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	        ABSTRACT
The present study assessed the changes in land use and land cover to correlate the 
variations in the land surface temperature of Chattogram City. To analyze land use land 
cover (LULC) change and determine its effects on land surface temperature in the city area, 
temporal Landsat (5,7 ETM+ and 8,9 OLI) imageries from four time periods (2007, 2012, 
2017, and 2022) were used. To assess the correctness of the picked random pixels, current 
ground truth data gathered from several sources was applied. Raster data has been utilized 
to identify the places that are influenced year-round in the green space (i.e., vegetation 
cover) and to examine the remote sensing image categorization for the green area using 
satellite images. These enable the study to explain the causes of the degradation and 
alteration of green space throughout time. The study identified that urbanization has resulted 
in a significant rise (about 2840 hectares, 16.74%) in urban land between 2007 and 2022, 
causing a loss of vegetative land (about 656 hectares, 3.85%). Additionally, the research 
concentrated on the actual affected area and attempted to forecast the cities’ land use in 
2037, which revealed a large loss of vegetation by that year. The research has the potential 
to be utilized as a reference in the future.

INTRODUCTION

The land is a crucial resource and a source of livelihood. It is an essential and 
limited resource for some most essential human activities, including agriculture, 
manufacturing, forestry, energy generation, settlement, recreation, and water 
catchments and storage. Land is a key component of production, and for a large 
portion of human history, economic development has been closely correlated with 
it. It includes biophysical characteristics, including terrain, geology, hydrology, 
biodiversity, soil, and topography (Gaonkar et al. 2024). Another definition of 
land includes socioeconomic elements like management and technology, and 
land use refers to how and why people use the land and its resources (Meyer 
1995).  In general, a piece of land is modified when its use changes. This shift is 
driven by needs, which need not just change the land cover but also its intensity 
and management (Verburg et al. 2000). Agricultural expansion, propelled by 
population increase and technical progress, has profoundly transformed land cover, 
especially in developing nations, eclipsing other influences such as urbanization 
and deforestation (Kirkpatrick 2024). Social structure, attitudes, and values have 
all changed significantly in the same period. Urban regions are thought to be the 
most dynamic areas on the surface of the Earth, according to the history of urban 
growth. Urbanization has a significant negative influence on the local ecosystem  
(Pasha et al. 2018) despite its relevance to the regional economy (Saraswat et al. 
2024). Only 14% of the world’s population lived in urban areas in 1900; by 2000, 
this percentage had risen to 47%, which has recently touched 56% (Ritchie & 
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Roser 2018, Long et al. 2007). Almost all nations around 
the globe experience urban expansion. However, the rate of 
growth varies. Urban environment and ecology are currently 
the main environmental issues that require rigorous analysis 
and monitoring to effectively regulate land use. Inventories 
of land usage and land cover are becoming more and more 
important in a variety of fields, including agricultural 
planning, urban planning, and infrastructure development 
(Kavitha et al. 2021). Other forms of land use turning into 
urban land can be characterized as the primary change in 
land use in these locations. Several elements, including both 
physical and human aspects, have an impact on the intricate 
process of land use change in major urban areas. On the one 
hand, socioeconomic reasons are typically linked to and 
responsible for accelerated urban growth; on the other, the 
process of urbanization has a significant impact on the local 
economy (Tyagi et al. 2023). 

One way to learn about urban environments is through 
remote sensing, which is also a crucial tool for comprehending 
and addressing many issues that face cities and their suburbs. 
(Lillesand et al. 2015). Change detection is crucial because 
it enables the researcher to comprehend and track the pattern 
of land cover change in the study area (such as urbanization, 
deforestation, and agricultural land management) (Ahmed 
2011). The remote sensing technique is a great data source 
from which updated information and changes in land use and 
land cover (LULC) can be effectively extracted, examined, 
and simulated. A lot of pressure has been put on the nearby 
land and its biotic and abiotic resources in recent decades due 
to developing countries’ rapid urbanization and population 
increase (Singh & Singh 2023). This pressure is also the 
cause of the urban areas accelerating rate of landscape 
change. Numerous studies have demonstrated that the land 
cover change brought on by urbanization has a significant 
impact on the radiative, thermodynamic, and hydrological 
processes that can modify the local climate (Qian et al. 2022). 
The quality of vegetation cover reduces its ability to moderate 
temperature patterns, resulting in a negative correlation 
between vegetation and land surface temperature (Fatemi & 
Narangifard 2019). One of the biggest issues of this century 
is the urban heat island (UHI), which is a product of human 
civilization’s urbanization and industrialization (Jabbar et 
al. 2023). The rise in surface temperature caused by human 
activity can be a major cause for the development of urban 
heat islands, which is one of the most significant markers 
of urbanization. Urban heat island (UHI) is a problem that 
results from the unchecked urbanization of areas (Karakuş 
2019). Because of the significant amount of vegetation loss, 
urban growth, and shifting of forest land to agricultural the, 
the land surface temperature increases, which ultimately 
develops UHI (Thomas et al. 2024). After urbanization, it 

is impossible to restore the forest and vegetation to their 
pre-urban state (Mia et al. 2017). By the end of 2047, it is 
predicted that urban migration will account for 50% of all 
migration.

Bangladesh is one of the most populous nations in the 
world and is currently developing. It has recently experienced 
major environmental degradation and rapid, uncontrolled 
urban growth. However, because of rapid urbanization, 
the region has seen significant environmental degradation 
and several ecological issues, including deforestation, 
biodiversity loss, soil erosion, and modifications to the 
carbon sink in water-based ecosystems (Thomas et al. 2024). 
Chattogram is the second largest city of Bangladesh which is 
also experiencing land use and land cover changes because 
of urban development. 

