smapleN  is the concentration of nor-
malizing metal in interested sediments, backgroundM  is
reference concentration of the evaluated metal, backgroundN
is the reference concentration of the normalizing metal. EF
< 2 represents deficiency to minimal metal pollution, and
EF > 2 indicates various degrees of metal pollution (Han et
al. 2006).

Selecting an appropriate normalizing metal and estab-
lishing the reference concentrations are important issues in
EF calculation. Due to the inertness in migration process
and originating mainly from natural lithogenic sources, Al
is usually used as the normalizing metal (Wang et al. 2015).
Compared with metal concentrations in average crustal abun-
dances, metal concentrations in pre-industrial sediments are
considered more suitable to be used as reference background
(Liu et al. 2012a).

Local Moran’s I: Spatial autocorrelation can be used to
assess the correlation of a variable related to its position,
which measures the matching between position similarity
and value similarity (Huo et al. 2012). Moran’s I is a widely
used method for spatial autocorrelation. Local Moran’s I
index is a local index for spatial correlation, and can be
employed for identifying the locations of spatial clusters
and spatial outliers. Local Moran’s I can be computed as
follows:
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Where, n is the number of observed locations in the
whole region, x

i
 and x

j 
are values of the selected variable at

locations of i and j, x is the average value of x, w is the
spatial weights matrix, and w

ij 
 is the spatial weight between

locations i and j.

The weights matrix describes the spatial relationship be-
tween each location and its nearby locations. Generally, the
weights are on the basis of contiguity relations or distances.
In this paper, a distance-based weight matrix was employed,
and a given distance is selected in order to judge whether
the distance between location i and location j is within the
given distance or not. If within, the location i is regarded as
a neighbour of location j, and the corresponding weight is
assigned with 1. If not, the weight is assigned with 0.

After the calculation of local Moran’s I, five kinds of
local spatial autocorrelation could be identified. Two of
these belong to spatial clusters, including high-high (high
values having high-value neighbours) and low-low (low
values having low-value neighbours) clusters. Two belong
to spatial outliers, including high-low (high values having
low value neighbours) and low-high (low values having
high neighbours) outliers. The last kind represents insig-
nificant spatial autocorrelation, which indicates spatial ran-
domness. In general, high-high spatial clusters are “regional
hotspots”, low-low spatial clusters can be regarded as “cool
spot” indicating that there was no pollution, and high-low
spatial outliers can be viewed as isolated “individual
hotspots”, implying the existence of point source pollu-
tion.

Geostatistical analysis: Geostatistics employed semi-
variogram to represent spatial variability of regionalized
variable and to provide the input parameters for kriging
(Huo et al. 2012). The semivariogram can be calculated as
the following formula:
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Where, )(h  expresses the semivariance value for ob-
served pairs at a lag distance h, N(h) states the number of
observed pairs of sampling sites separated by the distance
h, Z(x

i
) is the value of the regionalized variable Z at the site

x
i
, Z (x

i
+h) is the value of the regionalized variable Z at the

site x
i
+h.

Geostatistics has 11 different theoretical semivariogram
models, such as Gaussian model and Stable model. Among
these models, the best-fit one for current semivariogram can
be selected by the highest coefficient value. Once the best-
fit model is selected, several parameters, including range,
sill, and nugget can be obtained and taken as the input
parameters for kriging interpolation.

Kriging is regarded as an optimal interpolation tech-
nique owing to unbiased estimation and has lots of vari-
ants. Among these variants, ordinary kriging (OK) is the
most frequently-used interpolation methods for mapping
the spatial pattern of heavy metals. So, in this study, OK
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was employed to generate the spatial distributions map for
EF values of heavy metals.

Spatial regression analysis: SAR model that is devised to
account for the phenomenon of spatial autocorrelation was
carried out to quantify the relationship between heavy metal
concentrations in sediments and the influencing factors.
Compared to OLS model, SAR model complements a term
that incorporates the spatial autocorrelation structure of a
given data set. The term is implemented with a spatial weight
matrix, where the neighbourhood weight of each location
can be defined by contiguity relations or distances (Zhang
et al. 2011). In this study, the spatial weight matrix is the
same as the spatial weight matrix used in Local Moran’s I.
SAR method has two basic models (spatial lag model and
spatial error model), distinguished by where the spatial
autoregressive process is believed to occur (Zhang et al.
2011).

