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	       ABSTRACT
Over time, predictive models tend to become more accurate but also more complex, thus 
achieving better predictive accuracy. When the data is improved by increasing its quantity and 
availability, the models are also better, which implies that the data must be processed to filter 
and adapt it for initial analysis and then modeling. This work aims to apply the Random Forest 
model to predict PM10 particles. For this purpose, data were obtained from environmental 
monitoring stations in Mexico City, which operates 29 stations of which 12 belong to the State 
of Mexico. The pollutants analyzed were CO carbon monoxide, NO nitrogen oxide, and PM10 
particulate matter equal to or less than 10 µg.m-3, NOx nitrogen oxide, NO2 nitrogen dioxide, 
SO2 sulfur dioxide, O3 ozone, and PM2.5 particulate matter equal to or less than 2.5 µg.m-3. 
The result was that when calculating the certainty of our model, we have a value of 80.40% 
when calculating the deviation from the mean, using 15 reference variables.

INTRODUCTION

Air pollution is a global problem. The World Health 
Organization estimates that 90% of people breathe 
polluted air (WHO 2019). Consequently, around seven 
million deaths are attributed to air pollution (WHO 2014). 
Several organizations are focusing on evaluating pollution 
indicators, considering the characteristics of each place 
(Perevochtchikova 2013).

One of the primary air pollutants is ozone (O3), a gas 
of three oxygen atoms in the upper atmosphere and at 
the surface level. At the surface level, the latter becomes 
hazardous to people’s health (Liu et al. 2018). For example, 
industrial and vehicle emissions are considered the primary 
precursor sources of ozone (EPA 2021). It should be noted 
that wind is a significant factor in pollutant dispersion; its 
speed and direction are linked to pollutant concentration, and 
the more wind, the less pollutant concentration (Biancofiore 
et al. 2015).

Poor air quality is a public health problem for large cities 
with high population concentrations, and these air pollutant 
emissions are generated by motor vehicles and factories 
(Perevochtchikova 2009). Our case study was conducted in 
Mexico City, Latin America’s largest city. For this reason, 

the Federal and Local governments have taken care to have 
monitoring stations and record in databases all records of 
the primary pollutants on average per hour, through the 
guidelines and supervision of the INECC (National Institute 
of Ecology and Climate Change) with the operation of 
the DMA (Directorate of Atmospheric Monitoring) of 
Mexico City. Under this premise, the data generated can 
be used for monitoring and data science analysis to make  
inferences about the behavior of pollutants, which is the 
case here.

The data recorded in different industries and applications 
such as monitoring (in just one year, the DMA is more 
than 6 million records), which is why they have to be 
analyzed to look for behaviors and opportunities to improve 
processes and inferences, for which it is necessary to have 
computational tools of Data Science; otherwise, it would be 
almost impossible (Provost & Fawcett 2013). Big Data is 
about analyzing vast amounts of data, and we can divide it 
into two parts: the technology (Hadoop, Spark, etc.) and the 
platform architecture (Gonzalez Diaz 2017). With Big Data 
tools, any analysis would take a long time, and the relevance 
would be adequate.

The application of Data Science in environmental and 
specifically air quality monitoring has been worked on, e.g., 
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Kurt and Oktay applied Airpol, a real-time forecasting system 
using PHP programming language, MySQL database, and 
MATLAB for the inferential statistics part (Kurt & Oktay 
2010). It acquires data from different sources and stores 
them in a single central database. In retrospect, systems for 
predicting pollutant behaviors were treated as black boxes, 
where the system was not understood. It was challenging 
to understand the relationships of the variables and thus 
not know why things happened (Mohan & Kandya 2011); 
nowadays, analysts need to understand these relationships.

Sertel et al. (2012) integrated remote sensing, 
geostatistical, and spatial analysis methods. They looked at 
the relationship between transport, land use, and air quality 
(Sertel et al. 2012), i.e., they studied data from different 
sources to improve their results. Essentially, four types of 
models are used to predict PM2.5 concentrations: regression, 
artificial intelligence, time series, and chemical transport 
(Zhou et al. 2014). Zhou et al. (2014) used EMD (Empirical 
Mode Decomposition), which was initially developed to 
study ocean waves but is now also applied in nature and 
social science studies.

Zhang & Yuan (2015) implemented a distributed random 
forest algorithm using Spark to create a predictive air quality 
model using actual meteorological data in Beijing (Zhang 
& Yuan 2015). In the same year, Anaya Díaz (2015)  took 
meteorological data and an air quality index collected over 
four years in Valledupar, Colombia (Anaya Díaz 2015), 
using clustering techniques to estimate air quality with the 
application of data mining techniques. Hsieh et al. proposed 
an entropy-minimizing model to suggest locations for new 
monitoring stations using air quality data in Beijing by 
constructing i-layer graphs that reflect temporal correlations. 
In contrast, the data connections remain identical (Hsieh et 
al. 2015).