The local and microclimate of Chattogram City have 
changed as a result of anthropogenic activities and urban 
growth, which are driven by land use, such as built-up 
areas, impermeable structures, industrial activities, waste 
dumping, nucleated high buildings, and transportation 
activities (Pathirana et al. 2014). New urban development 
in the metropolis is destroying urban trees and plants, 
which are crucial for protecting the urban ecosystem and 
environment. With a population of 66% living in urban 
areas, Chattogram, Bangladesh’s second-largest city and 
business hub, is currently one of the fastest-growing cities 
in the world. It accounts for 19.7% of the country’s urban 
population and 30% of the GDP (Hassan & Nazem 2016). 
The urban forests, water bodies, and vegetation in cities have 
all been gradually destroyed by the rapid rise of urbanization 
in Chattogram City (Gazi et al. 2021). It is important to take 
into account Chattogram, a developing city in Bangladesh 
when analyzing LST in connection to land-use change. 
Therefore, it is essential to recognize how LST is changing 
in Chattogram City. According to a (BBS 2011) analysis, the 
country is losing 809 km2 of agricultural land every year as 
a result of city growth, road construction, and infrastructure 
development. Due to migration from rural to urban areas, 
Chattogram City’s average annual growth rate has reached 
17.5% (Mia et al. 2015). Since rising urbanization has a 
negative effect on LST (Hokao et al. 2012), it is critical to 
track changes in land use and land cover and how they relate 
to LST behavior in Chattogram. Hence, the present study 
aimed to identify the rate of changes in land use and land 
cover in the study area. Moreover, the study investigated 
the multitemporal spatial dynamics of LULC change and 
its contribution to UHI generation for Chattogram City. 
Additionally, it determined the mean LST for each LULC 
class, the dynamics of change, and the relation with the urban 
landscape.  This study used open-source Landsat imageries 
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with advanced remote sensing and GIS technology to trace 
the dynamics of urban growth, monitor geographical and 
temporal changes in land use and land cover, and evaluate 
Chattogram’s environmental sustainability.

MATERIALS AND METHODS

The Study Area

The city of Chattogram, which is part of the Chattogram 
district, is bordered by rivers and is made up of small hills 
and narrow valleys. In addition to being Bangladesh’s busiest 
seaport, Chattogram is also renowned as the country’s 
commercial center. The second-largest city in Bangladesh is 
Chattogram, with a land area of 157 km2 (Mia et al. 2015). 
The city is located between latitudes 21°54′ and 22°59′ 
north and 91°17′ and 92°14′ east. Its southern and eastern 
boundaries are formed by the Karnaphuli River, northern 
and eastern by the Halda River, and western by the Bay of 
Bengal. Chattogram City is the chosen research topic for 

this study because it has expanded its urban zone with time 
and become the second most important city after the capital. 
(Fig. 1). About 2.5 million people live in the city, which 
is under the control of the City Corporation, and it covers 
an area of about 168 square kilometers (Statistics 2011). 
Approximately 40% of the nation’s large-scale enterprises 
are located in Chattogram, which also accounts for 85% of 
Bangladesh’s imports and 80% of its exports in the country’s 
seaborne trade (Hassan & Nazem 2016), which makes it an 
important location for this study. 

Classification of Images

Satellite imagery is detailed and essential for supplying 
geographic information.  The complexity of field labor and 
study time is reduced by the quantitative and qualitative data 
provided by satellite and remote sensing imagery (Shahbaz 
et al. 2012). Image Classification is one of the most efficient 
methods that can provide both qualitative and quantitative 
data (Vaiphasa et al. 2011). Supervised image classification 
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Fig. 1: The location of Chattogram City selected for the present study.
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Fig. 2: Representation of Data analysis process. 
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is the method (Fig. 2) used here to identify and calculate 
the land cover amount of the study area. In this process 
researcher manually inputs some supervised samples in 
ArcGis software (Fig. 2). Later, the software itself calculates 
the pixel of the image data and shows the output (Abburu & 
Golla 2015). The amount of land cover used in an area can 
be calculated with the help of production. In this case, the 
land cover shows the amount of increase or decrease meant 
for a particular land cover category.

Markov Modeling for Probability Matrix

A Markovian process uses the current state of a system to 
predict its future state over time using the same design. 
Depending on the status right now, it is a random procedure. 
Markov chain is a discrete-time stochastic process (Winston 
& Goldberg 2004). Here, the condition of the future can be 
determined by analyzing the present state of that individual 
area (Ross 2014). Markovian property can be described and 
stated with

𝑖𝑖0, 𝑖𝑖1 , … , 𝑖𝑖𝑡𝑡−1, 𝑖𝑖𝑡𝑡 , 𝑖𝑖𝑡𝑡+1 , 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡 ≥ 0 

𝑃𝑃(𝑥𝑥𝑡𝑡+1 = 𝑖𝑖𝑡𝑡+1 ∣ 𝑥𝑥𝑡𝑡 = 𝑖𝑖𝑡𝑡, 𝑥𝑥𝑡𝑡−1 = 𝑖𝑖𝑡𝑡−1, … . , 𝑥𝑥1 = 𝑖𝑖1, 𝑥𝑥0 = 𝑖𝑖0) 

= 𝑃𝑃(𝑥𝑥𝑡𝑡+1 = 𝑖𝑖𝑡𝑡+1 ∣ 𝑥𝑥𝑡𝑡 = 𝑖𝑖𝑡𝑡     

 …(1) 

According to the Markov chain, it assumes that the conditional probability does not change over time. For all 

States i and j and all 𝑡𝑡, 𝑃𝑃(𝑥𝑥𝑡𝑡+1 = 𝑗𝑗 ∣ 𝑥𝑥𝑡𝑡 = 𝑖𝑖)   is independent of 𝑡𝑡, as expressed in Eq (1) 
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 …(2) 

Where, 𝑃𝑃𝑖𝑖𝑖𝑖 =Transition probability that, given the system is in State i at time t, It will be in a state j at the time (t 

+ 1). The transition probabilities are expressed as a [𝑚𝑚 × 𝑚𝑚] Matrix and it is called the transition probability 

matrix or transition matrix, P. The characteristics of the transition probability matrix as p are given below 

P= [
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t
 = i) is independent of , 
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States i and j and all 𝑡𝑡, 𝑃𝑃(𝑥𝑥𝑡𝑡+1 = 𝑗𝑗 ∣ 𝑥𝑥𝑡𝑡 = 𝑖𝑖)   is independent of 𝑡𝑡, as expressed in Eq (1) 

𝑃𝑃( 𝑥𝑥𝑡𝑡+1 = 𝑗𝑗 ∣∣ 𝑥𝑥𝑡𝑡 = 𝑖𝑖 ) = 𝑝𝑝𝑖𝑖𝑖𝑖     

 …(2) 

Where, 𝑃𝑃𝑖𝑖𝑖𝑖 =Transition probability that, given the system is in State i at time t, It will be in a state j at the time (t 

+ 1). The transition probabilities are expressed as a [𝑚𝑚 × 𝑚𝑚] Matrix and it is called the transition probability 

matrix or transition matrix, P. The characteristics of the transition probability matrix as p are given below 

P= [
𝑝𝑝11 𝑝𝑝12 … 𝑝𝑝1𝑚𝑚
𝑝𝑝21 𝑝𝑝22 … 𝑝𝑝2𝑚𝑚
𝑝𝑝𝑚𝑚1 𝑝𝑝𝑚𝑚2 … 𝑝𝑝𝑚𝑚𝑚𝑚

]    	 …(3)

The estimation of transition probabilities in a Markov 
chain-based deterioration model requires data from  
the condition assessments of existing systems. (Baik et al. 
2006).

