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	       ABSTRACT
The mountainous region of the Hunza River watershed basin, especially along the Karakorum 
highway, and also known as a third pole for the high accumulation of glaciers, which leads 
to huge devastating landslides occurring every year. Landslide susceptibility mapping was 
carried out using two deep machine learning techniques (DeeplabV3+ & universal network 
U-Net) and two statistical models (Intuitionistic Fuzzy divergence IF-D & Frequency ratio 
FR). The landslide susceptibility mapping is conducted using landslide inventory data and 
twelve conditional factors. The landslide susceptibility maps obtained from the two statistical 
models were compared with those generated by two deep machine learning models based 
on prediction accuracy measures, such as the Area Under the Curve (AUC) and Seed Cell 
Area Index (SCAI). The Success Rate Curve (SRC) was obtained using the training dataset, 
and the AUC values for the four models were as follows: 76.9% for IF-D, 76.9% for FR, 
80.4% for DeeplabV3+, and 76.3% for U-Net. In terms of the Prediction Rate Curve (PRC) 
obtained from the validation dataset, the AUC values were found to be 80.8% for IF-D, 80.8% 
for FR, 81% for DeeplabV3+, and 77.8% for U-Net. To assess the classification ability of 
the models, the Seed Cell Area Index (SCAI) test was conducted. The results indicated 
that the SCAI (D-value) was 7.3 for U-Net, 10 for DeeplabV3+, 7.6 for IF-D, and 9.1 for FR. 
Overall, the findings revealed that DeeplabV3+ exhibited the highest prediction accuracy and 
classification ability, making it the most suitable choice for landslide susceptibility mapping in 
the relevant study area.

INTRODUCTION

Landslides are widely recognized as the most common and 
devastating geohazards in mountainous regions (Panchal 
& Shrivastava, 2022), significantly impacting both 
socioeconomic factors and human lives (Panahi et al. 2022). 
The occurrence and severity of landslides have been on the 
rise globally, attributed to the influences of climate change 
and human activities (Sajadi et al. 2022). Various factors 
contribute to these events, including frequent earthquakes, 
human activities such as road expansion on steep slopes, 
volcanic activities, and prolonged rainfall (Youssef & 
Pourghasemi 2021). The Karakoram and Himalayan 
mountainous terrain in the extreme northern part of Pakistan 

is prone to numerous landslides. The frequent occurrence 
of landslides in these rugged terrains can be attributed to 
factors such as repeated seismic activity, highly weathered 
lithologies, unstable slopes, and human activities  (Shafique 
et al. 2016). The presence of active thrust faults, fractured 
lithologies, exposed geomorphology, and unconsolidated 
glacial-fluvial moraine on steep slopes further contributes 
to the susceptibility of the area to landslides (Hewitt 1998). 
In recent years, the Hunza River watershed basin located 
within the Karakoram Mountain range has experienced 
frequent devastating landslides (Derbyshire 2001). In 
January 2010, an especially destructive landslide occurred 
in Attabad village in Upper Gojal, resulting in the loss of 
twenty lives, the destruction of over three hundred houses, 
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and the formation of a new natural lake that persists to this 
day (Kargel et al. 2010). To address these natural hazards, 
landslide susceptibility maps can prove to be valuable tools 
for identifying areas vulnerable to landslides (Youssef 
& Pourghasemi 2021). These maps can be developed by 
considering various geo-environmental factors, including 
lithology, geomorphology, soil types, human activities, and 
drainage patterns.

Several approaches have been proposed for studying 
landslide susceptibility mapping, driven by advancements 
in computer science technologies and the availability of 
geospatial data. Many of these approaches utilize remote 
sensing data and Geographic Information Systems (GIS) 
(Chang et al. 2020). However, these methods often require 
extensive preparation related to landslides, including 
environmental, pedagogical, physical, geomorphological, 
and topographic considerations, as well as considerable 
knowledge and determination. Traditional approaches to 
landslide modeling rely on field excursions, which can be 
costly, site-specific, and time-consuming. Consequently, 
in the past few decades, statistical approaches for landslide 
susceptibility modeling have gained popularity (Al-Najjar 
& Pradhan 2021).

In general, landslide susceptibility mapping approaches 
encompass objective quantitative methodologies based on 
mathematical analysis, as well as qualitative methodologies 
involving subjective expert judgment (Bopche & Rege 2022). 
The heuristic technique involves the creation of susceptibility 
classes by assessing the relative contribution of landslide 
conditional factors to landslide formation (Dahal et al. 2008). 
The main limitation of heuristic methods, which fall under the 
qualitative approach, is the subjective nature of susceptibility 
assessments. On the other hand, the quantitative approach 
allows for the evaluation of the statistical relationship 
between the spatial distribution of known landslides and 
conditional factors (Chen et al. 2019). However, among 
the various landslide susceptibility techniques available, 
statistical approaches have gained popularity due to their 
accuracy and reliability in addressing the challenges of 
large-scale landslide mapping.

