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ABSTRACT
MnFe2O4@TpPa-1 adsorbent was developed by co-precipitation and solvothermal method, using 
β-ketoenamine linked covalent organic frameworks (COFs, TpPa-1) as supporting material to alleviate 
the aggregation of MnFe2O4. The properties were characterized by XRD, FT-IR, SEM, TEM, VSM, 
pHpzc,

 and N2 adsorption-desorption. The experimental results showed that the pseudo-second-order 
and Langmuir model best described the adsorption process, suggesting that the adsorption process 
was chemisorption and spontaneous endothermic reaction, and the maximum adsorption capacity of 
Bisphenol A (BPA) was 926.65 mg.g-1. The main adsorption mechanism of BPA was hydrogen bonding 
and π-π conjugation between active functional groups in the TpPa-1 skeleton and BPA. Furthermore, 
the magnetic MnFe2O4@TpPa-1 showed good regeneration ability, indicating that MnFe2O4@TpPa-1 
could be used in water treatment.    

INTRODUCTION

In the past few decades, large numbers of toxic chemicals 
have been released into the environment due to the rapid 
industrialization and growth of the world population (Ji et 
al. 2015, Gómez-Pastora et al. 2017, Wacławek et al. 2017). 
These pollutants include azo dyes, antibiotics, endocrine dis-
ruptors, pesticides, and so on, most of which were persistent 
and not easily removed from natural ecosystems (Guan et 
al. 2013, Liu et al. 2014, Mohan et al. 2014, Liang et al. 
2017, Guan et al. 2018). Furthermore, organic pollutants, 
particularly persistent ones with toxic, carcinogenic, and 
biorefractory functional groups, may pose a major threat 
to human health and ecological balance (Duan et al. 2015, 
Tian et al. 2018, Fu et al. 2019). Therefore, it is important to 
treat those pollutants effectively (Paethanom & Yoshikawa 
2012; Tan et al. 2015, Abdel-Shafy & Mansour 2016, Li et 
al. 2018). At present, some treatment methods, such as ad-
sorption, chemical reaction, bioremediation, etc. are applied 
to the organic pollutants in solution (Poletto 2016, Qiu et al. 
2018, Rivas & Solís 2018, Jayawardhana et al. 2019, Wang 
et al. 2018, 2020). 

Covalent organic frameworks (COFs) were first reported 
to be successfully produced in 2005 (Wang & Zhuang 2019). 
Since then, their properties have been investigated extensive-
ly. The main characteristics of COFs are (1) Low density, 
which is constructed by some light chemical elements such 

as C, H, O, N; (2) Regular pore structures that self-assemble 
into periodic and highly ordered pore formations. Thereby, 
their specific surface area, pore size, and pore shape could 
be easily adjusted; (3) Excellent chemical stability connected 
by covalent bond, resulting in considerably improved ther-
modynamic and chemical stability; (4) Diverse structure, 
synthesized by designing a variety of construction units and 
connection methods; (5) Functionalized, specific functional 
groups could be introduced to construction units in the initial 
stage (Wang & Zhuang 2019). Besides, COFs are the long-
range orderly pore structure and crystalline organic porous 
materials, named as “Organic Zeolites”. COFs materials 
application research in the environmental field is still in 
its early stages. COFs were mainly used for atmospheric 
governance research in the early research period. In recent 
years, it has been gradually applied to wastewater treatment 
(Liu et al. 2018).