Spatial lag model assumes that the spatial autoregressive
process can be only discovered in the dependent variable
(Kissling & Carl 2008). Hence, the spatial lag model implies
that pollutant concentrations at each location are jointly
determined by pollutant concentrations observed at nearby
locations and a set of local independent variables (Meyfroidt
& Lambin 2008, Ye & Wu 2011). The equation of the spa-
tial lag model is written as follow:

)0(~, 2,σNXβρWyy          ...(4)

Where, y is a (n×1) vector of observations on the de-
pendent variable, X is a (n×k) matrix of observations on the
independent variables,  is a coefficient on the spatially
lagged dependent variable, w is a known (n×n) spatial
weights matrix,  is a (k×1) vector of fixed but unknown
parameters, and  is a (n×1) vector of errors assumed to be
independent identically normally distributed.

Spatial error model assumes that the spatial
autoregressive process only exists in the error term (Kissling
& Carl 2008). Hence, spatial error model indicates that pol-
lutant concentration at each location depends on a set of
observed local indicators and that the error term is spatially
autocorrelated (Meyfroidt & Lambin 2008,Ye & Wu 2011).
The equation of spatial error model is expressed as follow:

)(0,~, 2 NλWuXβy          ...(5)

Where, λ  is a coefficient on the spatially correlated
errors, u is a (n×1) vector of spatial autocorrelated errors,
and the rest notions are as above.

In short, spatial lag model is consistent with the situa-
tion where pollutant concentration is jointly determined
with that of nearby locations, while spatial error model is
consistent with a situation where determinants of pollutant

concentrations omitted from the model are correlated over
space, and with a situation where unobserved factors follow
a spatial pattern (Su et al. 2011, Ye & Wu 2011).

In the presence of spatial autocorrelation, the traditional
OLS model is not appropriate to explore the relationship
among pollution process. So, the SAR model estimated by
Maximum Likelihood method is employed (Dark 2004).
The selection of a goodness-of-fit spatial model is also an
important affair in spatial regression analysis. In general,
the Lagrange Multiplier diagnostics is employed to choose
whether the spatial lag model or spatial error model is a
suitable alternative to OLS model (Su et al. 2011). The tra-
dition R2 based on OLS model (decomposition of the total
sum of squares into explained and residual sums of squares),
is not applicable to quantify the goodness of spatial regres-
sion model fit (Overmars et al. 2003). Fortunately, the pseudo
R2 can be calculated. It should be noted that the traditional
R2 cannot be compared with the pseudo R2 and the pseudo
R2 of different spatial regression models can be compared
(Overmars et al. 2003). In addition, Log Likelihood (LIK),
Akaike Information Criterion (AIC) and Schwartz Criterion
(SC) are also measures for spatial regression model fit
(Hession & Moore 2011, Wang 2007). The higher LIK or
the lower AIC or SC, the better the model is fit.

Data analysis: The basic statistical parameters were calcu-
lated using SPSS 19.0, Local Moran’s I and SAR model
were implemented using OpenGeoDa 1.2.0, while OLS
model was estimated using both SPSS 19.0 and OpenGeoDa
1.2.0, geostatistical analysis, and spatial distribution maps
of metals were performed with ArcGIS 10.3.