Data mining allows to analysis of air quality using 
analytical methods when scientific methods do not exist; 
in that sense, Soh et al. propose a predictive system for 
air quality using ST-DNN (Shape-Tailored Deep Neural 
Networks) to predict PM2.5 48 hours in advance (Soh et al. 
2016). Also, Li et al. (2016) applied to predict air quality 
deep learning approach, applying a regional data treatment as 
a spatiotemporal process that considers spatial and temporal 
correlations of data to predict the air quality of all monitoring 
stations simultaneously with seasonal stability (Li et al. 
2016), which recognizes and applies seasonal behavior in 
analysis and predictions.

Wang et al. (2017) categorized the main pollutant 
forecasting models as deterministic, statistical, and hybrid 
models (Wang et al. 2017). They proposed a hybrid model 
based on the ELM (Extreme Learning Machines) model 

optimized by the DE (Differential Evolution) algorithm, 
managing to forecast random, irregular, and non-stationary 
data series. Alongside model improvements, Bellinger et 
al. recognize that advances in technology and lower prices 
for computing power in computers allow for measuring 
and storing different variables related to the environment 
(Bellinger et al. 2017), coupled with data from resources such 
as social networks, give a new perspective to environmental 
health analysis. Also, in 2017, Mahajan set out to develop a 
stable model with a real-time implementation (Mahajan et 
al. 2017), for which they used an ARIMA (Autoregressive 
Integrated Moving Average) model and an NNAR (Neural 
Network Autoregression) model to predict PM2.5 levels 
in four regions of Taiwan with a total of 557 monitoring 
stations. In a more recent publication, Soh et al. propose this 
time to analyze the spatiotemporal patterns of particulate 
matter (PM) in Taiwan by developing a PM probability map 
with its patterns per day. It is a method that uses dynamic 
time warping and analyses the temporal similarity between 
multiple stations and their performance (Soh et al. 2017).

Zhu (2018) highlighted the importance of regional 
meteorological conditions as essential data to be considered 
in a predictive model for pollutants such as O3, as they found 
that in Chicago, the concentration of that pollutant is more 
sensitive to air temperature, wind speed, and direction, 
relative humidity, incoming solar radiation and cloudiness 
(Zhu et al. 2018). Gao also conducts model studies to predict 
the behavior of O3 (most studies are based on PM). They use 
a few climate parameters as predictors, and the application 
of the Monte Carlo method to study the uncertainty of the 
ANN (Artificial Neural Networks) model is highlighted (Gao 
et al. 2018). In a study, Amado and de la Cruz (2018) built 
predictive models that relate the values of a prototype that 
makes sensor readings and relates them to the air quality 
index (Amado & De la Cruz 2018), together with Bayesian 
models, allowing them to obtain an accuracy of up to 99 % 
in their tests.

In an article published by Rybarczyk & Zalakeviciute 
(2018), they infer that forecasting is less accurate than 
estimation and justify the use of more demanding methods, 
such as Deep Learning, to predict hours or even days in 
advance the concentration of a pollutant (Rybarczyk & 
Zalakeviciute 2018). Based on the above, it seems that 
data analysis for predicting pollutant concentrations has 
been applied sparingly. Still, one also has to consider 
the application of the model to be developed and the 
experience of the implementers. In the same period, when 
evaluating various models, Roy et al. (2018) suggest that the 
Multivariate Adaptive Regression Splines (MARS) model 
has a better description of the data set and a higher prediction 
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compared to the Random Forest (RF) and the Classification 
and Regression Tree (CRT) (Roy et al. 2018).

Regarding accuracy again, Zhang et al. (2019) noted 
that until 2019, pollutant concentration prediction methods 
needed to effectively use existing Big Data to extract the 
temporal and statistical characteristics of the data (Zhang et 
al. 2019), resulting in limited model accuracy. Another article 
highlights that it is highly recommended to compare different 
models, such as ANN, PLS (Partial Least Squares), RFR, and 
MLR, when choosing which one would be the most suitable 
(Wei et al. 2019) and obtain the best model by averaging the 
results of different models. Having contributed to Big Data, 
more and more governments are publishing their data on their 
portals to stimulate its use in applications that serve their 
citizens (Buenadicha et al. 2019). Commercial industries are 
also embracing Big Data by using innovative techniques that 
have extracted demographic, socioeconomic, and consumer 
behavioral data for forecasting and analysis (Tan et al. 
2020). Lim and his team presented a complementary option, 
mobile sampling, that improves the spatial granularity of 
Land Use Regression (LUR) models by deploying low-cost 
sensors that could improve and modernize how air pollution 
is measured (Lim et al. 2019). Also, Yuchi et al. (2019) 
showed that when measuring indoor PM2.5 concentrations, 
MLR (multiple linear regression) and RFR (random forest 
regression) models obtain similar results in a heavily polluted 
environment by using a small number of variables (Yuchi 
et al. 2019).