COF-TpPa-1was selected, which was connected by 
imine bonds (-C=N-) and arranged periodically in a two-
dimensional plane layer. Through - conjugation, interlayer 
covalent bond interlocking, and interlayer non-covalent 
interaction, COF-TpPa-1 was formed as a layer-by-layer 
structure in the plane and vertical direction (Kandambeth 
et al. 2012, He et al. 2017). TpPa-1 materials had excellent 
chemical stability. This advantage was particularly important 
for its application in the wastewater treatment industry. 
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However, the TpPa-1 material existed in powder form. The 
preparation procedure was complicated and the reaction 
conditions were harsh. As a result of these difficulties, its 
applicability in the field of water environment has been 
greatly limited. If MnFe2O4 was combined with TpPa-1, it 
could be compensated for each other in terms of application 
limitations. MnFe2O4 had a small specific surface area, while 
TpPa-1 had a high specific surface area, regular pores, and 
rich foreign elements. MnFe2O4 could also impart magnetic 
properties to powdered TpPa-1, allowing it to be easily 
recycled, reused, and at a lower cost. Furthermore, TpPa-1 
could provide a carrier platform for MnFe2O4 particles to 
prevent their agglomeration. Therefore, combining TpPa-1 
with MnFe2O4 not only enriched the types and properties of 
COFs but also made up for the application limitations of the 
TpPa-1 with MnFe2O4. This research could provide a new 
solution for wastewater treatment.

In this experiment, MnFe2O4@TpPa-1 adsorbent was 
developed by co-precipitation and solvothermal method, using 
β-ketoenamine linked covalent organic frameworks (COFs, 
TpPa-1) as supporting material to alleviate the aggregation of 
MnFe2O4. The properties were characterized by XRD, FT-
IR, SEM, TEM, VSM, pHpzc, and N2 adsorption-desorption. 
The adsorption experiments of Bisphenol A (BPA) by 
MnFe2O4@TpPa-1 were carried out. The adsorption 
mechanism and regeneration ability of BPA by MnFe2O4@
TpPa-1 were discussed in detail. 

MATERIALS AND METHODS

Materials

MnCl2·4H2O, FeCl3·6H2O, Arsenazo III, BPA, trialdehyde 
phloroglucinol (Tp), P-phenylenediamine (Pa), dioxane, 
acetic acid, methanol, and N,N-dimethyl formamide (DMF) 
were obtained from Shanghai Maclin Biochemical Tech-
nology Co., Ltd. HNO3 and NaOH were purchased from 
Shanghai Chemical Reagent Co., Ltd. All the above reagents 
were of analytical grade or advanced purity and used directly 
without further purification. The ultrapure water was used 
in the experimental process.

Preparation of MnFe2O4

0.1 mol·L-1 Mn2+ ions and 0.2 mol·L-1 Fe3+ ions were 
prepared by MnCl2·4H2O and FeCl3·6H2O, respectively. The 
mixture solution of 0.1 moL·L-1 Mn2+ ions and 0.2 moL·L-1 

Fe3+ ions were added into the 250 mL of Erlenmeyer flask. 
Then, 100 mL 3 mol·L-1 NaOH solution slowly was added 
into the Erlenmeyer flask at a preheating temperature of 
95°C. After continuous stirring and aging for 2 h, the solution 
was filtered, washed, and dried at 60°C for 12 h.

Preparation of MnFe2O4@TpPa-1

63 mg of Tp was dissolved into a mixture of (1+1) mesity-
lene and dioxane under ultrasonic conditions. Then, 100 mg 
of MnFe2O4 was added into the solution for 30 min under 
ultrasonic conditions. Then, 48 mg of Pa-1 was added into 
the solution for 30 min under ultrasonic conditions. Finally, 
0.5 mL of 3 mol·L-1 acetic acid was added into the solution 
for 3 days at a temperature of 120°C. The supernatant was 
washed with DMF until it was clear. After that, they were 
washed twice more with acetone. Then, they were dried under 
vacuum at 80°C for 12 h. MnFe2O4@TpPa-1 was obtained 
for adsorption experiments.

Adsorption Experiments

Effect of pH: 2 mg of MnFe2O4 and 2 mg of MnFe2O4@
TpPa-1 were added to 25 mL and 50 mg.L-1 of BPA solutions, 
respectively. The value of pH in the solution was adjusted 
from 1 to 10 with the 0.01 mol.L-1 HNO3 or NaOH solution. 
Then, the mixture solution was put in a shaker at 25°C and 
150 rpm for 24 h. The concentration of BPA was determined 
at equilibrium contact time.