Calculation of NDVI

The amount of vegetation or biomass present in the 
environment is measured by the Normalized Difference 
Vegetation Index (NDVI). Greater greenness and healthy 
vegetation are indicated by a higher NDVI (Curran 1980). 
Data from Landsat MSS and TM can be used to calculate 

NDVI (Jensen 1996). The reflectance data from the red (red) 
and near-infrared (nir) bands were utilized to calculate the 
NDVI values for the research area (Tan et al. 2010).

	 NDVI= (𝜌𝜌𝑛𝑛𝑛𝑛𝑛𝑛 − 𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟)/(𝜌𝜌𝑛𝑛𝑛𝑛𝑛𝑛 + 𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟) 	 …(4)

Land Surface Temperature (LST) for Landsat 8/9 and 
7/5 Image

The temperature that is sensed while touching the ground 
in a region is known as the land surface temperature. It is 
distinct from the temperature of the air or the atmosphere. 
Different Landsat data sets, including Landsat-9, 8, 7, and 
Landsat-5, were employed in this investigation (Pasha et 
al. 2023). Because the two Landsat data have different 
band values, calculating the land surface temperature for 
the two sets of data is different. There are eleven bands 
available for Landsat 8 and 9, and we used band 10 TIRS to 
calculate LST (Fig. 3) (Avdan & Jovanovska 2016). Thermal 
mapping is done using the Landsat 8 data band-10 TIRS, 
which specifies the thermal band with a 100-meter precision. 
Similar to this, Landsat 4-5 has a total of seven bands, each 
of which denotes a separate class. The thermal infrared band 
in Landsat 4-5 is band number 6, and it is frequently used 
to determine an area’s thermal mapping (Fig. 3)  (Qin et 
al. 2001). Software named Arc GIS 10.4 has been used to 
perform the calculation. In order to obtain the LST, specific 
formulas were utilized in the raster calculator.

For Landsat 8/9, to recover the land surface temperature 
of various years from satellite photos, an image-based 
methodology has been used (Lo & Quattrochi 2003). OLI 
images were converted using the USGS standard equation, 
and the DNs of the TIR bands of each year’s ETM images 
were transformed to spectral radiance (Fig. 3) using the 
method employed by Chander et al. (2009).

The algorithm’s initial stage is the input of Band 10, 
which is used to calculate the atmospheric Spectral Radiance 
(Fig. 3). The program retrieves the top of atmospheric 
(TOA) spectral radiance (Lλ) once Band 10 is inputted in 
the background using calculations from the USGS website.

	 𝐿𝐿𝐿𝐿 = 𝑀𝑀𝐿𝐿 ∗ 𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐴𝐴𝐿𝐿 − 𝑂𝑂𝑖𝑖  	 …(5)

Where ML stands for the band-specific multiplicative 
rescaling factor, Qcal for the Band 10 image, AL for the 
Band 10 additive rescaling factor, and Oi for the Band 10 
correction (Barsi et al. 2014).

The next step is to calculate and convert spectral 
radiance to Brightness temperature (BT) by using metadata 
(Fig. 3) where. Using the thermal constants provided in 
the metadata file, the TIRS band data should be changed 
from spectral radiance to brightness temperature (BT) after 
being converted from digital numbers (DNs) to reflection. 
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The amount of vegetation or biomass present in the environment is measured by the Normalized Difference Vegetation Index 

(NDVI). Greater greenness and healthy vegetation are indicated by a higher NDVI (Curran 1980). Data from Landsat MSS 

and TM can be used to calculate NDVI (Jensen 1996). The reflectance data from the red (red) and near-infrared (nir) 

bands were utilized to calculate the NDVI values for the research area (Tan et al. 2010). 
NDVI= (𝜌𝜌��� − 𝜌𝜌���)/(𝜌𝜌��� + 𝜌𝜌���)    …(4) 

     Land Surface Temperature (LST) for Landsat 8/9 and 7/5 Image 

The temperature that is sensed while touching the ground in a region is known as the land surface temperature. It is distinct 

from the temperature of the air or the atmosphere. Different Landsat data sets, including Landsat-9, 8, 7, and Landsat-5, were 

employed in this investigation (Pasha et al. 2023). Because the two Landsat data have different band values, calculating 

the land surface temperature for the two sets of data is different. There are eleven bands available for Landsat 8 and 9, and 

we used band 10 TIRS to calculate LST (Fig. 3) (Avdan & Jovanovska 2016). Thermal mapping is done using the Landsat 

8 data band-10 TIRS, which specifies the thermal band with a 100-meter precision. Similar to this, Landsat 4-5 has a total of 

seven bands, each of which denotes a separate class. The thermal infrared band in Landsat 4-5 is band number 6, and it is 

frequently used to determine an area's thermal mapping (Fig. 3)  (Qin et al. 2001). Software named Arc GIS 10.4 has been 

used to perform the calculation. In order to obtain the LST, specific formulas were utilized in the raster calculator. 

 
Fig. 3: Graphical representation of the calculation of LST from Landsat 8,9 and 5,7 satellite images. 

For Landsat 8/9, to recover the land surface temperature of various years from satellite photos, an image-based methodology 

has been used (Lo & Quattrochi 2003). OLI images were converted using the USGS standard equation, and the DNs of 

the TIR bands of each year's ETM images were transformed to spectral radiance (Fig. 3) using the method employed by 

Chander et al. (2009). 

The algorithm's initial stage is the input of Band 10, which is used to calculate the atmospheric Spectral Radiance (Fig. 3). 

The program retrieves the top of atmospheric (TOA) spectral radiance (Lλ) once Band 10 is inputted in the background using 

calculations from the USGS website. 

𝐿𝐿𝐿𝐿 𝐿 𝐿𝐿� ∗ 𝑄𝑄��� + 𝐴𝐴� − 𝑂𝑂�      …(5) 

Where ML stands for the band-specific multiplicative rescaling factor, Qcal for the Band 10 image, AL for the Band 10 

additive rescaling factor, and Oi for the Band 10 correction (Barsi et al. 2014). 

Fig. 3: Graphical representation of the calculation of LST from Landsat 8,9 and 5,7 satellite images.