We will now look at two proposals for predicting 
pollutant concentrations using Air Quality Indices (AQI) 
(which use a combination of measured pollutants for their 
integration). The first is presented by Lino-Ramirez et al., 
which is a real-time system that monitors environmental 
variables from several points and makes a prediction of the 
behavior of those variables (Lino-Ramirez et al. 2019). It 
was applied in Guanajuato, Mexico, and predicts air quality 
according to an established traffic light. In the second case, 
three learning models were applied to predict the PM2.5 air 
level using data from the CPCB (Central Pollution Control 
Board) using more than three years of data resulting in an 
air quality index for the Delhi NCR region (Sihag et al. 
2019). Camí Núñez highlights in his article that applied 
measurements such as the two previous ones are used to 
trigger different anti-pollution protocols and should be able 
to forecast pollutant concentrations sometime in advance to 
be timely (Camí Núñez 2020).

Next, we want to point out that, over time, predictive 
models tend to become more accurate but also more 
complex, indeed, based on the experience of previous model 
developments. Zhou et al. (2020), for example, in his model 

made measurements at different seasons in four cities in the 
Yangtze River Delta with five prevalent forecasting tools, 
including SFGM (Seasonal Fractional-order Grey Model), 
SGM (Seasonal Grey Model), LSSVM (Least Squares Model) 
and LSSVM (Least Squares Squared Model), and LSSVM 
(Least Squares Squared Model), LSSVM (Least Squares 
Support Vector Machine), SARIMA (Seasonal Auto-regress 
Integrated Moving Average) and BPNN (Back Propagation 
Neural Network), with a considerable improvement of the 
prediction accuracy of seasonal air quality changes (Zhou et 
al. 2020). By increasing and thus enriching the data available 
for modeling, Pinto et al. (2020) proposed introducing data 
on traffic patterns (speed, intensity) and emissions generated 
by vehicle emission models (Pinto et al. 2020).

Another study on Delhi NCR done by Yadava & 
Agarwal (2020) to predict the level of PM2.5 in the air 
applied three models: LSTM (Long Short-Term Memory), 
Auto-regression, and SVM (Vector Machine) to test which 
of the models is the most suitable, using the data from the 
CPCB (Central Pollution Control Board) website (Yadava 
& Agarwal 2020).

Already Harbola et al. (2021) introduced the Air Quality 
Temporal Analyser (AQTA), which is a system with visual 
analysis of air quality data that allows the use of visualization 
techniques that visually display anomalies and correlations of 
correlated trends through an interactive, non-directed search 
(Harbola et al. 2021).

Neural networks rely on data, which generally comes 
from ground-based monitoring stations, so their coverage is 
limited to the number of stations installed. To overcome this 
limitation, Lightstone et al., through a deep neural network 
(DNN), combine spatial Kriging interpolation with additional 
local source variables by interpolating the measured PM2.5 
concentrations across locations without monitoring stations 
installed (Lightstone et al. 2021).

MATERIALS AND METHODS

For our research, which is based on developing a predictive 
model, we have followed the steps suggested by some 
authors, such as (Herman et al. 2013), who propose four 
stages for model development (acquire, prepare, analyze, and 
act) and we complement it with what is suggested by (Provost 
& Fawcett 2013), who propose six stages (understanding the 
business, understanding the data, data preparation, modeling, 
evaluation and model development).

Fig. 1 shows the methodology we followed for our 
research. In step 1 of Data Access and Understanding, 
we seek to know the most reliable sources of data and 
understand how they were recorded and the formats of 
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the data provided. Step 2 aims to review the records, 
eliminate incomplete or erroneous records, set nulls to 
a value if applicable, and prepare the data in a suitable 
format for modeling. In step 3, we separate data to train, 
review, evaluate, and apply the model (Random Forest in  
our case).

The 4th step allows us to evaluate the model against the 
actual data left for that case and to see the degree of certainty 
of our model.

Important note: A discussion will occur at each stage 
since data were analyzed at each step and further data were 
generated.

Data Access and Understanding

In Mexico, the INECC (National Institute of Ecology 
and Climate Change) dictates how data from pollutant 
concentration monitoring should be recorded in a database. 
All state or municipal governments in the republic that wish 
to monitor air quality for official purposes must adhere to 
these guidelines. For example, for each pollutant being 
monitored, the hourly average is recorded for each hour, 
starting from hour 0 to hour 23 of each day. Flags are added 
to indicate whether the recorded data is correct or inconsistent 
and is therefore invalidated.

In Mexico City and the metropolitan area, the official 
body that records pollutant concentrations and indicates air 
quality is the DMA (Atmospheric Monitoring Directorate), 
which depends on the SEDEMA (Ministry of the 
Environment) of the Mexico City Government, and operates 
29 monitoring stations, 12 of which belong to the State of  
Mexico.

Fig. 2 shows Mexico City framed by a line and the 
surrounding municipalities of the State of Mexico, which 

make up the Metropolitan Area. Each point refers to the 
locations of the monitoring stations.

The names of the monitoring stations are listed in  
Table 1. The records accessed are grouped by monitoring 
station, date and hourly average and by each pollutant, 
with the inclusion of flags as shown in Table 2. For 
example, the first record shows that it belongs to station 
243, on 25 December 2020, to the hourly average 01 of 
the pollutant NO, which has the status of validated with 
a 1, and its record value of NO (nitric oxide), is 0.001  
ppm.
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Fig. 1:  Methodology followed for the research. 