These methods can be categorized into qualitative, semi-
qualitative, and quantitative approaches. The availability of 
remote sensing data, including topography and land cover 
information, has greatly facilitated the application of these 
techniques at large scales (Al-Najjar & Pradhan 2021). In 
recent years, researchers have extensively evaluated and 
applied various statistical models for landslide susceptibility 
analysis. These models include the Weight of Evidence 
(WOE) (Bopche & Rege 2022), Entropy Index (IOE) 
(Mondal & Mandal 2019), Support Vector Machine (Pandey 

et al. 2020), Neural Network (Abbaszadeh Shahri et al. 
2019), Decision Tree methods (Wu et al. 2020), and Logistic 
Regression (Shan et al. 2020). However, each landslide 
susceptibility mapping (LSM) model has its advantages 
and disadvantages. It is common for different models to 
yield diverse evaluation outcomes when applied in the same 
region. To address these differences in prediction accuracies, 
many researchers have opted for multi-LSM models and 
conducted comparative analyses (Chen et al. 2019).

In recent years, various machine learning techniques 
(MLTs) have been utilized for tasks such as landslide 
susceptibility mapping, debris classification, and glacier lake 
mapping. Specifically, for landslide susceptibility mapping, 
several MLT techniques have been applied, including 
Artificial Neural Network (Youssef & Pourghasemi 2021), 
Support Vector Machine (X. Zhang et al. 2019), Decision 
Tree (Dou et al. 2019), and Random Forest (RF) (Sun et 
al. 2021).

Landslide occurrences depend on multiple factors 
(Zhang et al. 2019), including man-made activities, 
geomorphological conditions, weathering conditions, and 
others. While some factors can only be analyzed using 
qualitative or semi-qualitative methods (Zhang et al. 2021), 
there is inherent uncertainty in the landslide system (Zou & 
Xiao 2008). Fuzzy mathematical methods have been widely 
applied for landslide assessment to capture the complexity 
of these factors (Zhang et al. 2012). However, in classical 
fuzzy methods, the fuzzy nature is only represented by the 
membership function, whereas in intuitionistic fuzzy sets, 
the non-membership function is introduced to further explain 
the fuzzy concept (Zhang et al. 2021).

With the advancement of fuzzy set theory, various fuzzy 
models have been widely applied in various decision-making 
scenarios (Gu & He 2021). In the context of landslide 
susceptibility mapping, several entropy models and fuzzy 
models have been employed in landslide-prone areas. These 
include Shannon entropy (SE) (Nohani et al. 2019), index 
of entropy (IE) (Pourghasemi et al. 2012), Renyi divergence 
(RI) (Qin et al. 2001), intuitionistic fuzzy Jensen-Renyi 
divergence (IFJ-D) (Verma & Sharma, 2013), fuzzy gamma 
ray operator and AHP (Bera et al. 2019), and intuitionistic 
fuzzy set ( Gu et al. 2022).

The concept of intuitionistic fuzzy sets, developed by 
Atanassov (1986), incorporates the degree of membership 
and non-membership functions with hesitancy such that 
their sum equals 1. Various modifications have been made 
to the classical fuzzy divergence model, with the latest 
version of modification being the Jensen-Renyi divergence. 
In the context of intuitionistic fuzzy sets, the Jensen-Renyi 
divergence is referred to as the Intuitionistic Fuzzy Jensen-
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Renyi Divergence (IFJRD). This divergence provides 
more precise results than previous models, particularly in 
decision-making problems. However, it involves lengthy 
calculations and may fail for certain pattern sets (Verma &  
Sharma 2013).

In this study, the author introduces a refined fuzzy 
model, IF-D, derived from the intuitionistic fuzzy Jensen-
Renyi divergence. This model streamlines computations and 
enhances performance on pattern sets. IF-D leverages original 
data effectively, employing straightforward mathematical 
calculations for probability analysis, resulting in superior 
accuracy compared to conventional models. Additionally, 
this research also aims to evaluate the efficacy of IF-D 
and classical models in landslide susceptibility mapping, 
focusing on classification capabilities and prediction 
accuracies. Furthermore, the study seeks to assess the 
accuracy, reliability, and suitability of deep machine learning 
techniques and statistical methods through a comparative 
analysis in the study area.

Study Area

Hunza watershed basin in the Karakoram mountainous 
range is in the Northern part of Pakistan. This watershed 
basin is fenced by the world’s highest mountain ranges, 
i.e., Karakoram, Hindu-Kush, and the Himalayas. These 
mountain ranges comprise the world’s highest and steep 
slopes with more than 45° slopes. The geographical location 
of the study area falls between the latitudes of 36°51'38.359" 
N, 35°55'22.231" N and longitudes of 76°0'45.354" E, 
73°59'26.466" E. The elevation ranges from 1746 m to  
7315 m above sea level. This watershed basin covers an area 
of 14305.07 km2. 