RESULTS AND DISCUSSION

Descriptive statistics: Descriptive statistics of metal concen-
trations and the EF values, including mean, skewness, and
kurtosis, are given in Table 1. The concentration ranges of
Al, Co, Mn and Pb were 32.89-92.50 g/kg, 7.77-21.01 mg/
kg, 314.33-1824.60 mg/kg and 17.93-100.85 mg/kg, respec-
tively. Furthermore, when Al was selected as normalizing
metal and metal concentrations of deep part (65-90 cm) of
core sediments (Fig. 1), corresponding to the pre-industrial
period with lower population and extensive agricultural ac-
tivities (Chen et al. 2011), were selected as the reference con-
centrations, EF values for Co, Mn, and Pb were calculated,
with the ranges 0.78-1.18, 0.83-2.51 and 1.05-3.89, respec-
tively. After comparison, Mn and Pb were found to have wider
ranges. In addition, Kolmogorov-Smirnov test for normality
(K-S p) was conducted to check the normality of metals of
concentrations and the EF values. Results demonstrated that
the values of all metals and their EF values were more than
0.05, indicating these metals were normally distributed.
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Local indicators of spatial association (LISA): In order to
understand the pollution condition for better remediation,
hotspots and cool spots need to be identified. This can be
achieved by local Moran’s I. Because cool spots are consid-
ered to be clean, this study mainly focused on the identifi-
cation of hotspots, which may be regional hotspots (spatial
clusters) or individual hotspots (spatial outliers). The dis-
tance bands for EF values of Co, Mn and Pb of Local Moran’s
I index all were 3500 m. The spatial patterns for the three
metals are exhibited in Fig. 2 and the spatial clusters and
spatial outliers are significant at the 0.05 level. Neverthe-
less, the three metals only had one high-low outlier (Fig. 2),
so only high-high clusters were focused on.

Zhang et al. (2008) employed local Moran’s I and GIS to
identify pollution hotspots of Pb in soils, and discovered
that different distance bands generated different results. So,
he recommended that many related factors should be taken
into consideration when selecting appropriate distance
bands. Furthermore, Huo et al. (2012) studied spatial
autocorrelation characteristics based on the distance where
the standardized Moran’s I reached maximum. They found
the results based on the former distance can detect the local
highlights of local spatial pattern. So, in this study, this
criterion is adopted for selecting suitable distance bands.
The distance bands for EF values of Cu, Mn, Pb and Zn all
were 3500 m, corresponding to each distance where the
Moran’s I reached maximum, respectively.

As Table 2 shows, global Moran’s I of Co, Mn and Pb
were  0.13, 0.49 and 0.65, respectively. Furthermore, global

standardized Moran’s I that was employed to test whether
the spatial autocorrelation is significant or not at the global
level was calculated, and the result showed that Co did not
pass the significant level test (1.96). For global Moran’s I
and global standardized Moran’s I, more details can be re-
ferred to other literature (Huo et al. 2011, Liu et al. 2013).
As to local spatial pattern, less than half of the samples of all
metals exhibited significant spatial patterns except Pb. In
addition, because the standardized Global Moran’s I was -
1.07, such a large percentage of samples without significant
spatial patterns can be expected. 30.9% for Mn and 57.2%
for Zn samples belonged to significant spatial clusters,
which dominated the whole significant spatial patterns. Low-
low clusters of samples for Pb were about half of that of
spatial clusters, while high-high clusters for Mn accounted
for a large proportion of that of spatial clusters. 2.4% for Co
and 2.4% for Pb samples belonged to the significant spatial
outliers, while the former all were in low-high outliers and
the latter all were in high-low outliers. These significant
spatial patterns imply that there is some extent of spatial
enrichment of Mn and Pb in sediments.

In addition, samples were classified based on pollution
status and local spatial pattern types (Table 3). All samples
were not polluted by Co. The samples with Mn pollution
were 35.7% and among these, 14.3% belonged to no sig-
nificant spatial pattern type and 21.4% occurred in high-
high outliers. For Pb, more than half of the samples were
polluted. Among these, 21.4% of samples occurred in no
significant spatial pattern type, 31.0% in high-high clus-

Table 1: Descriptive statistics for metals and their EF values.

Range Mean SD Skewness Kurtosis RC K-S p

Al (g/kg) 32.89-92.50 69.33 16.13 -0.39 2.01 49.0 0.14
Co (mg/kg) 7.77-21.01 15.84 3.84 -0.50 2.12 12.2 0.16
Mn (mg/kg) 314.33-1824.60 1103.10 395.18 -0.15 2.07 407.6 0.88
Pb (mg/kg) 17.93-100.85 60.61 23.06 0.07 2.04 21.3 0.71
EF (Co) 0.78-1.18 0.92 0.08 1.13 5.47 - 0.19
EF (Mn) 0.83-2.51 1.88 0.36 -0.67 3.65 - 0.82
EF (Pb) 1.05-3.89 2.04 0.58 0.41 3.71 - 0.65

SD: standard deviation; RC: reference concentration.