The tool’s algorithm converts reflectance to BT using the 
equation shown below,

	 𝐵𝐵𝐵𝐵 =  𝐾𝐾2
ln [(𝐾𝐾1

𝐿𝐿𝜆𝜆
)+1]

− 273.15   

𝑃𝑃𝑣𝑣 = ( 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑣𝑣−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠

)
2
   

𝜀𝜀𝜀𝜀 = 𝜀𝜀𝑣𝑣𝑣𝑣𝑃𝑃𝑣𝑣 + 𝜀𝜀𝑠𝑠𝑠𝑠(1 − 𝑃𝑃𝑣𝑣) + 𝐶𝐶𝜆𝜆  

𝑇𝑇𝑠𝑠 =  𝐵𝐵𝐵𝐵
{1+[(𝜆𝜆𝜆𝜆𝜆𝜆

𝜌𝜌 ) ln 𝜀𝜀𝜆𝜆]}
   

𝐿𝐿𝜆𝜆 = 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚−𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚
𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚−𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚

(𝐷𝐷𝐷𝐷 − 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚)  

𝑇𝑇𝑏𝑏 =  𝐾𝐾2
ln{(𝐾𝐾1 𝐿𝐿𝜆𝜆⁄ )+1}

              

𝐿𝐿𝐿𝐿𝐿𝐿 =  𝑇𝑇𝑏𝑏 − 273.15 

	 …(6)

Where K1 and K2 refer to the metadata’s band-specific 
thermal conversion constants, the radiant temperature is 
corrected by adding absolute zero (about -273.15°C) to 
obtain the fiugres in Celsius (Xu & Chen 2004). The Thermal 
constant for Landsat 9, Band 10 image is used in the method. 
Where the value of K1 (Constant Band_10)  is 799.0284, and the 
value of K2 (Constant Band_10) is 1329.2405. For the Rescaling 
factor for Landsat 9, Band 10 image, the value of ML (Radiance 

Mult Band) is 0.000384 also, the value of AL (Radiance Add Band) is 
0.10000, and the Correction value of Band 10 is Oi = 0.29. 

In the third step NDVI value needed to be calculated 
following the procedure in section (2.5) then the portion of 
Vegetation P

v
 is calculated. The NDVI values for vegetation 

and soil (NDVIv = 0.5 and NDVIs = 0.2) are suggested to be used 
under global settings for computing P

v
 (Sobrino et al. 2004).  

Where,

	

𝐵𝐵𝐵𝐵 =  𝐾𝐾2
ln [(𝐾𝐾1

𝐿𝐿𝜆𝜆
)+1]

− 273.15   

𝑃𝑃𝑣𝑣 = ( 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑣𝑣−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠

)
2
   

𝜀𝜀𝜀𝜀 = 𝜀𝜀𝑣𝑣𝑣𝑣𝑃𝑃𝑣𝑣 + 𝜀𝜀𝑠𝑠𝑠𝑠(1 − 𝑃𝑃𝑣𝑣) + 𝐶𝐶𝜆𝜆  

𝑇𝑇𝑠𝑠 =  𝐵𝐵𝐵𝐵
{1+[(𝜆𝜆𝜆𝜆𝜆𝜆

𝜌𝜌 ) ln 𝜀𝜀𝜆𝜆]}
   

𝐿𝐿𝜆𝜆 = 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚−𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚
𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚−𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚

(𝐷𝐷𝐷𝐷 − 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚)  

𝑇𝑇𝑏𝑏 =  𝐾𝐾2
ln{(𝐾𝐾1 𝐿𝐿𝜆𝜆⁄ )+1}

              

𝐿𝐿𝐿𝐿𝐿𝐿 =  𝑇𝑇𝑏𝑏 − 273.15 

	 …(7)

However, the figure for vegetated surfaces, 0.5, may be 
too low because the NDVI values vary for each place. Since 
NDVIV and NDVIs will rely on atmospheric conditions, it 
would not be possible to establish global values in the case 
of an NDVI computed using TOA reflectivities (Fig. 3). 
Global values from NDVI can be obtained from at-surface 
reflectivities (Jiménez-Muñoz et al. 2009).

In the next phase, surface emissivity has to be calculated 
to estimate LST. The land surface emissivity (LSE) must 
be known because it is a proportionality factor that scales 
blackbody radiance (Planck’s law) to forecast emitted 
radiance and measures how effectively thermal energy is 
transmitted from the surface to the atmosphere (Jiménez-
Muñoz et al. 2006). The emissivity can be calculated with 
the following formula (Sobrino et al. 2004). 

	

𝐵𝐵𝐵𝐵 =  𝐾𝐾2
ln [(𝐾𝐾1

𝐿𝐿𝜆𝜆
)+1]

− 273.15   

𝑃𝑃𝑣𝑣 = ( 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑣𝑣−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠

)
2
   

𝜀𝜀𝜀𝜀 = 𝜀𝜀𝑣𝑣𝑣𝑣𝑃𝑃𝑣𝑣 + 𝜀𝜀𝑠𝑠𝑠𝑠(1 − 𝑃𝑃𝑣𝑣) + 𝐶𝐶𝜆𝜆  

𝑇𝑇𝑠𝑠 =  𝐵𝐵𝐵𝐵
{1+[(𝜆𝜆𝜆𝜆𝜆𝜆

𝜌𝜌 ) ln 𝜀𝜀𝜆𝜆]}
   

𝐿𝐿𝜆𝜆 = 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚−𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚
𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚−𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚

(𝐷𝐷𝐷𝐷 − 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚)  

𝑇𝑇𝑏𝑏 =  𝐾𝐾2
ln{(𝐾𝐾1 𝐿𝐿𝜆𝜆⁄ )+1}

              

𝐿𝐿𝐿𝐿𝐿𝐿 =  𝑇𝑇𝑏𝑏 − 273.15 

	 …(8)

Where, C stands for surface roughness (C = 0 for 
homogeneous and flat surfaces) and is constant at 0.005 for 
vegetation and soil emissivities, respectively (Sobrino & 
Raissouni 2000).

As a final step, the land surface temperature Ts, also 
known as the emissivity-corrected land surface temperature, 
is determined as follows.