In Pakistan, particularly in the Karakoram mountainous 
range, landslides pose a common and significant threat to 
settlement areas (Ahmed et al. 2019). The study area, Hunza 
watershed basin, is situated in the Northern Karakoram 
Range of Pakistan (Fig. 1). The area is traversed by the 
Karakoram Highway (KKH), which serves as the primary 
trade and transportation route between China and Pakistan 
and has experienced numerous large-scale landslides in 
the past. The geomorphology of the study area is diverse, 
encompassing glacial-fluvial terraces, ancient moraines, 
loose material on steep scree slopes, debris fans, colluvium 
deposits, and talus deposits at the base of high cliffs  (Hewitt 
1998). The study area is characterized by a unique geology 
known as the Karakoram block. This block originated from 
the pre-Gondwanan supercontinent and drifted away during 
the late Paleozoic era before colliding with the Indian plate. 
The Hunza watershed basin is situated between two regional 
thrust faults: the Shyok Suture Zone to the south (Searle 

& Tirrul 1991) and the Rushan-Pshart Suture to the north 
(Pashkov & Shvol’man 1979).

Consequently, the rocks in the area are highly fragile 
due to the intense tectonic compressional regime, making 
the slopes highly susceptible to landslides exacerbated by 
frequent earthquakes. The Hunza River watershed covers an 
area of 13,571 km² and is nourished by some of the highest 
glaciers in the region. The Hunza River originates from this 
basin, serving as the starting point of the Indus River. The 
Indus River begins at the Khunjerab Pass and passes through 
the Hunza watershed basin, which is characterized by a 
network of long valley glaciers. See Fig. 1.

MATERIALS AND METHODS

The research methodology employed in this study involves 
seven main steps. (1) a detailed landslide inventory map of 
the study area is constructed by utilizing previous records, 
satellite imagery, and thorough field investigations. This map 
serves as the foundational map for data analysis, capturing the 
spatial distribution and occurrences of landslides in the study 
area. (2) twelve landslide conditional factors, including Slope, 
Aspect, Curvature, Geology, Distance to Fault, Distance to 
River, Distance to Road, Land cover, Topographic Wetness 
Index, Stream Power Index, and rainfall data, are selected 
through comprehensive field surveys of the study area. (3) 
Weight estimations of statistical models are analyzed to 
identify the spatial relationship between landslide conditional 
factors and landslide occurrence. (4) The landslide 
susceptibility maps are prepared using three state-of-the-art 
deep machine-learning techniques and statistical models. 
(5) The susceptibility maps generated from the machine 
learning techniques undergo validation using metrics such 
as F1 Score, Confusion Matrix, Precision, and IOU curve. 
(6) The landslide susceptibility maps produced from all four 
models are analyzed using the AUC (Area Under the Curve) 
and Seed Cell Area Index (SCAI). (7) A comparative analysis 
is conducted based on the results obtained from the models 
to determine their suitability and applicability for the specific 
study area, see Fig. 2.

Landslide Inventory Map

A global-scale landslide inventory was introduced by the 
International Geotechnical Societies’ UNESCO Working 
Party on the World Landslide Inventory (deLugt & Cruden 
1990). This inventory was later integrated into a database 
management system (Brown 1992). Mapping the spatial 
distribution of landslides is considered crucial before 
studying the relationship between landslide occurrence and 
its conditional factors, as highlighted by (van Westen et al. 
1997). Various approaches, such as satellite images, aerial 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:sujaul@ukm.edu.my
mailto:sujaul@ukm.edu.my


1976 Asghar Khan et al.

Vol. 23, No. 4, 2024 • Nature Environment and Pollution Technology  This publication is licensed under a Creative 
Commons Attribution 4.0 International License

This publication is licensed under a Creative 
Commons Attribution 4.0 International License

of the highest glaciers in the region. The Hunza River originates from this basin, serving as the 

starting point of the Indus River. The Indus River begins at the Khunjerab Pass and passes through 

the Hunza watershed basin, which is characterized by a network of long valley glaciers. See Fig. 

1. 

 
MATERIALS AND METHODS 

The research methodology employed in this study involves seven main steps. (1) a detailed 

landslide inventory map of the study area is constructed by utilizing previous records, satellite 

imagery, and thorough field investigations. This map serves as the foundational map for data 

analysis, capturing the spatial distribution and occurrences of landslides in the study area. (2) 

twelve landslide conditional factors, including Slope, Aspect, Curvature, Geology, Distance to 

Fault, Distance to River, Distance to Road, Land cover, Topographic Wetness Index, Stream 

Power Index, and rainfall data, are selected through comprehensive field surveys of the study area. 

(3) Weight estimations of statistical models are analyzed to identify the spatial relationship 

between landslide conditional factors and landslide occurrence. (4) The landslide susceptibility 

Fig. 1: Study area map, showing demographic boundaries and geological of area. 
Fig. 1: Study area map, showing demographic boundaries and geological of area.

maps are prepared using three state-of-the-art deep machine-learning techniques and statistical 

models. (5) The susceptibility maps generated from the machine learning techniques undergo 

validation using metrics such as F1 Score, Confusion Matrix, Precision, and IOU curve. (6) The 

landslide susceptibility maps produced from all four models are analyzed using the AUC (Area 

Under the Curve) and Seed Cell Area Index (SCAI). (7) A comparative analysis is conducted based 

on the results obtained from the models to determine their suitability and applicability for the 

specific study area, see Fig. 2. 