Table 2: The value of Global Moran’s I and sample distribution in local spatial patterns types.

Types EF(Co) EF(Mn) EF(Pb)

Global Moran’s I Global Moran’s I -0.13 0.49 0.65
Standardized Global Moran’s I -1.07 5.06 6.83

Local Moran’s I No significance (%) 97.6 69.1 40.4
High-high (%) 21.4 31.0
Low-low (%) 9.5 26.2
Low-high (%) 2.4
High-low (%) 2.4
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ters, and 2.4% in low-high outliers. In short, the three typi-
cal metals had obviously different sample distributions based
on pollution status and local spatial pattern.

LISA map exhibited a spatial distribution of the inter-
esting spatial patterns for the three metals in sediments (Fig.
2). For Co, one high-low outlier was found at the mouth of
Pai River. For Mn, several high-high clusters and low-low
clusters were located in the central part of the study area and
in the northwest part of the study area, respectively. For Pb,
north part of the study area was dominated by high-high
clusters, with one low-high outlier found among these, and
northwest part and south part of the study area was distributed
by several low-low clusters. This indicated that the three
typical metals also displayed distinctly different local spa-
tial pattern characteristics.

Spatial distribution of EF values of heavy metals: As Ta-
ble 4 exhibits, the EF values of different metals had differ-
ent best-fit semivariogram models whose coefficient values
were highest. Semivariogram models for metals were suit-
able for a K-Bessel model (Co), Gaussian model (Mn) and
Stable model (Pb). The ratio of nugget/sill (RNS) could be
employed to assess the level of spatial dependence for met-
als in sediments, with RNS less than 25% implying high
spatial dependence, RNS between 25% and 75% suggest-
ing moderate spatial dependence, and RNS more than 75%
indicating weak spatial dependence (Li et al. 2014). Ac-
cording to this criterion, Co and Mn showed high spatial
dependence, with RNS of 23.1% and 23.5%, respectively,
whereas, Pb showed weak spatial dependence, with RNS of
55.7%.

The distribution maps of EF values of the typical three
metals are exhibited in Fig. 3. The maps show that three
metals had obviously different spatial distribution patterns.
For Co, its EF value changed a little in the whole study area.
EF values of Mn were highest in the central part of the study
area, with an increasing trend from shore to center, which
contradicted the common phenomenon, i.e. that high EF
values generally occur in sediments of polluted river mouth
(Yin et al. 2011, Zhang et al. 2009). EF values of Pb were
highest in the northeast part of the study area, the nearby
region of Nanfei River mouth, exhibiting a northeast-south-
west decreasing trend.

Pollution sources exploration: Domestic sewage, industrial
wastewater, and agricultural effluent are main external
anthropogenic sources for metals and they combined with
natural sources mainly through rivers entering into the lake.
It should be noted that anthropogenic sources and natural
sources of metals can be distinguished by the EF value.
Atmospheric deposition has been considered as a significant
anthropogenic source of metals, for instance in Taihu Lake,

another lake in middle-lower reaches of Yangtze River,
continuous increase of atmospheric pollutant flux since 1960
was recorded in core sediments (Rose et al. 2004). In
addition, the upward migration may cause an increase in
the metal concentration in sediments (Anschutz et al. 2005).

Atmospheric deposition may be an important source of
influencing metal concentration in sediments. The range of
west Chaohu Lake was about 13 km in the east-west
direction and about 18 km in the south-north direction and
should be considered as a smaller region when compared
with the range of atmospheric deposition. Furthermore, the
elevation around Chaohu Lake is low (Fig. 1), and thus this
would have little effect on atmospheric deposition. So, if
atmospheric deposition contributions are significant for Pb
in whole west Chaohu Lake, the EF values should be higher.
However, in fact, in some areas the EF values of Pb were
around 1 (Fig. 3), indicating that Pb was primarily from
natural sources (Wang et al. 2015), disproving this hypoth-
esis. The condition of Co and Mn is similar to that of Pb.