 

Fig. 1: Methodology followed for the research.

Table 1: Some air quality monitoring stations in the CDMX metropolitan 
area.

Station 
ID

Short_
name

Name Municipality Entity

242 AJM Ajusco Medio Tlalpan CDMX

243 ATI Atizapán Atizapán de 
Zaragoza

Estado de 
México

300 BJU Benito Juarez Benito Juárez CDMX

244 CAM Camarones Azcapotzalco CDMX

245 CCA Centro de 
Ciencias de la 
Atmósfera

Coyoacán CDMX

246 CHO Chalco Chalco Estado de 
México

248 CUA Cuajimalpa Cuajimalpa de 
Morelos

CDMX

249 CUT Cuautitlán Tepotzotlán Estado de 
México

250 FAC FES Acatlán Naucalpan de 
Juárez

Estado de 
México

431 FAR FES Aragón Nezahualcóyotl Estado de 
México

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:selfia.bintari@staff.uns.ac.id
mailto:selfia.bintari@staff.uns.ac.id


715RANDOM FOREST IN A PREDICTIVE MODEL OF PM10 PARTICLES IN MEXICO CITY

Nature Environment and Pollution Technology • Vol. 23, No. 2, 2024This publication is licensed under a Creative 
Commons Attribution 4.0 International License

This publication is licensed under a Creative 
Commons Attribution 4.0 International License

Data Preparation and Exploration 

Because the analysis of the data requires that all pollutants 
be found in the same record, it was necessary to “pivot” 
the records for each pollutant (CO carbon monoxide, NO 
nitrogen oxide, PM10 particulate matter equal to or less than 
10 µg.m-3, NOx nitrogen oxide, NO2 nitrogen dioxide, SO2 
sulfur dioxide, O3 ozone, and PM2.5 particulate matter equal 
to or less than 2.5 µg.m-3), so that each was a field in the 
table and is shown in Table 3.

The INECC has established specific pollutants (referred 
to as “Criteria”; see Table 4 for more information) for 
the Mexican territory. It is precisely those pollutants that 
we must measure, according to INECC parameters, to 

In the field “Parameter,” the pollutant is recorded; in 
“Validate,” a 1 if the data is correct and 0 if it is not, and in 
“Value_act,” the concentration data is recorded on that date 
and at that time in each station. 

 

Fig. 2: Location of monitoring stations for reference only taken from the site http://www.aire.cdmx.gob.mx/. 

The names of the monitoring stations are listed in Table 1. 

Table 1: Some air quality monitoring stations in the CDMX metropolitan area. 

Station 
ID 

Short_name Name Municipality Entity 

242 AJM Ajusco Medio Tlalpan CDMX 

243 ATI Atizapán Atizapán de Zaragoza Estado de 
México 

300 BJU Benito Juarez Benito Juárez CDMX 

244 CAM Camarones Azcapotzalco CDMX 

245 CCA Centro de Ciencias de la 
Atmósfera 

Coyoacán CDMX 

246 CHO Chalco Chalco Estado de 
México 

248 CUA Cuajimalpa Cuajimalpa de Morelos CDMX 

249 CUT Cuautitlán Tepotzotlán Estado de 
México 

250 FAC FES Acatlán Naucalpan de Juárez Estado de 
México 

Fig. 2: Location of monitoring stations for reference only taken from the site http://www.aire.cdmx.gob.mx/.

Table 2 Example of pollutant records as submitted.

Station 
ID

Date Time Parameter Validate Value_
act

243 2020-12-25 1 NO 1 0.001

243 2020-12-26 1 NO 1 0.001

243 2020-12-31 1 NO 1 0

243 2020-01-02 1 NO2 0 \0

243 2020-01-03 1 NO2 1 0.003

Table 3: Pollutant records converted to fields.

FECHA HORA CO NO PM10 NOx NO2 SO2 O3 PM2.5

03/01/2020 8 0.4 0.001 5 0.008 0.007 0.001 0.032 2

03/01/2020 9 0.5 0.004 9 0.014 0.01 0.001 0.03 4

03/01/2020 10 0.7 0.012 8 0.03 0.018 0.001 0.025 1

03/01/2020 11 0.7 0.012 17 0.032 0.019 0.001 0.029 4

03/01/2020 12 0.8 0.015 13 0.039 0.024 0.001 0.032 3

03/01/2020 13 0.6 0.005 39 0.018 0.013 0.001 0.044 21

03/01/2020 14 0.6 0.003 17 0.014 0.011 0.001 0.048 8

03/01/2020 15 0.6 0.003 25 0.014 0.011 0.001 0.054 9
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obtained from the Mexican National Meteorological  
Service. 