	

𝐵𝐵𝐵𝐵 =  𝐾𝐾2
ln [(𝐾𝐾1

𝐿𝐿𝜆𝜆
)+1]

− 273.15   

𝑃𝑃𝑣𝑣 = ( 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑣𝑣−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠

)
2
   

𝜀𝜀𝜀𝜀 = 𝜀𝜀𝑣𝑣𝑣𝑣𝑃𝑃𝑣𝑣 + 𝜀𝜀𝑠𝑠𝑠𝑠(1 − 𝑃𝑃𝑣𝑣) + 𝐶𝐶𝜆𝜆  

𝑇𝑇𝑠𝑠 =  𝐵𝐵𝐵𝐵
{1+[(𝜆𝜆𝜆𝜆𝜆𝜆

𝜌𝜌 ) ln 𝜀𝜀𝜆𝜆]}
   

𝐿𝐿𝜆𝜆 = 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚−𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚
𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚−𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚

(𝐷𝐷𝐷𝐷 − 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚)  

𝑇𝑇𝑏𝑏 =  𝐾𝐾2
ln{(𝐾𝐾1 𝐿𝐿𝜆𝜆⁄ )+1}

              

𝐿𝐿𝐿𝐿𝐿𝐿 =  𝑇𝑇𝑏𝑏 − 273.15 

	 …(9)

Where Ts is the LST in degrees Celsius ( C), BT is the 
at-sensor BT ( C), is the emission wavelength (for which 
the maximum response and the average of the limiting 
wavelength ( = 10.895) will be used), and is the previously 
determined emissivity (Markham & Barker 1985). 

For Landsat 7 and 5 images, Ll has to be calculated with 
the following formula,

	

𝐵𝐵𝐵𝐵 =  𝐾𝐾2
ln [(𝐾𝐾1

𝐿𝐿𝜆𝜆
)+1]

− 273.15   

𝑃𝑃𝑣𝑣 = ( 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑣𝑣−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠

)
2
   

𝜀𝜀𝜀𝜀 = 𝜀𝜀𝑣𝑣𝑣𝑣𝑃𝑃𝑣𝑣 + 𝜀𝜀𝑠𝑠𝑠𝑠(1 − 𝑃𝑃𝑣𝑣) + 𝐶𝐶𝜆𝜆  

𝑇𝑇𝑠𝑠 =  𝐵𝐵𝐵𝐵
{1+[(𝜆𝜆𝜆𝜆𝜆𝜆

𝜌𝜌 ) ln 𝜀𝜀𝜆𝜆]}
   

𝐿𝐿𝜆𝜆 = 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚−𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚
𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚−𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚

(𝐷𝐷𝐷𝐷 − 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚)  

𝑇𝑇𝑏𝑏 =  𝐾𝐾2
ln{(𝐾𝐾1 𝐿𝐿𝜆𝜆⁄ )+1}

              

𝐿𝐿𝐿𝐿𝐿𝐿 =  𝑇𝑇𝑏𝑏 − 273.15 

	 …(10)

Qcal is the DN of each image in the metadata of Landsat 
7 and 5, QCALmax is the maximum DN (255), and QCALmin 
is the minimum DN (1). The top of the atmosphere (TOA) 
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radiances, Lmax and Lmin, are scaled to QCALmax and 
QCALmin in W/(m2 srm), respectively. Using the following 
equation, the radiant images were transformed from the 
DNs to the spectral radiance to determine the blackbody 
temperature.

	

𝐵𝐵𝐵𝐵 =  𝐾𝐾2
ln [(𝐾𝐾1

𝐿𝐿𝜆𝜆
)+1]
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Where K1 and K2 are prelaunch calibration constants in 
Kelvin units acquired from the image metadata file, Tb is the 
effective at-sensor brightness temperature in Kelvin units, L 
is spectral radiance in W/(m2 srm), For the Thermal constant 
for Landsat 7, Band 6 image is, K1 (Constant Band 6) = 666.09 
and the K2 (Constant Band 6)= 1282.71. The Rescaling factor for 
Landsat 7 and 5, Band 6 image is QUANTIZE Cal Max Band_6= 
255 and QUANTIZE Cal Min Band_6= 1.

The calculated LST values were then translated to the 
standard Degree Celsius (°C) unit by subtracting the absolute 
zero, which is roughly minus 273.5°C (Xu & Chen 2004).  
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Model Accuracy, Assumptions, and Potential  
Errors

Rooted on the land use land cover changes data from 
2007 to 2022, the Markov model anticipates land use 
changes depending upon the prior patterns in the future, 
which is likely to be a fallacy. It, however, does not, out of 
consideration, include the irregular events that can occur, 
such as a change in policy and natural catastrophes, among 
others, and simplifies changes to be linear, which may 
not adequately portray the complexities related to urban 
growth. In this case, present conditions and the quality of 
data used for forecasting predictions, as well as the fact that 
the transition probabilities do not change, are major factors 
in determining the predictive power of these matrices. The 
span or the window of the data, which, in this instance, is 15 
years of history, makes it difficult to trust the forecasting, 
for it is prone to future incongruence with present trends. 
The expected figures for urban encroachment and vegetation 
destruction relate to other fast-developing cities like Dhaka 
and Kolkata. These comparisons do enhance the forecasts 
made by the model, but their usage carries risks and should 
thus be moderated. The Markov modeling framework does 
not incorporate sudden land cover changes or any effects of 
land cover change on land use. This development could be 
even more beneficial for future projections by adding some 
innovative models with more dynamics, like the CA-Markov 
model, and integrating socio-economical and environmental 
factors in the modeling process.

RESULTS 

Changes in Land Use and Land Cover from 2007 to 
2022

This study showed the land use and land cover of the 
Chattogram City Area. According to the analysis of land use 
and land cover, only 5901.21 hectares of urban area were 
found in 2007 (Table 1). However, it expanded significantly 
from 5901.21 ha in 2007 to 6895.08 ha in 2012, rising 
from 34.77% to 40.63% of the total study area during those 
five years (Fig. 4). In 2017, the urban area’s growth trends 
accounted for 8073.36 ha, or 47.57% of the total area (Table 
1). The Chattogram city has a huge population, and the urban 
area is growing swiftly. The urban area has grown even more, 
accounting for 8741.52 ha in 2022, or 51.51% of the city’s 
total land area (Table 1). But as the graph demonstrates, 
there has been a significant decline in the vegetation cover, 
with 0.4% (70 ha) between 2007 and 2012 and 2.15% 
(363.51 ha) between 2012 and 2017. 1.3% (220.95 acres) of 
vegetation was lost between 2017 and 2022 (Fig. 4). Over 
15 years, 654.39 ha less land was covered by vegetation. 
These trends in plant loss should worry city people because 
they portend an increase in urban heat, which is harmful to 
both the environment and human civilization. There was a 
discernible drop in bare land, agricultural land, and water 
body area. Agriculture occupied 3641.54 hectares (21.46%) 
of the total area in 2007, increased to 4686.03 ha (27.63%) 
in 2012, and again decreased to 2733.3 ha (16.11%) in 
2017 (Table 1). According to the study, the total amount of 
agricultural land decreased by 908.64 ha between 2007 and 
2017, but in 2022, it climbed by roughly 5%, or 3661.74 ha, 
of the study region’s total land cover (Table 1). The area’s 
bare land severely declined from 3215.07ha to 1793.07ha 
between 2007 and 2012 (a loss of 8.38%), but it dramatically 
increased from 2012 to 2017 (a gain of 8.15%) and became 
3176.82 ha. The total land area in 2022 was 1574.1 ha, a 
9.44% decrease in bare land area (Table 1). Over the course 
of 15 years, bare land dropped by 1640.97 ha in total. The 
area occupied by inland water bodies shrunk between 2007 
and 2012, from 1196.28 hectares in 2007 to 650.25 ha in 
2012, and it also shrunk significantly between 2012 and 
2017, between 650.25 hectares in 2012 and 404.46 hectares 
in 2017 (Table 1). It did, however, grow in 2022, though 
still only by 3.72% of the overall area. Between 2007 and 
2017, the water body shrunk by 791.82 ha, while between 
2017 and 2022, it grew by 227.07 ha (Table 1). Even though 
the total area by the years 2007, 2012, 2017, and 2022 was 
almost the same, the internal land use and landcover types 
have changed dramatically (Fig. 4 & 5). Urban lands produce 
more urban heat island zones than other types of land use. 
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Table 1: Land cover change from 2007 to 2022.