The high-high clusters of EF values of Pb (more than
2.4) mainly occurred in the area around the mouth of Nanfei
River, the most polluted rivers among inflow rivers of west
Chaohu Lake, as well as, the EF values of Pb decreased
drastically as the distance to the mouth of Chaohu Lake
increased (Fig. 3). Meanwhile, the RNS of Pb between 25%
and 75% showed moderate spatial dependence exhibiting
extrinsic factors (e.g. anthropogenic sources), which may
weaken the dependence (Li et al. 2014). Pb concentrations
in the water body of Nanfei River were relatively high (Li et
al. 2011). These all indicated that high-high clusters of Pb
mainly resulted from the anthropogenic sources. No high-
high cluster of EF values of Mn occurred in the nearby re-
gion of the mouth of Nanfei River, while several high-high
clusters of Mn occurred in the region far away from Nanfei
River mouth; moreover, higher EF values mainly occurred
in this region (Fig. 3), indicating that there were other fac-
tors influencing Mn. Some studies found upwards migra-
tion of dissolved Mn in sediments and reprecipitation of
MnO

2
 in oxic surface sediments (Anschutz et al. 2005).

Therefore, high-high clusters of Mn may be induced by
upwards migration and reprecipitation due to geochemical
characteristics. Cobalt only had one sample in the high-low
outlier, and the EF value for this sample was just 1.10, indi-
cating that the sample was slightly influenced by anthropo-
genic sources. In addition, the EF values of Co in the whole
study area were around 1, meaning Co is mainly from natu-
ral sources.

In LISA analysis, the typical three metals showed obvi-
ously different characteristics, including the sample distri-
bution in local pattern types and LISA map. From the sam-
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ple distribution in local pattern type perspective, the sam-
ple distribution of metal mainly from natural sources (Co) is
different from that of metal influenced by other sources (Mn
and Pb). Nearly all samples of Co belonged to no signifi-
cant spatial pattern. While, Mn and Pb had several samples
in high-high clusters and several low-low clusters, and may
have some samples in low-high outliers. Furthermore, the
samples in high-high clusters generally were polluted ac-
cording to the EF values and the samples in the low-low
cluster mainly were unpolluted. From LISA map perspec-
tive for metals influenced by other sources, the position of
hotspots, especially regional hotspots may be different. If
the high-high clusters were mainly in the region around the
polluted river mouth, the metal may be influenced by
anthropogenic sources (Pb in this study). If the high-high
clusters were mainly in the region away from the polluted
river mouth, the metal may be influenced by upwards immi-
gration and reprecipitation (Mn in this study). So, local
Moran’s I can be employed to not only effectively find
hotspots of metals, but also identify the pollution sources
in combination with other methods.

There is an interesting phenomenon that for metals in-
fluenced by other sources (Mn and Pb), they do not have
samples in high-low outliers. Tang et al. (2013) studied the
clusters and outliers of heavy metals in urban street dust of
Beijing and found several high-low outliers of metals re-
sulting from point sources, such as factories and construc-

tion activities. Different from dust, metals in sediments sel-
dom have high-low outliers. Atmospheric deposition, as the
non-point source, impossibly brings about these outliers,
and anthropogenic sources in general cause regional
hotspots (Pb in the region around Nanfei River mouth). In
addition, the upwards migration and reprecipitation rarely
cause high-low outliers because the influencing factors as
environmental variables are spatially dependent and
scarcely change drastically.

The relationship between heavy metal concentrations and
environmental variables: Herein, the relationship between
concentrations of metals influenced by anthropogenic
sources and environmental variables were studied, and Pb
was selected as an example. As previously discussed, the
influence of atmospheric deposition on metals is insignifi-
cant, so anthropogenic sources entering into the lake via
rivers were focused on. In west Chaohu Lake, there are four
main inflow rivers (Nanfei River, Pai River, Hanngbu-Fengle
River, Baishishan River), and the EF values of Pb in corre-
sponding river mouth sediments were 3.89, 1.07, 1.21, 1.24,
respectively. So, the distance to the mouth of Nanfei River,
the most polluted river, was selected as an environmental
variable that influence Pb concentrations in sediments. Fur-
thermore, the concentration of metals in sediments is influ-
enced by other factors, mainly including grain size and or-
ganic matter content (Yuan et al. 2012). Therefore, three
variables, including the distance to Nanfei River mouth,

Table 3: Sample percent based on pollution status and local spatial pattern types (%).