Seasonal Analysis of PM10

Our first analysis looks for any seasonality of the PM10 
variable. It contrasts it with some climatic variables that 
might be related, such as wind speed, precipitation, humidity, 
and temperature. When we performed this analysis, we found 
inconsistent data at the stations Benito Juarez, Cuautitlán, 
Gustavo A. Madero, and Iztacalco. Since missing values for 
one or more fields affect the model, these stations have been 
removed from our study.

For this purpose, we have averaged the monthly values of 
the mentioned variables using the open-source programming 
language R (CRAN 2022), as the basis for all our research. In 
each case, if appropriate, we will show snippets of the code 
we have used. The computer equipment is a 7th-generation 
Intel Core i7 laptop with 16 GB of RAM.

Fig. 3 aimed to see if there was a relationship between 
PM10 and some meteorological variables affecting its 
concentration or measurement, such as wind speed, 
precipitation, humidity, and temperature (Dung et al. 2019). 
According to the monthly averages plotted, we can observe 
that PM10 has its highest measurements at the beginning and 
end of the year and its lowest point in August. However, we 

Table 4: Criteria pollutants and their allowable concentrations.

Pollutant Concentration Exposure 
time[ppm] [μg.m-3]

Ozone (O3) NOM-020-
SSA1-1993

0.11 216 1 h 

0.06 8 h

Carbon monoxide (CO) 
NOM-021-SSA1-1993

11 12.595 8 h

Lead (Pb) NOM-026-
SSa1-1993

n/a 1.5 Quarterly

Sulfur dioxide (SO2) NOM-
022-SSA1-1993

0.13 341 24 h

Nitrogen dioxide (NO2) 
NOM-023-SSA1-1993

0.21 395 1 h

Total Suspended Particles 
(TSP) NOM-025-SSA1-1993

n/a 120 24 h

50 Annual

PM10 n/a 65 24 h

15 Annual

PM2.5 n/a 1.5 24 h

Annual

temperature. When we performed this analysis, we found inconsistent data at the stations Benito 
Juarez, Cuautitlán, Gustavo A. Madero, and Iztacalco. Since missing values for one or more 
fields affect the model, these stations have been removed from our study. 

For this purpose, we have averaged the monthly values of the mentioned variables using the 
open-source programming language R (CRAN 2022), as the basis for all our research. In each 
case, if appropriate, we will show snippets of the code we have used. The computer equipment 
is a 7th-generation Intel Core i7 laptop with 16 GB of RAM. 

Fig. 3 aimed to see if there was a relationship between PM10 and some meteorological variables 
affecting its concentration or measurement, such as wind speed, precipitation, humidity, and 
temperature (Dung et al. 2019). According to the monthly averages plotted, we can observe that 
PM10 has its highest measurements at the beginning and end of the year and its lowest point in 
August. However, we cannot observe a similar behavior derived from the monthly averages, 
for example, for velocity, which has the highest values in June, September, and October, very 
different compared to particulate matter. The cases of temperature and humidity also show no 
relationship with PM10. An inverse relationship can be seen in the case of precipitation, which 
has its highest values in August, in contrast to PM10, and its lowest values at the beginning and 
end of the year. 

 

 

Fig. 3: Monthly comparison of 2020 PM10 and some meteorological indicators. 

In this first exploration, the observations present certain behaviors that allow us to verify that 
precipitation has a specific correlation with PM10. However, we performed a correlation 
analysis and plotted the results in Figs. 4 & 5 for a more accurate analysis. 

Fig. 3: Monthly comparison of 2020 PM10 and some meteorological indicators.

determine whether the air quality we breathe is satisfactory  
or not.

Below, weather data is aggregated by date and 
time for temperature, wind speed and direction, 
precipitation, humidity, and pressure, which were 
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cannot observe a similar behavior derived from the monthly 
averages, for example, for velocity, which has the highest 
values in June, September, and October, very different 

compared to particulate matter. The cases of temperature and 
humidity also show no relationship with PM10. An inverse 
relationship can be seen in the case of precipitation, which 

Correlation of Independent Variables 

To carry out the analysis, we calculated the covariance and correlation of the variables involved 
using a linear regression model using the Pearson method and the coefficient of determination 
R2.  

Fig. 4 shows the correlations between PM10 and meteorological variables such as temperature, 
wind speed, precipitation, humidity, wind direction, barometric pressure, and time of day (time 
is plotted in this item for the practicality of graphical presentation).  

The highest correlation is found in unfavorable humidity, i.e., the more humidity, the less PM10 
with an R2 value of -0.143; the next most important are precipitation with -0.085 and 
temperature with 0.084. The others have even lower values. 

 

 

Fig. 4: Correlation of PM10 with meteorological variables. 

The exact process was performed in Fig. 5 for the other pollutants for which data are available, 
such as PM2.5, O3, CO, SO2, NO, NO2, and NOx.  

Fig. 4: Correlation of PM10 with meteorological variables.

 

Fig. 5: Correlation of PM10 and other pollutants. 

 

The highest coefficients are PM2.5 with 0.344, NO2 with 0.274, NOx with 0.224, NO with 0.165, 
CO with 0.104, SO2 with 0.092, and O3 with 0.039. 