Adsorption kinetics: 2 mg of MnFe2O4 and 2 mg Mn-
Fe2O4@TpPa-1 materials were added to 100 mL and 50 
mg.L-1 of BPA solution, respectively. The value of pH in 
the solution was adjusted to 2.0 with 0.01 mol.L-1 HNO3 
solution. Then, the mixture solution was put in a shaker at 
25°C and 150 rpm for 24 h. The concentration of BPA was 
determined at different contact time.

Adsorption thermodynamics: 2 mg of MnFe2O4 and 2 
mg MnFe2O4@TpPa-1 materials were added to 100 mL 
and 15 mg.L-1, 25 mg.L-1, 50 mg.L-1, 75 mg.L-1, and 100 
mg.L-1 of BPA solution, respectively. The value of pH in 
the solution was adjusted to 2.0 with 0.01 mol.L-1 HNO3 
solution. Then, the mixture solution was put in a shaker at 
a different temperature (25°C, 35°C, and 45°C) and 150 
rpm for 24 h. The concentration of BPA was determined at 
equilibrium contact time.

Adsorption-desorption of the experiment: 2 mg of 
MnFe2O4 and 2 mg of MnFe2O4@TpPa-1 were added to 
25 mL and 50 mg.L-1 of BPA solutions, respectively. The 
value of pH in the solution was adjusted to 2.0 with 0.01 
mol.L-1 HNO3 solution. Then, the mixture solution was put 
in a shaker at 25°C and 150 rpm for 24 h. The concentration 
of BPA was determined at equilibrium contact time. After 
the adsorption experiment was over, a magnet was used for 
solid-liquid separation. The obtained material was dried at 
60°C for 12 h. Then, the obtained material was washed three 
times with methanol solution (Luo et al. 2019). After that, 
the above tests were repeated.
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Analytical Method

The crystal structure of the sample was determined by X-Ray 
Diffraction (XRD) (Emoyrean diffractometer, Panalytical, 
Holland). The surface functional groups were detected by 
Fourier Transform Infrared Spectroscopy (FT-IR) (NEXUS). 
The morphology and particle size of the material were char-
acterized by FE-SEM (Hitachi S4800) and TEM (FEI Tecnai 
F20 S-TWIN), respectively. The surface area and pore size 
distribution were measured by the N2 adsorption-desorption 
method (ASAP 3020). Magnetic properties of materials were 
determined by Model 6000 (Quantum Design, USA). The 
surface charge properties of materials (Zeta potential) were 
determined by Malvern ZEN3690.

The concentration of BPA was measured by UV-
spectrophotometer at 276 nm. The adsorption capacity of 
BPA by MnFe2O4/MnFe2O4@TpPa-1 was calculated using 
the following formula.
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                           …(1)    …(1)

Where, C0 was initial concentration (mg.L-1), Ce is the con-
centration at adsorption equilibrium (mg.L-1), qe is adsorption 
amount at adsorption equilibrium (mg.g-1), V is the volume 
of solution (L), m is the mass of the adsorbent (g).

RESULTS AND DISCUSSION 

The Characteristic of MnFe2O4@TpPa-1

The microstructure of the MnFe2O4@TpPa-1 was observed 
by SEM and TEM. The results are shown in Fig. 1. As 
shown from Fig.1(a), TpPa-1 was in the shape of a sea 
urchin. MnFe2O4 with a particle size of about 50 nm was 
distributed on the surface of TpPa-1. It could effectively 
prevent the accumulation of MnFe2O4. Additionally, the 
sea urchin-like morphology could give the MnFe2O4@
TpPa-1 composite a high specific surface area and more 
adsorption sites. This structure facilitated its adsorption  
capacity.

Fig. 2(a) shows the FT-IR spectra of TpPa-1, MnFe2O4. 
and MnFe2O4@TpPa-1. The adsorption peaks at 3450 cm-1 
and 1630 cm-1 were the O-H stretching vibration and bending 
vibration adsorption peaks, respectively. 