Pollution status No significance High-high Low-low Low-high High-low

EF (Co) Polluted
Unpolluted 97.6 2.4

EF (Mn) Polluted 14.3 21.4
Unpolluted 54.8 9.5

EF (Pb) Polluted 21.4 31.0 2.4
Unpolluted 19.0 26.2

Table 4: Best-fit semivariogram models for EF of metals and their parameters (OK).

Model Nugget(C0) Sill(C0+C) Range(m) RNS(%) R2

EF (Co) K-Bessel 0.0012 0.0052 18,172 23.1 0.804
EF (Mn) Gaussian 0.0348 0.1483 6,481 23.5 0.831
EF (Pb) Stable 0.1841 0.3304 10,231 55.7 0.813

Table 5: Global Moran’s I value of different variables (based on 3500m).

Grain Particle Percent LOI Distance Pb Concentration

Global Moran’s I 0.44 0.35 0.84 0.74
Global Standardized Moran’s I 4.21 3.28 8.58 6.89
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grain particle percent (in this paper <16 m), and organic
matter content (measured as LOI) were selected as independ-
ent environmental variables. Then OLS model and SAR
model were employed to explain the variation of Pb con-
centrations in sediments of west Chaohu Lake.

Before the spatial regression analysis, the Moran’s I test
was conducted for spatial autocorrelation of dependent and
independent variables. The global standardized Moran’s I
values (based on 3500 m distance band, where the Moran’s
I values of all variables reached maximum) of grain particle
percent, LOI, the distance to Nanfei River mouth, and con-
centrations of Pb in sediments were 4.21, 3.28, 8.58 and
6.89, respectively (Table 5), indicating each corresponding
variable exhibited positive significant spatial
autocorrelation, violating the underlying assumption of OLS
model (Dark 2004).

Significant independent variable estimates and a higher
R2 (0.822) seemed that OLS model was a fit model (Table 7).
Nonetheless, there was significant spatial autocorrelation

for regression residuals (Moran’s I = 0.148). This means that
OLS model was not fit to explore the relationship between
variables. So, the SAR model that accounts for spatial
autocorrelation should be employed to solve this problem.
Then, Lagrange Multiplier (i.e. LM, including LM-lag,
Robust LM-lag, LM-error and Robust LM-error) tests were
calculated to decide whether either spatial lag model or
spatial error model is a suitable alternative to OLS model
using OLS results and tested for significance. 5% was se-
lected as the significance level for all diagnostic testing. As
Table 6 shows, among the four diagnostic statistics, LM-
error and Robust LM-error are insignificant, while the rest
were significant. So, the spatial error model corresponding
to Robust LM-error and LM-error was not appropriate in the
spatial regression analysis, while the spatial lag model was
implied to model heavy metals data.

The Moran’s I value of regression residuals of the spa-
tial lag model, 0.009, appeared to be a satisfactory result for
correcting the problem of residual dependency in OLS

 

 

Fig. 2: LISA map for EF values of heavy metals in sediments.

Fig. 3: Spatial distribution for EF values of heavy metals in sediments.
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model. Furthermore, the higher LIK and the lower AIC and
SC means that spatial lag model was more suitable than
OLS model in exploring the relationship between variables.
In addition, compared with OLS model, spatial lag model
decreased the estimated regression coefficient of LOI, grain
particle percent, and distance to Nanfei River mouth (Table
7). This is consistent with previous studies, i.e. if the spatial
autocorrelation of environmental variables was accounted
for, a part of the prediction would be based on the
autoregressive term (Overmars et al. 2003). Meanwhile, the
spatial lag parameter () is strong and significant, indicat-
ing the influence of Pb concentrations in sediments at nearby
locations.

In the spatial lag model, the influence of grain particle
percent on Pb concentrations is significant. This agrees with
grain size effects, i.e. as sediment becomes finer, its surface
specific surface area tends to be higher, and thus concentra-
tions of metals increase. Therefore, when identifying
hotspots, it is necessary to reduce grain size effects (in this
study, EF values were employed to instead metal concen-
trations). In addition, it should be noted that when com-
pared with OLS model, the significance of the grain particle
percent in spatial lag model increased (Table 7), consistent
with previous studies, i.e. when spatial autocorrelation was
not taken into account, the biased significance would be
obtained (Overmars et al. 2003).