Although there is no conclusive data at this exploration stage, there is a correlation of 
meteorological variables in which humidity is inverse and the highest. In the case of pollutant 
variables, the highest value is PM2.5. 

There is no single indirect variable that is decisive. However, the set of all of them will define 
the behavior of PM10, and their modeling will be subject to this characteristic of our study data. 

Model Construction and Training 

Based on the experience of other research, such as Deshmukh's (Deshmukh & Gulhane 2016), 
we think that to develop a well-founded predictive model, a cluster analysis is necessary, which 
allows us to group similar objects, in our case, monitoring stations to see if some of them have 
similar behaviors or rather, similar measurements and group them so that perhaps, we have not 
one but several models according to the number of clusters found. 

In our research, the function fviz_nbclust belonging to the R language package "factoextra" 
(cran.r-project.org 2022) was used to determine the optimal number of clusters. The k-means 
clustering minimizer aims to minimize the total variation within clusters or the total sum of 
squares within the cluster. That value is required to be the minimum. This function also plots 
the results using the so-called "elbow" method, using the "silhouette" method that calculates 

Fig. 5: Correlation of PM10 and other pollutants.
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has its highest values in August, in contrast to PM10, and its 
lowest values at the beginning and end of the year.

In this first exploration, the observations present certain 
behaviors that allow us to verify that precipitation has a 
specific correlation with PM10. However, we performed a 
correlation analysis and plotted the results in Figs. 4 & 5 for 
a more accurate analysis.

Correlation of Independent Variables

To carry out the analysis, we calculated the covariance and 
correlation of the variables involved using a linear regression 
model using the Pearson method and the coefficient of 
determination R2. 

Fig. 4 shows the correlations between PM10 and 
meteorological variables such as temperature, wind speed, 
precipitation, humidity, wind direction, barometric pressure, 
and time of day (time is plotted in this item for the practicality 
of graphical presentation). 

The highest correlation is found in unfavorable humidity, 
i.e., the more humidity, the less PM10 with an R2 value of 
-0.143; the next most important are precipitation with -0.085 
and temperature with 0.084. The others have even lower 
values.

The exact process was performed in Fig. 5 for the other 
pollutants for which data are available, such as PM2.5, O3, CO, 
SO2, NO, NO2, and NOx. 

The highest coefficients are PM2.5 with 0.344, NO2 with 
0.274, NOx with 0.224, NO with 0.165, CO with 0.104, SO2 
with 0.092, and O3 with 0.039.

Although there is no conclusive data at this exploration 
stage, there is a correlation of meteorological variables in 
which humidity is inverse and the highest. In the case of 
pollutant variables, the highest value is PM2.5.

There is no single indirect variable that is decisive. 
However, the set of all of them will define the behavior of 
PM10, and their modeling will be subject to this characteristic 
of our study data.

Model Construction and Training

Based on the experience of other research, such as 
Deshmukh’s (Deshmukh & Gulhane 2016), we think that to 
develop a well-founded predictive model, a cluster analysis 
is necessary, which allows us to group similar objects, in our 
case, monitoring stations to see if some of them have similar 
behaviors or rather, similar measurements and group them so 
that perhaps, we have not one but several models according 
to the number of clusters found.

In our research, the function fviz_nbclust belonging to the 
R language package “factoextra” (cran.r-project.org 2022) 
was used to determine the optimal number of clusters. The 
k-means clustering minimizer aims to minimize the total 
variation within clusters or the total sum of squares within 
the cluster. That value is required to be the minimum. This 
function also plots the results using the so-called “elbow” 
method, using the “silhouette” method that calculates the 
average of the observations for different values of k. The 
optimal number of k is the highest over the range of k.

In Fig. 6, the highest number is found in cluster 2 (the 
elbow), indicating 2 clusters of monitoring stations. To 

the average of the observations for different values of k. The optimal number of k is the highest 
over the range of k. 

 

Fig. 6: Optimal number of clusters. 

In Fig. 6, the highest number is found in cluster 2 (the elbow), indicating 2 clusters of 
monitoring stations. To locate which stations belong to which block (clustering) by Euclidean 
distances, we use the function kmeans (df, centers = 2, nstart = 25), also included in the 
"factoextra" package, to which we parameterize the number of centroids in 2 (the value obtained 
above) and the other value of nstart indicates the number of random initial partitions, a 
minimum value of 25 is suggested. This function uses, by default, the Hartigan and Wong 
algorithm. 

The "factoextra" function fviz_cluster(model_k1, data = df) plots the clustering results as 
shown in Fig. 7. 

 

Fig. 6: Optimal number of clusters.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:selfia.bintari@staff.uns.ac.id
mailto:selfia.bintari@staff.uns.ac.id


719RANDOM FOREST IN A PREDICTIVE MODEL OF PM10 PARTICLES IN MEXICO CITY

Nature Environment and Pollution Technology • Vol. 23, No. 2, 2024This publication is licensed under a Creative 
Commons Attribution 4.0 International License

This publication is licensed under a Creative 
Commons Attribution 4.0 International License

locate which stations belong to which block (clustering) by 
Euclidean distances, we use the function kmeans (df, centers 
= 2, nstart = 25), also included in the “factoextra” package, 
to which we parameterize the number of centroids in 2 (the 
value obtained above) and the other value of nstart indicates 
the number of random initial partitions, a minimum value of 
25 is suggested. This function uses, by default, the Hartigan 
and Wong algorithm.