Landslide Inventory Map 

A global-scale landslide inventory was introduced by the International Geotechnical 

Societies' UNESCO Working Party on the World Landslide Inventory (deLugt & Cruden 1990). 

This inventory was later integrated into a database management system (Brown 1992). Mapping 

Fig.  2: Schematic flow chart for the adopted methodology. 
Fig. 2: Schematic flow chart for the adopted methodology.
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hydrological, and geological factors (Dou et al. 2019). The 
quality of landslide susceptibility maps relies not only on 
the selected models but also on the quality of the input data 
(Pourghasemi et al. 2013). Hong et al. (2016) emphasize 
that the selection of landslide conditioning factors is a key 
step in evaluating and mapping landslide susceptibility, as 
it directly impacts the quality of the resulting models. Based 
on the available literature, prior knowledge of landslide 
occurrence characteristics in the Hunza watershed basin, 
and the data availability for the study area, twelve landslide 
conditional factors were selected: slope, slope curvature, 
elevation, aspect, lithology, distance to faults, distance to 
rivers, distance to roads, topographic wetness index TWI), 
stream power index (SPI), land cover, and rainfall. All the 
thematic layer maps are shown in Fig.  4. 

LSM Applying (DeeplabV3+)  

DeeplabV3+ is the latest state of art machine learning model 
that has an encoder-decoder-based network for semantic 
segmentation. The DeeplabV3+ has a setup of deeplabV3 
architecture as an encoder at the backup of ResNet. The 
architecture is divided into three parts: the encoder used for 

photographs, and digital representations of topographic 
surfaces, can be used to map and identify landslides (Guzzetti, 
2000). Therefore, landslide inventory maps play a vital role in 
regional landslide susceptibility mapping (Yan et al. 2019).

In this study, a comprehensive approach was employed, 
which involved the interpretation of aerial photographs, 
satellite images, earlier reports, and meticulous field 
investigations. Geologists and subject specialists were 
involved in the precise identification and marking of 
landslide sites. A total of 148 landslides were identified and 
marked in the study area using Garmin GPS with an accuracy 
of 3m. See Fig. 3 inventory map of the study area. 

Landslide Conditional Factors 

Landslide conditional factors are temporally and spatially 
dependent on the geomorphology of the study area. 
According to Yan et al. (2019), understanding the factors 
influencing landslide occurrences is crucial for landslide 
susceptibility mapping. Many researchers have conducted 
extensive investigations to identify the factors contributing 
to landslides and construct landslide susceptibility maps. 
These events are influenced by a combination of topographic, 

the spatial distribution of landslides is considered crucial before studying the relationship between 

landslide occurrence and its conditional factors, as highlighted by (van Westen et al. 1997). 

Various approaches, such as satellite images, aerial photographs, and digital representations of 

topographic surfaces, can be used to map and identify landslides (Guzzetti, 2000). Therefore, 

landslide inventory maps play a vital role in regional landslide susceptibility mapping (Yan et al. 

2019). 

In this study, a comprehensive approach was employed, which involved the interpretation 

of aerial photographs, satellite images, earlier reports, and meticulous field investigations. 

Geologists and subject specialists were involved in the precise identification and marking of 

landslide sites. A total of 148 landslides were identified and marked in the study area using Garmin 

GPS with an accuracy of 3m. See Fig. 3 inventory map of the study area.  

 
 
 Landslide Conditional Factors  

Landslide conditional factors are temporally and spatially dependent on the 

geomorphology of the study area. According to Yan et al. (2019), understanding the factors 

Fig. 3: Landslide inventory map of the study area, showing landslide locations, geological map, fault lines and 
some of the pictures of existing landslides. Fig. 3: Landslide inventory map of the study area, showing landslide locations, geological map, fault lines and some of the pictures of  

existing landslides.
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feature extraction, ASPP to convert them into a wide scale 
information, and the encoder part arrayed to recuperate 
the spatial information. The extracted features in the  
encoder level are bilinearly up-sampled and then finally 
concatenated with the respective low-level features in the 
subsequent stage.

This model is built on the conception of Atrous 
Convolution and Atrous Spatial Pyramid Pooling (ASSP). 
In the Atrous convolution, the active field of view 
of the convolution is governed by a rate parameter. 
This Atrous convolution can be generalized as  
follows.

Figure Cont....
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Fig.  4: Thematic layers of all 12 landslides conditional factors, the thematic layers have been classified into various 
classes for the probability analysis, the 12 landslide conditional factors are slope, aspect, curvature, elevation, 
distance to fault, distance to river, distance to road, land cover, topographic wetness index, stream power index, 
lithology and precipitation.  

Fig.  4: Thematic layers of all 12 landslides conditional factors, the thematic layers have been classified into various classes for the probability analysis, 
the 12 landslide conditional factors are slope, aspect, curvature, elevation, distance to fault, distance to river, distance to road, land cover, topographic 

wetness index, stream power index, lithology and precipitation.
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y[𝒾𝒾] = ∑ 𝑥𝑥
𝑘𝑘

 [𝑖𝑖 + 𝑟𝑟 . 𝑘𝑘]𝑤𝑤[𝑘𝑘] 

Where w represents the filter, i denotes each location 
of output y, x is the input feature map, and r denotes the 
Atrous rate.