Class Hectors P% Hectors P% Hectors P% Hectors P%

2007 2012 2017 2022

Vegetation 3015.9 17.77% 2945.97 17.36% 2582.46 15.22% 2361.51 13.92%

Agriculture 3641.94 21.46% 4686.03 27.61% 2733.3 16.11% 3661.74 21.58%

Urban 5901.21 34.77% 6895.08 40.63% 8073.36 47.57% 8741.52 51.51%

Bare land 3215.07 18.95% 1793.07 10.57% 3176.82 18.72% 1574.1 9.28%

Water body area 1196.28 7.05% 650.25 3.83% 404.46 2.38% 631.53 3.72%

Total 16970.4 100% 16970.4 100% 16970.4 100% 16970.4 100%
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There was a noticeable change in the land use and land cover 
of the Chattogram region between 2007 and 2022. Analyses 
of change detection demonstrated that several land use and 
land cover categories had undergone considerable changes. 
In 2007, urban land took up 34.77% of the research area’s 
land area, followed by agricultural land (21.46% of the area), 
bare land (18.95% of the area), and vegetation (17.77%). 
Water bodies made up 7.05% of the study area’s land area. 
The findings showed that the percentage of vegetation cover 
and bare land decreased to 3.85% and 9.67%, respectively. 
However, Chattogram City’s urban area drastically increased 
to 51.51% of the total area (Table 1).

Indicative Changes in LULC by 2037 

By examining two qualitative land uses from two distinct 
periods, Markov creates a transition matrix or a transition 
area matrix. For this study, 15 years of data from 2007 to 
2022 (Table 2) was used. More recent land cover usage 
is represented by the column, whereas older land cover 
use is represented by the rows. Agriculture, bare terrain, 
urban, vegetation, and water bodies are represented here 
in chronological order by the categories. Here, the Markov 
analysis used the matrix to forecast how the land cover will 
be used in 2037 (Islam & Ahmed 2011).

According to the transition matrix, the probability of 
change for agricultural land is that 39.29% of the current 
agricultural area will remain the same in 2037. Of the current 
area, 11.19% may become bare land, 41.28% may become 
urban areas, 5.97% may become vegetation, and 2.27 percent 
may become water body areas (Table 2). 19.64 percent of 
the current bare land area is likely to remain unchanged in 
2037, which would represent no change in the bare land 
area. Currently, agriculture can occupy 28.20 percent of 
the land, whereas urban uses can occupy 41.20 percent, 
vegetation can occupy 8.36 percent, and water bodies can 
occupy 2.59 percent (Table 2). Similar to this, in 2037, 86% 
of the currently developed urban land will still be there, with  
4.53% of it being bare land, 5.15 % being used for agriculture, 
1.49% being covered in vegetation, and 2.56% being a body 
of water. In 2037, it is anticipated that 53.97 percent of the 
area’s vegetation cover will remain the same, while 15.56 

percent of it may become urban, 4.55 percent could turn into 
bare ground, 25.57 percent could be used for agriculture, and 
0.35 percent could turn into a body of water (Table 2). In 
terms of the water body area, there will be no change of 24.91 
percent in 2037. However, 12.74 percent may be covered 
by vegetation, 41.54 percent by urban, 4.17 percent by bare 
land, and 16.64 percent by agriculture (Table 2).

Relationship between NDVI and LST

Fig. 6 shows the relationship between NDVI and LST. It has 
been demonstrated that the NDVI and surface temperature 
have a negative correlation. This is a blatant indication that 
the LST and NDVI have a high and unfavorable correlation. 
As a result, the land surface temperature is higher in areas with 
less vegetation. Fig. (6) shows that the area’s temperature 
regime has been significantly impacted by changes in land 
use. However, compared to other locations, such as city areas, 
the vegetative area had a lower temperature. In comparison 
to urban green spaces such as parks and agricultural fields, 
LST values were comparatively greater in urban areas with 
no vegetation cover. Because there is a negative association 
between NDVI and LST, areas with lower NDVI values 
have higher land surface temperatures, whereas areas with 
higher NDVI values have lower land surface temperatures 
(Gorgani et al. 2013). The value of the NDVI in 2007 ranged 
from +0.6 to -0.25, with a negative value indicating lesser 
vegetation cover (Table 3), which typically indicates places 
with water cover. By looking at Fig. 6, it is clear that this 
range was true in 2007. The LST map for 2007 displays the 
same information, indicating that the maximum LST was 
38°C and the minimum LST was 24.5°C (Table 3). It is 
evident from the 2007 co-relationship diagram that NDVI 
value decreases with high LST value and increases with low 
LST value. The NDVI value was 0.289 in the trend line of 
correlation (Fig. 6) when the LST value was close to 25°C, 
but it constantly declined with higher LST values, as can be 
seen when the LST value was close to 38°C, and the NDVI 
value was negative at -0.075. That indicates that in 2007, the 
trend line unmistakably demonstrated a negative association 
between NDVI and LST (Fig. 6). With a slightly different 
NDVI and LST value for the year 2012, it was essentially a 

Table 2: Probability of changes in the year 2037 land cover (prediction) using transition matrix.