This result indicated that the preparation of MnFe2O4 
contained a large amount of –OH functional groups. The 
adsorption peaks at 430 cm-1 and 578 cm-1 corresponded 
to the characteristic peaks of Mn-O and Fe-O, respectively 
(Ghobadi et al. 2018). Compared with MnFe2O4, MnFe2O4@
TpPa-1 not only had the above-mentioned characteristic 
adsorption peak but also had the characteristic peak of C=N 
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at 1260 cm-1 which belongs to the framework of TpPa-1 
(Kandambeth et al. 2012).

It indicated that MnFe2O4@TpPa-1 composite mate-
rials were successfully synthesized. The XRD spectra of 
TpPa-1, MnFe2O4, and MnFe2O4@TpPa-1 are shown in 
Fig.2(b). From the XRD pattern of MnFe2O4, some obvi-
ous diffraction peaks at 2θ =18.03º, 29.65º, 34.92º, 42.43º, 

56.08º, and 61.56º could be observed. They corresponded to 
crystal planes (111), (220), (311), (400), (511), and (440), 
respectively, which were consistent with the standard card 
of MnFe2O4 (JCPDS Card NO. 10-0319) (Li et al. 2019). 
The XRD pattern of MnFe2O4@TpPa-1 was consistent 
with MnFe2O4. It indicated that MnFe2O4 maintained good 
crystallinity in the composite materials. Furthermore, the 
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diffraction peak of MnFe2O4@TpPa-1 at 2θ=4.7º was at-
tributed to the (100) crystal plane of TpPa-1(Kandambeth 
et al. 2012). This result further proved that the MnFe2O4@
TpPa-1 composite materials were successfully prepared.

Fig. 2(c-d) was the N2 adsorption-desorption isotherm of 
MnFe2O4 and MnFe2O4@TpPa-1, respectively, and the in-
ternal inset figures were the pore size distribution diagram of 
MnFe2O4 and MnFe2O4@TpPa-1. The specific surface area, 
pore-volume, and pore size of MnFe2O4 were 15.4 m2.g-1, 
0.04 cm3.g-1, and 3.5 nm, respectively. MnFe2O4@TpPa-1 
composite materials had type IV isotherm. It suggested 
that it was a mesoporous material. Its specific surface area, 
pore, volume, and pore size were 235.5 m2.g-1, 0.17cm3.g-1, 
and 1.8 nm, respectively. The magnetic hysteresis curves 
of MnFe2O4 and MnFe2O4@TpPa-1 at room temperature 
are shown in Fig. 2(e). The saturation magnetization of the 
material was 26.94 and 11.52 emu.g-1, respectively, which 
was sufficient to ensure the solid-liquid separation of the 
adsorbent and the aqueous solution under the condition of 
an external magnetic field (Hyun et al. 2012). 

Effect of pH

To investigate the influence of pH on adsorption capacity, 
the adsorption experiments were carried out at a different pH 
in solution. Fig. 3 showed the effect of pH on the removal 
of BPA by MnFe2O4 and MnFe2O4@TpPa-1. 

When pH was 2.0, the adsorption capacity of MnFe2O4 
and MnFe2O4@TpPa-1 for BPA reached the maximum. 
When pH < 9.0, most BPA mainly existed in molecular 
form. However, when pH ≥ 9.0, BPA existed in the form of 
anionic BPA(HBPA- and BPA2-). As shown from Fig. 2(f), 
the Zeta potential of MnFe2O4@TpPa-1 was 3.63. When 
the pH in the solution was lower than 3.63, the surface of 
MnFe2O4@TpPa-1 was positively charged. It indicated that 

the removal of BPA mainly relied on π-π conjugation and hy-
drogen bonding (Zhong et al. 2020a, 2020b). When the pH of 
the solution was higher than 3.63, the surface of MnFe2O4@
TpPa-1 was a negative charge. The electrostatic repulsion 
between MnFe2O4@TpPa-1 and BPA was enhanced, thereby 
reducing the amount of adsorption of BPA.