To regain information on different scales, several Atrous 
convolution layers can be applied. The ASPP can detain 
multi-scale data more capably with enormous Atrous rates. 
Thus DeeplabV3+ works as an encoder and depicts useful 
features at capricious resolution. Moreover, the ASPP can 
discover the convolutional features at several scales with 
multi-dilation rates. Therefore, better semantic information 
can be obtained from the output feature map of the encoder 
networks, which often contain 256 channels and are 32 times 
smaller than the resolution of the input image.

LSM Applying (U-Net)

U-Net is a deep machine-learning model that is useful for 
semantic segmentation purposes (Ronneberger et al. 2015). 
The architecture of the model has been modified to enable 
precise segmentation of targets even with limited training 
samples. U-Net has demonstrated excellent performance in 
remote sensing and segmentation tasks. The model follows 
an encoder-decoder structure, where the encoder path 
primarily consists of two 3×3 convolutional layers followed 
by 2×2 max-pooling layers. The convolutional layers act as 
moving windows that traverse the image (Zhang et al. 2019). 
Typically, U-Net takes input images with three channels, but 
for landslide susceptibility mapping, we have 12 channels 
or bands representing the thematic layers of landslide 
conditional factors. Therefore, it is essential to add additional 
layers to accommodate the increased input channels. In our 
model, we use the ResNet34 architecture as the encoder, 
allowing the extraction of multi-scale features from the 
input remote sensing data. The max-pooling operation in the 
encoder down samples the data with a stride of 2.

In contrast, the up-sampling in the decoder part is 
achieved by increasing the spatial size by a factor of 2 using 
bilinear interpolation. For this study, we utilized pre-trained 
weights from the ImageNet dataset for our encoder. To 
enhance the model’s performance and prevent overfitting, we 
incorporated additional convolutional layers, such as Batch 
Normalization layers and dropout layers, with a rate of 0.2. 
The last convolutional layer consists of 5 neurons, and all 
the convolutional layers employ the Rectified Linear Unit 
(ReLU) activation function. The final output layer uses the 
Softmax activation function, which assigns a probability to 
each pixel indicating its belonging to a particular class in 
the LSM.

LSM Applying (Frequency Ratio FR) 

The FR (Frequency Ratio) model is a statistical analysis 
approach that considers the spatial distribution of landslides 
and their conditional factors (Yan et al. 2019). It examines 
the number of pixels affected by landslides in a specific 
study area. The FR method applies conditional probability, 
whereby a stronger relationship between landslides and their 
influencing factors exists when the landslide-to-factor ratio 
is higher. This approach is in line with the works of  Lee 
and Talib (2005), Pourghasemi (2008), Karim et al. (2011a), 
and (Khan et al. 2022), who also considered each class of 
landslide conditional factors and their associated pixels in 
landslide susceptibility mapping.

To implement the FR model for each class of landslide 
conditional factors, a combination is established between 
the landslide inventory map and criterion map Karim et al. 
(2011a). Therefore, in the process of landslide susceptibility 
mapping, it is essential to consider each class of landslides, 
their causative and conditional factors, as well as associated 
pixels both with and without landslides (Mandal & Mondal 
2019).

To calculate the frequency ratio for each class of all the 
data layers, a combined expression will be used by using the 
following statistical expression (Karim et al. 2011b). Eq. 1.

	 𝐹𝐹𝑟𝑟𝑖𝑖 =
𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃(𝑆𝑆𝑆𝑆)/𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃(𝑁𝑁𝐼𝐼)

∑𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝(𝑠𝑠𝑖𝑖)/∑𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝(𝑁𝑁𝐼𝐼)
                                                                            	  …(1)

N
Pix(Si)

 The number of pixels contains slides in each 
class (i)

N
Pix(NI)

 The total number of pixels having class in the 
whole watershed area

∑Npix(si)
 The total number of pixels containing landslide

∑Npix(
NI

) The total number of pixels in the whole 
watershed area

LSM Applying (Intuitionistic Fuzzy Divergence IF-D)

The concept of fuzzy logic, proposed by Zadeh (1965), is 
based on the idea that each element should belong to a set 
with a membership value ranging between 0 and 1. Fuzzy 
logic allows for dealing with uncertainties in data using the 
Interval-Valued Fuzzy Sets (IFS) theory, which has proven 
beneficial in various research fields due to its ability to 
handle imprecise analysis. In probability theory, statistical 
divergence measures are commonly employed to quanti-
fy the differences between two probability distributions, 
as seen in the works of Kullback and Leibler (1951) and  
Rao (1985).

One specific divergence measure used in IFSs is known 
as the Intuitionistic Fuzzy Jensen-Rényi divergence (IFJRD). 
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While this divergence provides precise results in decision-
making problems compared to classical fuzzy models, it 
involves lengthy calculations and has limitations when 
applied to certain pattern sets (Verma & Sharma 2013). To 
address these limitations, a new model called Intuitionistic 
Fuzzy Divergence (IF-Divergence) has been proposed, 
which overcomes the limitations of the Fuzzy Jensen-Rényi 
divergence model and is based on simpler calculations. In 
this study, the proposed IF-Divergence model is applied for 
landslide susceptibility mapping and probability analysis.