Class Agriculture Bare land Urban Vegetation Water Body Grand Total

Agriculture 39.29% 11.19% 41.28% 5.97% 2.27% 100%

Bare land 28.20% 19.64% 41.20% 8.36% 2.59% 100%

Urban 5.15% 4.53% 86.28% 1.49% 2.56% 100%

Vegetation 25.57% 4.55% 15.56% 53.97% 0.35% 100%

Waterbody 16.64% 4.17% 41.54% 12.74% 24.91% 100%

Markov’s prediction of land use change in the next 15 years
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Table 3: Retrieved statistics of LST (°C) and NDVI values from 2007-2022.

LST NDVI

2022 2017 2012 2007 2022 2017 2012 2007

Maximum 42.0361 37.755 37.2995 38.0009 0.608817 0.564 0.447368 0.6

Minimum 24.7868 20.2609 20.2609 24.5451 -0.17095 -0.15216 -0.28571 -0.25

Mean 33.41145 29.00795 28.7802 31.273 0.218932 0.205919 0.080827 0.175

Standard Deviation 12.1971 12.3702 12.04811 9.514687 0.551381 0.506403 0.518367 0.601040764

12 

 

 

 
Fig. 6: Correlation of LST and NDVI from the year 2007 to 2022. 
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reflection of the year 2007. The trend line for 2012 shows 
a similar outcome to that of 2007, where the NDVI value 
is 0.237 while the LST is close to 22°C but continuously 
decreases as the LST increases (Fig. 6). The NDVI value 
is -0.221 when the LST value is near 35°C. This clearly 
illustrates the conflict between the NDVI and LST. This 
implies the tendency of inverse relationships between NDVI 
and LST where the increase of NDVI values fits the decrease 
of LTS values and vice versa. In the same way, in 2017 the 
relationship showed a negative trend line between NDVI and 
LST. In 2017 the highest NDVI was +0.56, and the lowest 
NDVI was -0.15, while the maximum LST and lowest LST 
values were 37.7°C and 20.26°C, respectively (Table 3). The 
trend line indicated that less vegetation will be present if the 
LST has a higher value when the relationship between them 
is taken into account. When the LST was close to 37°C, the 
NDVI value was negative (-0.086), indicating the absence of 
vegetation, as it was in 2017 when the NDVI value was 0.35 
on the trendline (Fig. 6). In 2022 the result was quite similar 
as the correlation was negative. In 2022, the higher NDVI 
value was +0.60, and -0.17 was the lowest NDVI score. 
The highest LST and lowest LST in 2022 were 42.03°C and 
24.78°C, respectively (Fig. 6). The trendline indicated that 
less vegetation will be present if the LST has a higher value 
when the relationship between them is taken into account. 
The NDVI had a low value of 0.02 when the LST was close 
to 41°C, indicating very little vegetation, but it had a high 
value of +0.37 when the LST was close to 25°C (Fig. 6).

DISCUSSION

Gain-loss and net change estimation from the four temporal 
periods of 2007 to 2012, 2012 to 2017, 2017 to 2022, and 
2007 to 2022 were detected using the continuous analysis of 
LULC. Nearly all of the land use land cover classes displayed 
gains and losses. Gain and loss graphs for various purposes 
(Fig. 7) were made per category to aid in understanding. 
From the transition matrix (Table 4) it can be identified that 
lands from different categories have changed with time. The 
area, which was covered by water in 2007, transformed into 
an urban area, which is about 472 ha of land. Also, there is 
a significant change has been shown in the vegetation area 
which has been converted into an urban area in the last 15 
years. About 470 ha of land has been converted from a 
vegetation area to an urban buildup area; also, about 772 ha 
of land has been converted into agricultural land in the last 15 
years in Chattogram city. The conversion of vegetation land 
to bare land is also alarming for the overall environment of 
Chattogram City. About 137 ha of land has been converted 
from vegetation to bare land. Because of the gain of urban 
area and loss of vegetation area, it is significantly impacting 

the thermal environment of the city. The Land Surface 
Temperature (LST) and NDVI both show their characteristics 
because of these changes (Table 5). ArcGIS 10.4 image 
processing software is used to display the LST and NDVI 
images of Chattogram side by side to better comprehend the 
LST and NDVI pattern. The spatial distribution of the urban 
thermal environment and vegetation cover in Chattogram 
City is depicted in Fig. 8 in an instructive manner. The urban 
area of Chattogram has a higher LST than the surrounding 
area of vegetation and agricultural land. It is evident that non-
porous materials, such as metal, asphalt, and concrete, which 
are used to construct city structures and main transportation 
corridors, contribute to greater temperatures (Hoehne et al. 
2022). Water bodies, agricultural areas, and vegetation, on 
the other hand, all have lower temperatures. In the NDVI 
image (Fig. 8), the values are the exact opposite. Due to the 
lack of vegetation, built-up or core city regions have low 
NDVI values, as do water body locations. Because green 
biomass is present at relatively high levels, high values 
are found in agriculture, vegetation, and green land areas 
(Prashar et al. 2022).

Regarding LST, the phenomenon that LST values are 
disproportionately greater in the built-up or core urban area 
than in the suburbs makes the impact of the urban thermal 
environment clear. Except for a few open spaces, NDVI 
values in the built-up or core city region are significantly 
lower than in the suburbs. When comparing LST and 
NDVI, one discovers that their respective changing trends 
are completely at odds (Table 5). LST values are typically 
high where the main city area or buildup area is situated, 
while they are typically low where bodies of water and 
green space are present. The green space is where the NDVI 
peaks arise. LST and NDVI typically exhibit a clear inverse 
association. On the other hand, Chattogram’s urban form 
and urban sprawl are intimately tied to the shifting trends 
of LST or NDVI.

Table 5 presents the regression functions and correlation 
coefficient (R2), which gauges the potency of linear 
regression to show the relationship between LST and 
NDVI for each LULC type. NDVI and LST of all LULC 
categories, except water bodies, showed a substantial inverse 
association. For every year the greatest negative regression 
slope was indicated by “Urban area,” while the shallowest 
negative regression slope was revealed by “Vegetation area.” 
Fig. 8 illustrates that the NDVI and LST association was 
consistently negative except water body area. The NDVI 
reduced as LST grew at all-time intervals due to having 
a negative connection, and this association demonstrated 
that when a lower Vegetation Level was present, the LST 
increased (Table 5). In other words, higher Vegetation Levels 



11URBAN THERMAL IMPACTS OF LAND COVER DYNAMICS IN CHATTOGRAM

Nature Environment and Pollution Technology • Vol. 24, No. 2, 2025

Table 4: Land Use Land Cover Transition Matrix 2007-2022 in Hectors.