When Liu & Shen (2014) studied metal concentrations
in surface sediments of Chaohu Lake, they considered that
the variations of low LOI values have less influence on metal
concentrations. As per Table 7, spatial lag model revealed
that LOI showed significant influence on Pb concentrations,
inconsistent with their conclusion. Furthermore, previous
studies have found that natural organic matter has a high
affinity for metals in the aquatic environment (Fang et al.
2009). Therefore, in the study about the relationship be-
tween sediment properties and metal concentrations, organic
matter content should be considered.

Huang et al. (2007) found that heavy metal concentra-
tions in river sediments decreased as the distance away from
the dominant source increase. Furthermore, Yin et al. (2011)
also found that there was an overall tendency for metal con-
centrations to increase from estuarine areas of Nanfei River
to the lake center. Similarly, in spatial lag model, the dis-

Table 6: LM test for SAR model.

Test Value Probability

LM-lag 5.800 0.016
Robust LM-lag 4.291 0.038
LM-error 1.513 0.219
Robust LM-error 0.004 0.953

tance to Nanfei River mouth had a significant influence on
variations of Pb concentrations (Table 7). Nanfei River is
the most polluted river among the inflow rivers of west
Chaohu Lake, and the EF of Pb at Nanfei River mouth was
far higher than other river mouths. So, Nanfei River should
be focused for pollution control and remediation.

CONCLUSIONS

In this study, 38 sediments and 4 river mouth sediments were
analysed using local Moran’s I, geostatistics and EF. LISA
analysis revealed that Mn and Pb had high-high clusters,
meaning there is some extent spatial enrichment of Mn and
Pb in sediments. Furthermore, samples were classified
according to pollution status and local spatial patterns, the
results indicated that polluted samples are mostly in high-
high clusters, while unpolluted samples generally belonged
to low-low clusters. LISA map exhibited high-high clusters
of Zn distributed in the north part of the study area, and high-
high clusters of Mn in the central part of the study area.
Geostatistic analysis showed that Co and Mn have high spa-
tial dependence, and Pb weak spatial dependence. After analy-
sis, Co is found to be mainly originated from natural sources,
Mn is influenced by upward migration and reprecipitation,
and Pb is influenced by anthropogenic sources.

The typical three metals showed obviously different
characteristics. Sample distribution in local spatial patterns
of Co, which is mainly from natural sources, is different
from that of Mn and Pb that may be influenced by other
sources. Furthermore, for metals influenced by other sources
(Mn and Pb), the positions of hotspots, especially regional
hotspots, may be different. Local Moran’s I can be employed
to not only effectively detect hotspots of metals, but also
identify the pollution sources.

The relationship between heavy metal concentrations
and environmental variables was analysed using SAR model
and OLS model, and Pb was selected as an example. Com-
pared with OLS model, SAR model has several advantages,
including taking account of spatial autocorrelation, decrease
of regression residuals, increase of LIK and pseudo R2, and
reduction of AIC and SC. In addition, grain particle percent
and LOI were found to have significant influence on Pb
concentrations, so in other similar studies, these should be
taken into consideration. Furthermore, Nanfei River should
be paid attention for pollution control and remediation of
west Chaohu Lake. This is a new trial that explores the rela-
tionship between heavy metals and environmental variables
from a spatial regression analysis perspective.
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Table 7: OLS model and spatial lag model for Pb concentrations in sediments.

Model Variable Coefficient t-stat   Probability

OLS model Constant 5598.115 2.093 0.044
LOI 5.855 10.943 0.000
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                 R2 = 0.822, LIK = -133.210, AIC = 274.420, SC = 280.863, MIR = 0.148

Spatial lag model Constant 5562.187 2.394 0.017
LOI 5.135 9.885 0.000
Grain particle percent 174.795 2.387 0.017
Distance -2.713 -3.535 0.000
 0.275 2.674 0.007

             Pseudo-R2 = 0.851, LIK = -130.200, AIC = 270.401, SC = 278.455, MIR = 0.009

MIR: Moran’s I of residuals.
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