The “factoextra” function fviz_cluster(model_k1, data = 
df) plots the clustering results as shown in Fig. 7.

Dim1 and Dim2 shown on the axes are the new variables 
derived from the calculations derived from the principal 
component analysis process; % indicates the data’s 
variability, i.e., Dim1 represents 50.2% variability and Dim2 
14.6%. Three of the 16 stations are from Cluster 1: Hospital 
General de México, Xalostoc, and Miguel Hidalgo, and the 
other 13 are grouped in Cluster 2.

The Method Selected for Our Model 

A suitable method for classification and prediction is 
decision trees, but they have a different level of predictive 
accuracy than other methods and are not very robust (James 
et al. 2017). By aggregating multiple trees, methods such 
as bagging and random forest significantly improve their 
performance.

In our case, we have decided to use the random forest 
method as we consider it meets our requirements of having 
an excellent predictive performance and excellent libraries 
in R. For its implementation, we have chosen the “ranger” 
package, which is a speedy implementation of random forest 

(Alvear 2018), in this site is also proposed a method for its 
application of which we follow some steps.

We have also based the application of random forest on 
what is proposed by the website “Decision trees, random 
forest, gradient boosting and C5.0” (Joaquín Amat 2020), 
which we found to be correct and very similar to other sites 
proposed by other data science experts.

The first part is to find the number of trees needed. 
However, this is not a critical parameter; it can improve 
the resulting model, especially regarding the computational 
resources used.

Using the validation with Out-of-Bag error (root mean 
squared error) in Fig. 8, we can see that the number of 
suggested trees is 381. It is important to note that this process 
can take up to 5 hours using our laptop. 

Now, we implement the k-cross-validation (root mean 
squared error) to have another parameter regarding the 
number of trees we get.

When k-cross validation is used, the number of trees 
suggested is 391. As can be seen, the values in both cases are 
very similar, and for our case, we rounded the total number 
of trees to be used to 400.

Another important parameter is “mtry,” which is the 
number of variables or predictors randomly sampled as 
candidates in each split. As in the tree number process, we 
validated them against “oob” and k-cross with the following 
results.

Fig. 10 shows that the value for mtry is 10 after the values 
of oob train rmse stabilize.

the average of the observations for different values of k. The optimal number of k is the highest 
over the range of k. 
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Fig. 7: Grouping of monitoring stations. 

Dim1 and Dim2 shown on the axes are the new variables derived from the calculations derived 
from the principal component analysis process; % indicates the data's variability, i.e., Dim1 
represents 50.2% variability and Dim2 14.6%. Three of the 16 stations are from Cluster 1: 
Hospital General de México, Xalostoc, and Miguel Hidalgo, and the other 13 are grouped in 
Cluster 2. 

The Method Selected for Our Model  

A suitable method for classification and prediction is decision trees, but they have a different 
level of predictive accuracy than other methods and are not very robust (James et al. 2017). By 
aggregating multiple trees, methods such as bagging and random forest significantly improve 
their performance. 

In our case, we have decided to use the random forest method as we consider it meets our 
requirements of having an excellent predictive performance and excellent libraries in R. For its 
implementation, we have chosen the "ranger" package, which is a speedy implementation of 
random forest (Alvear 2018), in this site is also proposed a method for its application of which 
we follow some steps. 

We have also based the application of random forest on what is proposed by the website 
"Decision trees, random forest, gradient boosting and C5.0" (Joaquín Amat 2020), which we 
found to be correct and very similar to other sites proposed by other data science experts. 

The first part is to find the number of trees needed. However, this is not a critical parameter; it 
can improve the resulting model, especially regarding the computational resources used. 

 

 

Fig. 8: Evolution of out-of-bag error vs. number of trees. Fig. 8: Evolution of out-of-bag error vs. number of trees.
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hours using our laptop.  

Now, we implement the k-cross-validation (root mean squared error) to have another parameter 
regarding the number of trees we get. 

 

Fig. 9: Validation using kcross-validation (root mean squared error). 
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values in both cases are very similar, and for our case, we rounded the total number of trees to 
be used to 400. 
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“oob” and k-cross with the following results. 
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When cv-error is used, mtry has a value of 9, as shown 
in Fig. 11, which infers that mtry will be between 9 and 10 
in the model to be developed.

Grid Search

Understanding the individual behavior of the parameters 
is important to develop a good model. Still, it is better to 
analyze all of them as a whole because each one interacts 
with the others. So, it is better to perform a grid search or 
random search analysis, which we will do next.

The parameters when interacting with each other after 
applying the grid search are as follows (record 1): num trees 
600, mtry is 9, max depth is 20, and oob is 11.9.