The fuzzy membership values can be derived from 
various methods of normalization of the frequency ratio 
(Abedi Gheshlaghi & Feizizadeh 2017). In the present study, 
fuzzy membership values were normalized from information 
values. 

Step 01:

Normalized the Intuitionistic Fuzzy Matrix  
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Step 02:

Find the Ideal Solution 
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RESULTS AND DISCUSSION 

Weight Estimation Using (FR & IF-D)

In the investigation, all the conditional factors contributing 
to landslides were transformed into a binary pattern, 
indicating the presence or absence of landslides, using 
the FR and divergence values. For continuous data such 

as slope, elevation, distance to fault, distance to the river, 
and road distance, they were first classified into different 
classes, and weights were separately estimated using the 
FR and IF-D models. In the case of continuous data, cutoff 
values were determined using the IF-D model, where the 
influence of a factor class on landslide occurrence is no 
longer statistically significant. The IF-D model identifies 
these cutoff values by examining the intersection points of 
similarity and divergence, enabling multi-generalization for 
continuous data.

For categorical data such as lithology, land cover, 
precipitation, curvature, SPI, TWI, and aspect, they were 
converted into a binary pattern based on the calculated 
weights from the FR and IF-D models for each factor class. 
The weights derived from the FR and IF-D models were then 
used to interpret the importance of each class of landslide 
conditional factor on landslide occurrences.

Cumulative Weights Using FR and IF-D

The influence of slope gradient below 20° and intersection 
point below 50° indicates that there is no influence of 
landslides. Therefore, this indicates that the cutoff valve 
for the slope gradient is 50°. Additionally, the minimum 
value of divergence D=0 and maximum valve of S=1 for the 
slope gradient 30⁰-40⁰ indicates the maximum probability 
of landslide occurrence. In the case of frequency ratio, the 
weighted value of FR=1.62 represents the maximum value 
indicating the maximum probability of landslide occurrence 
for the slope gradient between slope class 30⁰-40⁰ slope 
degrees. 

Cumulative weights of elevation: The influence of elevation 
range intersection point is between 0-1700 m. This indicates 
that there is no influence of elevation on landslides. moreover, 
below 4000 m, the range of membership values tends to a 
maximum. Therefore, the results indicate the cutoff valve 
is below 4000 m. However, the maximum values indicated 
by S=1 and minimum values D=0 for the range of 2000 to 
3000 m indicate the maximum probability and maximum 
influence of elevation on landslide occurrence. Furthermore, 
the results reveal that the similar highest value for frequency 
ratio FR=10.16 is the maximum for the same range of 2000 to 
3000 m. This reflects that the highest association of landslide 
occurrence and maximum influence of elevation on landslide 
occurrence is in the range of 2000 to 3000 m. 

Cumulative weights of distance to fault: For IF-D weight 
estimation, the boundary and intersection point lie below 
5000 m. This indicates the cutoff value is below 5000 m, and 
the influence of distance to fault on landslide occurrence is 
below 5000 m. The number of landsides is about 11% for the 
range of 4000-5000 m; therefore, the cutoff point lies below 
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5000 m. Additionally, the similarity remains maximum, and 
divergence remains minimum from the range of 0-5000 m for 
the distance of fault. The result showed that the maximum 
influence of distance to fault on landslide occurrence is 
between 0-5000 m. Similarly, for frequency ratio weight 
estimation, the ascending trend in FR values from FR=2.02-
2.95 for the class starts from 0-4000 m; additionally, the 
maximum value of FR = 2.95 for the same range between 
3000 to 4000 m indicates that the influence of distance 
to fault on landslide occurrence can be found from 0 to  
4000 m but maximum influence reached at 4000 m. 

Cumulative weights for distance to river. Moreover, 
the weight values evaluated from IF-D showed a precise 
estimation regarding the weight cutoff value, which is 
indicated by the support and boundary of membership values. 
The cutoff value indicated by the cross-section point at 800 m 
indicates that there is no influence of distance to the river on 
landslide occurrence. Additionally, the values of divergence 
are minimum, and the values of similarity maximum for the 
class ranges from 0-800, indicating the maximum probability 
of landslide and maximum influence of distance to river on 
landslide occurrence. 

Cumulative weights for distance to road. Therefore, the 
results indicate the cutoff value for the distance is below 
2000 m. Additionally, the maximum value of similarity 
and minimum value of divergence is between the ranges of 
0-500, this reflects that the maximum probability of spatial 
association of landslide and the influence of distance to the 
road lies between 0-500 m. On the other hand, the frequency 
ratio value FR= 4.00 indicates the maximum influence of 
distance to the river on landslides is 0 to 500 m. But at the 
same time, there is a decreasing trend in FR values for the 
classes from 0-2000 m. The result indicates that the influence 
of road distance has a substantial role in the distance ranges 
from 0-2000 m. 