Land cover class 2022 

Land Class Agriculture Bare land Urban Vegetation Water Body Grand Total

Land cover class 2007 Agriculture 1431.744195 407.898234 1504.122069 217.562777 82.592654 3643.919929

Bare land 893.989644 622.767495 1306.324578 265.116518 82.140167 3170.338402

Urban 307.313042 270.381518 5153.086372 88.993963 152.719009 5972.493904

Vegetation 772.824363 137.596243 470.26625 1631.57592 10.622077 3022.884852

Waterbody 189.196549 47.430983 472.239674 144.855487 283.202797 1136.92549

Grand Total 3595.067793 1486.074473 8906.038943 2348.10466 611.276704 16946.56258
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Fig. 7: Changes in Land cover in each category from 2007 to 2022. 
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caused lower LST while lower vegetation levels caused higher 
LST (Fig. 8). So if the vegetation decreases with time in the 
Chattogram region, a significant amount of LST will increase, 
which is usually responsible for creating an Urban heat island 
that also has a direct impact on the overall temperature of the 
city (Roy et al. 2020). According to (Farzana et al. 2022), a 
city’s heat island can also have an impact on precipitation, 
which is a problem for Chattogram City.

The swift growth of the population in the urban area of 
Chattogram City and its changing patterns of land use and 
land cover (LULC) has brought about tremendous changes in 
the urban thermal environment –that is, the urban heat islands 

(UHI) phenomenon is becoming increasingly prevalent. With 
the growth of the built-up areas, especially those where trees 
and farms are cleared, the UHI intensity increases, which in 
turn has far-reaching consequences on health, diversity, and 
energy usage. Citing previous studies, it can be said these 
increasing UHI effects worsen heat stress and the associated 
health risks, especially during heat waves which are very 
dangerous to certain people, such as the aged and those with 
underlying illnesses  (Liu et al. 2021, Wang et al. 2021). With 
the growing infrastructure in Chattogram City, for example, 
there is a loss of vegetation and enhancement of pavements. 
As a result, the capacity of the land to cool down using 
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Table 5:  LST and NDVI Relationship by LULC Type.

Class
(2007-2022)

2022 2017 2012 2007

Regression function and (R2) Regression function and (R2) Regression function and (R2) Regression function and (R2)

Vegetation y = -10.502x + 32.449
R² = 0.1912

y = -7.9417x + 27.748 
R² = 0.1925

y = -3.8895x + 25.705 
R² = 0.1143

y = -5.1192x + 29.643 
R² = 0.1151

Agriculture y = -12.517x + 34.941
R² = 0.5495

y = -6.8163x + 28.026 
R² = 0.5096

y = -6.3522x + 27.371 
R² = 0.4693

y = -11.12x + 31.164 
R² = 0.4159

Urban y = -29.924x + 37.13
R² = 0.2255

y = -11.624x + 30.041 
R² = 0.1868

y = -12.469x + 27.854 
R² = 0.1794

y = -15.409x + 32.227 
R² = 0.229

Bare land y = -19.346x + 38.531 
R² = 0.5969

y = -2.9813x + 29.199 
R² = 0.0397

y = -5.6523x + 27.541 
R² = 0.0034

y = -12.806x + 33.853 
R² = 0.314

Water area y = 8.6653x + 28.799
R² = 0.1108

y = 1.1331x + 23.87 
R² = 0.0021

y = 7.8215x + 25.113 
R² = 0.2422

y = 5.4723x + 27.463 
R² = 0.0552
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Fig. 8: LST and NDVI relationship by LULC Type for the years 2022 (a), 2017 (b), 2012 (c), 2007 (d).
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Fig. 8: LST and NDVI relationship by LULC Type for the years 2022 (a), 2017 (b), 2012 (c), 2007 (d).

an efficient natural process known as evapotranspiration 
reduces. There is a body of literature that supports the view 
that such a process is very important in controlling surface 
temperatures in other cities that have undergone similar 
transformations (Atasoy 2020, Zhou et al. 2022). Extreme 
weather conditions attributed to urban surfaces not only mean 
hotter temperatures but also prolonged hot days and warm 
nights (Wang et al. 2021).

The impact on the environment goes further than just 
human well-being. Urban biodiversity is especially sensitive 

to the higher temperatures resulting from the urban heat 
island effect. Species twice as rapidly as climate-adjusting 
species pose a risk of extinction or decline in numbers (Kong 
et al. 2021). The intensified UHI effect also increases the 
energy consumption demand for buildings, especially air 
conditioning. Also, this may lead to high-energy use and 
emissions, which contribute to the problem of combating 
urban ecological pollution (Dudorova & Belan 2022, Liu 
et al. 2021). Overall, the results from Chattogram City are 
consistent with worldwide observations, where uncontrolled 
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urban development contributes significantly to increased 
UHI effects, which presents great threats to human health, the 
environment as well as energy utilization. Addressing these 
negative effects requires strategic urban development and 
active measures to mitigate the effects including increasing 
urban vegetation as well as the use of energy-effective 
technologies (Jusuf et al. 2019, Kong et al. 2021).

CONCLUSIONS

The analysis shows that there have been significant changes 
in land use and land cover in the Chattogram City region 
during the past 15 years. This study also illustrates how the 
study area’s urban heat island is distributed spatially and 
how land surface temperature fluctuates over time. For four 
separate years 2007, 2012, 2017, and 2022 the study has 
determined the land surface temperature and the urban heat 
island zone. Due to changes in land use and land cover, there 
have been observed variations in land surface temperature 
and urban heat islands, which have altered radiant surface 
temperatures and ultimately produced urban heat island 
zones. In the Chattogram City Area, the urban area had the 
largest land cover (34.77 percent of the entire study area) in 
2007, and it rapidly rose in 2012, 2017, and 2022. In 2022, 
the urban area became the CMA’s main and significant land 
cover, accounting for 51.51 percent of the entire study area, 
while the covering of dominating vegetation declined by 
654.39 ha. The land surface temperature in Chattogram City 
significantly increased between 2007 and 2022 as a result of 
the shift in land usage. Rooftop gardening and plantations 
might help restore some of the lost green space that has 
been lost over the previous few decades, which may help to 
regulate the current level of UHI.

Additionally, rooftop gardening and tree planting can 
lower the temperature of the city of Chattogram’s surface as 
well. Both of the mayors of the city corporations in Dhaka, 
the capital of Bangladesh, have promised a 10% holding tax 
discussion to promote rooftop gardening. Even if only half of 
the structures in Chattogram allowed for rooftop gardening, 
it would still be good for the city’s ecosystem. The rooftop 
tree plantation and gardening plan in Chattogram City 
may be difficult to accomplish due to a lack of awareness, 
policy, and management. However, action must be taken 
in the Chattogram City area for a safe and environmentally 
friendly future.
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