Adsorption Kinetics

The effect of contact time on the adsorption of BPA by  
MnFe2O4 and MnFe2O4@TpPa-1 are shown in Fig.4. It 
could be seen from Fig. 4(a) that the adsorption capacity 
of MnFe2O4 and MnFe2O4@TpPa-1 on BPA gradually in-
creased with the increase of the reaction time. The adsorption 
capacity increased rapidly at the first stage of 30 minutes, 
and the adsorption sites on MnFe2O4 and MnFe2O4@TpPa-1 
were continuously occupied. After 5 h, the adsorption sites 
on the surface tended to be saturated, causing the adsorption 
to gradually reach equilibrium. Compared with MnFe2O4, 
MnFe2O4@TpPa-1 had a higher adsorption capacity and 
faster adsorption rate for BPA. This was mainly the reason 
that MnFe2O4@TpPa-1 contained a higher specific surface 
area, larger pore volume, and various active surface func-
tional groups (C=N, -OH, -NH2) (Ding et al. 2015). 

The pseudo-first-order, pseudo-second-order dynamic 
model, and intra-particle diffusion model were used to 
further explore the removal process of BPA by MnFe2O4 
and MnFe2O4@TpPa-1. The pseudo-first-order model, the 
pseudo-second-order model, and the intra-particle diffusion 
model were as follows:
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Where, qe and qt (mg.g-1) are the adsorption capaci-
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shown in Fig. 4(d). The fitting curve showed two-stage 
adsorption. Additionally, the fitting curve did not pass through 
the origin of the coordinate. It indicated that the adsorption 
process was affected by many factors. The first stage was 
the adsorption of BPA by MnFe2O4 and MnFe2O4@TpPa-
1, which involved the instantaneous adsorption of BPA and 
film diffusion. In the second stage, internal diffusion occurs 
as BPA diffuses in the pores of MnFe2O4 and MnFe2O4@
TpPa-1. Therefore, the adsorption process for BPA by 
MnFe2O4 and MnFe2O4@TpPa-1 was affected by chemical  

adsorption, strong surface complexation, and internal particle 
diffusion.

Adsorption Thermodynamics

The adsorption capacity of BPA by MnFe2O4 and Mn-
Fe2O4@TpPa-1 was investigated under the conditions of 
different initial concentrations of BPA and different tempera-
tures (25°C, 35°C, and 45°C). The experimental results were 
fitted with Langmuir and Freundlich models, respectively 
(Equation 5 and Equation 6). The fitting results were shown 
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Table 1: The parameters of the kinetic models of BPA adsorption onto MnFe2O4 and MnFe2O4@TpPa-1.

Adsorbents Pseudo-first-order Pseudo-second-order Intra-particle-diffusion

k1
(min-1)

qe
(mg.g-1)

R2 k2
(g.mg. min)

qe
(mg.g-1)

R2 kp 
(g.mg. min0.5)

C R2

MnFe2O4 0.005 63.43 0.9649 7.2 × 10-4 238.09 0.9979 28.49 124.93 0.9809

2.56 183.86 0.9810

MnFe2O4@TpPa-1 0.005 88.23 0.9604 4.7 × 10-4 285.71 0.9967 18.14 162.80 0.9823

3.35 210.80 0.9910
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in Fig.5, and the relevant parameters were listed in Table 2. 
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The experimental results showed that the adsorption 
capacity of BPA by MnFe2O4 and MnFe2O4@TpPa-1 
increased continuously with the increase of the initial 
concentration. By comparing the value of R2, the Langmuir 
model was more fitted with the adsorption process of BPA 
by MnFe2O4 and MnFe2O4@TpPa-1. It indicated that the 
adsorption process of BPA was single-layer adsorption. 
Calculated by the Langmuir model, the maximum adsorption 
capacity of BPA by MnFe2O4 and MnFe2O4@TpPa-1 was 
515.03 mg.g-1 and 926.65 mg.g-1, respectively. 
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Table 2: The parameters of Langmuir and Freundlich model for MnFe2O4 and MnFe2O4@TpPa-1 adsorption of BPA.