Slope aspect: Moreover, the weights estimated from IF-D 
represent the maximum value of S=1, and the minimum 
value D=1 indicates the maximum probability of landslide 
occurrence for the class flat aspect. Similarly, for the 
frequency ratio FR, the highest value of FR=1.50, with 
the highest frequency ratio value representing the highest 
probability of landslide occurrence for the class flat (-1). 

Lithology: In the case of IF-D weight values, the maximum 
value of indicated by southern Karakorum metamorphic, 
cretaceous sandstone, Permian massive, and quaternary 
deposits. The support and boundary of the membership 
and non-membership functions represent the maximum 
probability of landslide occurrence on these lithological 
units. In the case of the frequency ratio model, the weight 
value of (FR= 5.0) corresponds to quaternary deposits 

followed by (FR= 3.74) cretaceous sandstone and (FR=2.16) 
Permian massive rocks. This indicates the highest landslide 
susceptibility class in these geological rock formations. 
This is because of the tectonic disturbance and active fault 
movement of the Klik fault in the upper Hunza Gojal area. 

Stream Power Index (SPI): The weight derived from 
intuitionistic fuzzy divergence, indicates that the maximum 
value of S=1 and minimum value of D=0 is at the class 
(–5.7 - –1.23). The result showed the maximum probability 
of landslide and the highest probability of the influence of 
SPI for this class on landslide occurrence. Similarly, for the 
frequency ratio weight calculations from statistical analysis, 
the highest value of frequency ratio (FR=1.57) represents the 
highest value for the same class (1.2-10.43), indicating the 
highest probability of landslide occurrences among other 
classes for SPI classes. Land cover (LC) For intuitionistic 
fuzzy divergence the minimum divergence value and 
similarity value indicated that the highest probability of 
landslide is on barren land. The study area is at a high altitude, 
the area lacks natural forest, and most of the slopes are barren, 
settlements and irrigated lands lie below the water channels. 
Therefore, most of the landslides in the study area are due 
to channel excavation. It is, therefore, the derived values 
indicate most of the probability of landslides occurring on 
barren land. Besides the highest weight positive, the weight 
calculations for the frequency ratio of the highest valve 
(FR=2.96) indicate the maximum landslide susceptibility 
refers to orchards. The agricultural activities in orchards 
in hilly areas made the slopes vulnerable and accelerated 
landslides. On the other hand, the second highest value of 
FR=1.36 also indicates the maximum probability of landslide 
susceptibility. 

Topographic Wetness Index (TWI): Additionally, 
from the statistical analysis of Frequency ratio weight 
estimation, the results revealed that the highest frequency 
ratio valve (FR=1.12) with the highest value for the range 
below >12 indicates the most landslide occurrence for 
TWI. However, the weight estimation from IF-D showed 
that the probability of landslide occurrence is below >12 
for the TWI factor. The descending trend of similarity 
 and ascending trend in divergence reflect that the  
influence of TWI decreases with an increase in classes 
(Table 1).

Precipitation: In the case of the intuitionistic fuzzy 
divergence model, the similarity S=1 and divergence D=0 for 
the class 18-24 mm of precipitation indicates the maximum 
probability of landslides occurrence. However, 93% of 
landslides exist in this class for precipitation. Therefore, 
based on acquired data and weight values derived from 
IF-D, the highest probability of landslide and influence of 
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precipitation is between 18-24mm in the case of precipitation. 
From frequency weight estimation, the highest value of FR= 
2.9 for the class ranges (18-24). The results indicated that 
the high susceptibility of landslide occurs is in the range of 
18-24 (Table 1).

Validation and Construction of Landslide Index Maps 

The machine learning models are sensitive to data within 
their desired range. In this research assessment, the 
dependent factors were expressed as a binary variable, 
representing landslides and non-landslides. Therefore, the 
landslide causal factors were normalized to a range of 0 to 1, 
where 0 indicates non-landslides and 1 indicates landslides. 
The normalized data of the conditional factors were used as 
input for the machine learning models. To address the issue 
of overfitting, the dataset was divided into 70:30 ratios. 
70% of the dataset was randomly selected for training the 
models, while the remaining 30% was used for validating 
the performance of the models. It’s important to note that 
both negative and positive data were equally considered to 
generate the landslide susceptibility map.

The machine learning models were implemented and 
trained using the KERAS Python programming framework. 

Once the models were trained and validated, the final outputs 
were extracted to a GIS environment to validate the landslide 
susceptibility map. The validation of the susceptibility maps 
was performed using metrics such as the AUC curve and 
SCAI values. Finally, the landslide susceptibility indices 
(LSIs) were reclassified into different susceptibility zones 
using the ArcGIS 10.2 environment.