Now, we do a grid search based on cross-validation.

The results are consistent as they are num three 600, 
mtry is 9, max depth is 20, and with an average estimator 

of 12.1, which are the best parameters for the model and its 
final training.

RESULTS AND DISCUSSION

To obtain the final model, we use the existing parameters, 
train the model with test data, and then apply the 
model with the test data to validate the results and 
estimate how close the estimated data is to the predicted  
data.

Based on the model developed, what would be the 
expected results, what is its level of certainty, and is it 
feasible to operate in real-time?

In the model with the optimized parameters where we 
use training data against another sample for the test, we 
have, on average, a difference of 9.67 µg.m-3 from the actual 
PM10 value.

 

Fig. 11: Validation using kcross-validation and mtry. 

When cv-error is used, mtry has a value of 9, as shown in Fig. 11, which infers that mtry will 
be between 9 and 10 in the model to be developed. 

Grid Search 

Understanding the individual behavior of the parameters is important to develop a good model. 
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So, it is better to perform a grid search or random search analysis, which we will do next. 
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then apply the model with the test data to validate the results and estimate how close the 
estimated data is to the predicted data. 

Based on the model developed, what would be the expected results, what is its level of certainty, 
and is it feasible to operate in real-time? 

In the model with the optimized parameters where we use training data against another sample 
for the test, we have, on average, a difference of 9.67 µg.m-3 from the actual PM10 value. 

When calculating the certainty of our model, we have a value of 80.40 % certainty by 
calculating the deviation from the mean. This calculation is obtained by calculating the 
differences of the absolute differences between the calculated and actual PM10 values of each 

Fig. 11: Validation using kcross-validation and mtry.

element, then dividing that value by each actual value multiplied by 100; the mean is then 
calculated and subtracted from 100%, as shown in the code above. 

However, whether a model with a certainty of 80.4% is acceptable depends on what we are 
looking for with the model. For example, our model clearly shows trends very close to the 
actual, as shown in Fig. 12. 

 

Fig. 12: Trend lines of predicted vs. actual PM10 values. 

 

The number of predictors to be analyzed is 15, and having a certainty level of 80.4% is quite 
acceptable in light of the results obtained in models with even fewer variables to be analyzed. 

Fig. 13 shows the predictors in the degree of importance from highest to lowest, with PM2.5 
standing out as the most important predictor, followed by relative humidity, which is a known 
correlation. 

 

Fig. 13: Importance of predictors. 

Fig. 12: Trend lines of predicted vs. actual PM10 values.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:selfia.bintari@staff.uns.ac.id
mailto:selfia.bintari@staff.uns.ac.id


722 Alfredo Ricardo Zárate Valencia and Antonio Alfonso Rodríguez Rosales

Vol. 23, No. 2, 2024 • Nature Environment and Pollution Technology  This publication is licensed under a Creative 
Commons Attribution 4.0 International License

This publication is licensed under a Creative 
Commons Attribution 4.0 International License

When calculating the certainty of our model, we have a value 
of 80.40 % certainty by calculating the deviation from the mean. 
This calculation is obtained by calculating the differences of 
the absolute differences between the calculated and actual 
PM10 values of each element, then dividing that value by each 
actual value multiplied by 100; the mean is then calculated and 
subtracted from 100%, as shown in the code above.

However, whether a model with a certainty of 80.4% 
is acceptable depends on what we are looking for with the 
model. For example, our model clearly shows trends very 
close to the actual, as shown in Fig. 12.

The number of predictors to be analyzed is 15, and having 
a certainty level of 80.4% is quite acceptable in light of the 
results obtained in models with even fewer variables to be 
analyzed.

Fig. 13 shows the predictors in the degree of importance 
from highest to lowest, with PM2.5 standing out as the most 
important predictor, followed by relative humidity, which 
is a known correlation.

PM10 and PM2.5 have a well-studied correlation, which 
is verified in our analysis. Notably, in fourth place, the 
importance of time is found, which we assume has to do 
with the peak hours of vehicular traffic, although, in Fig. 4, 
no such relationship is apparent.

CONCLUSIONS

It is feasible to apply Random Forest to model the behavior 
of air pollutants, in our case, to predict PM10 particles 
based on 15 predictors, including pollutants and climate 
measurements. These complex models involve a lot of 
database work before modeling.

A fundamental first step is selecting valid data from one 
or more tables in different records of the pollutant database 
and processing it to be analyzed in a model. Generally, 
there are not wrong models but incorrect or badly processed 
data. In this sense, we have found records where, for 
example, PM2.5 values are almost 0 and PM10 values above 
20 µg.m-3, a fact that caught our attention because of the 
known correlation between these pollutants, which should 
be between 40% and 60% and impacts on the accuracy of 
the model. Then clustering, measuring, and selecting the 
parameters to be used in the model is also crucial.

As a recommendation, which we hope to make in a 
forthcoming study, it is fascinating to apply an analysis of 
the data now and model it using neural networks and thus 
be able to contrast these results with those obtained in our 
study.
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