Adsorbents T(K) Langmuir model Freundlich model

qmax
(mg.g-1)

 KL
(L.mg-1)

  R2 KF
(mg1-1/n.g-1.L-1/n)

1/n R2

MnFe2O4 298 515.03 0.010 0.9823 11.32  0.677 0.9214

308 482.47 0.009 0.9878 9.18  0.692 0.9351

318 459.35 0.007 0.9906 6.29  0.734 0.9534

MnFe2O4@TpPa-1 298 926.65 0.011 0.9913 30.75  0.596 0.9705

308 877.12 0.007 0.9805 17.53  0.662 0.9632

318 866.28 0.005 0.9973 11.02 0.719 0.9835
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of lnK0 versus 1/T at three different temperatures. Thermo-
dynamic parameters of BPA adsorption onto MnFe2O4 and 
MnFe2O4@TpPa-1 are listed in Table 3.
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At different temperatures, the calculated ΔG0 values 
were all less than zero and decreased as the temperature 
increased. It was suggested that the adsorption process is 
a spontaneous reaction. However, the values of DH0 were 
all positive, indicating that the adsorption process was an 
endothermic reaction. The main reaction mechanism was 
the chemical adsorption process. In addition, the values of 
DS0 were all greater than zero, indicating that the degree of 
the disorder increased at the solid-liquid interface. 

Adsorption-Desorption of Experiment

The biggest disadvantage of COFs as adsorbents is the 
relatively high price of synthetic raw materials. In actual 
application, the cost of adsorbent is a very important 

economic factor. Therefore, it is very important to investigate 
the recycling performance of composite materials, to  
reduce the cost of adsorbent used. The adsorption-desorption 
cycles of MnFe2O4 and MnFe2O4@TpPa-1 are shown in 
Fig. 7. 

In this study, MnFe2O4 and MnFe2O4@TpPa-1 are used 
for four cycles. After four cycles of recycling, the adsorption 
of MnFe2O4 and MnFe2O4@TpPa-1 on BPA gradually de-
creased. It might be due to the depletion of active functional 
groups and non-renewable active sites during the adsorption 
process. However, MnFe2O4@TpPa-1 had a relatively high 
level of adsorption. It indicated that MnFe2O4@TpPa-1 had 
good regeneration ability. Therefore, it had good application 
prospects.

CONCLUSIONS

In this experiment, MnFe2O4@TpPa-1 composite material 
with high specific surface area, pore volume, and abundant 
active functional groups was prepared. MnFe2O4@TpPa-1 
showed excellent adsorption capacity of BPA and good 
application prospects. In the research of adsorption kinetic, 
the pseudo-second-order kinetic model was more suitable to 
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Table 3: Thermodynamic parameters of BPA adsorption onto MnFe2O4 and MnFe2O4@TpPa-1.

Adsorbents T(K) -ΔG0 (kJ.mol-1) ΔS0 (J.(mol.K) -1) ΔH0 (kJ.mol-1)

MnFe2O4 298 4.84  24.32 2.41

308 5.08

318 5.32

MnFe2O4@TpPa-1 298 5.10  122.47 31.40

308 6.33

318 7.56
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describe the adsorption process of BPA by MnFe2O4@TpPa-
1. It indicated that the adsorption process was controlled 
by chemical adsorption or strong surface complexation. In 
the research of adsorption thermodynamics, the Langmuir 
model was more fitted to the adsorption process of BPA 
by MnFe2O4@TpPa-1. It was suggested that the adsorp-
tion process was chemical adsorption, and the adsorption 
process was a spontaneous and endothermic reaction. The 
maximum adsorption capacity of Bisphenol A (BPA) was 
926.65 mg.g-1. The main adsorption mechanism of BPA was 
hydrogen bonding and π-π conjugation between active func-
tional groups in the TpPa-1 skeleton and BPA. In addition, 
magnetism MnFe2O4@TpPa-1 exhibited good regeneration 
ability, indicating MnFe2O4@TpPa-1 had good regeneration 
ability, indicating that MnFe2O4@TpPa-1 could be used in 
water treatment. 
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