Validation of DMLT Models Using IOU and Loss 
Curve

The validation and training data for the deeplabV3+ DMLT 
model provided insightful results. The IOU (Intersection 
over Union) and Loss curves were utilized to assess the 
model’s performance. For the training dataset, the IOU curve 
started at 0.35 and steadily increased, reaching a value of 
0.74. Similarly, for the validation data, the IOU curve began 
at 0.1 and progressively rose to 0.7. These results indicate 
that the model demonstrates good detection and prediction 
accuracy. Furthermore, the Loss curve results showed a 
validation value of approximately 0.25, which is considered 
ideal and suggests that the model possesses excellent 
prediction accuracy. See the graphical representation of IOU  
in Fig. 5.
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Fig.  5 showcases the validation of the U-Net model using 70% of the training dataset for 

10 epochs. The IOU curve displayed an initial value of 0.3, eventually reaching 0.79. Likewise, 

the IOU value of 0.69 for the 30% validation dataset indicates good prediction accuracy and 

alignment with the ground truth. Additionally, the Loss curve validation for the U-Net model 

yielded a value of 0.4, further affirming the model's reliable prediction accuracy. See Fig.  6. 

Overall, the IOU and Loss curves demonstrate that both the deeplabV3+ and U-Net models exhibit 

excellent detection and prediction accuracy. 
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Table 1: Weight estimation of all landslide conditional factors using bi-variate statistical models.

Factor Classes (STP) 
Stable Pixel

(LDP) 
Landslide 
Pixel 

Intuitionistic Fuzzy Divergence (IF-D) FR

Hesitancy Divergence (^1) Similarity FR

Slope 0-10 10673912 7963 0.9 0.6 0.4 0.0

10-20 12222692 13645 0.8 0.5 0.5 0.4

20-30 16617234 53055 0.6 0.3 0.7 1.1

30-40 24525672 120091 0.3 0.0 1.0 1.6

40-50 17540848 61826 0.6 0.3 0.7 1.2

50-60 7842431 16212 0.9 0.6 0.4 0.7

>60 2325655 3899 1.0 0.7 0.3 0.6

Aspect Flat (-1) 810004 4559 1.0 0.0 1.0 1.9

North (0-22.5) 6402821 28974 0.8 0.1 0.9 1.5

Northeast (22.5-67.5) 12467219 47337 0.7 0.3 0.7 1.3

East (67.5-112.5) 11039494 9454 0.8 0.1 0.9 0.3

southeast (112.5-157.5) 11073594 19762 0.8 0.2 0.8 0.6

South (157.5-202.5) 11541955 60733 0.7 0.3 0.7 1.7

Southwest (202.5-247.5) 12256765 52173 0.7 0.3 0.7 1.4

West (247.5-292.5) 10294776 19912 0.8 0.2 0.8 0.6

Northwest (292.5-337.5) 10521353 17456 0.8 0.2 0.8 0.6

North (337.5-360) 5340463 16331 0.9 0.0 1.0 1.0

Elevation 0-1700 6 0 1.0 0.5 0.5 0.0

1700-2000 290915 6980 1.0 0.5 0.5 8.0

2000-3000 4426712 135690 0.5 0.0 1.0 10.2

3000-4000 16380340 131055 0.3 0.1 0.9 2.7

>4000 70650471 2965 0.2 0.2 0.8 0.0

Curvature Concave ( -1.28- -0.001) 25940251 80636 0.0 0.1 0.9 1.0

Flat (-0.001- 1.29) 55773965 171292 0.0 0.0 1.0 1.0

Convex (1.29-88.32) 10034228 24762 0.1 0.3 0.7 0.8

Lithology southern Karakoram 
metamorphic

9357596 70470 0.6 0.0 1.0 2.5

Hunza plutonic unit 6146242 5614 0.9 0.3 0.7 0.3

Triassic massive limestone 2582095 5946 1.0 0.3 0.7 0.8

eclogites 10353152 0 0.9 0.3 0.7 0.0

glacier 35163540 566 0.6 0.0 1.0 0.0

Permian massive 10934340 71399 0.6 0.1 0.9 2.2

quaternary deposits 2938134 94377 0.6 0.0 1.0 10.6

cretaceous sandstone 1881467 21219 0.9 0.3 0.7 3.7

Misgar slates 10143545 5383 0.9 0.2 0.8 0.2

Yasin sediments 493283 633 1.0 0.4 0.6 0.4

Chalt volcanic 884343 0 1.0 0.4 0.6 0.0

Kohistan batholith 41605 0 1.0 0.4 0.6 0.0

Northern Karakoram 
Terrance

435112 0 1.0 0.4 0.6 0.0

Table Cont....

Factor Classes (STP) 
Stable Pixel

(LDP) 
Landslide 
Pixel 

Intuitionistic Fuzzy Divergence (IF-D) FR

Hesitancy Divergence (^1) Similarity FR
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Dist_Fault 0-1000 12345198 75160 0.6 0.0 1.0 2.0

1000-2000 7116810 46309 0.8 0.1 0.9 2.2

2000-3000 4813319 52215 0.8 0.1 0.9 3.6

3000-4000 4390897 39129 0.8 0.0 1.0 3.0

4000-5000 7474161 32764 0.8 0.0 1.0 1.5

>5000 55608059 31113 0.3 0.5 0.5 0.2

Dist_River 0-200 4911209 38647 0.8 0.0 1.0 2.6

200-400 4427540 62049 0.7 0.1 0.9 4.6

400-600 4105746 57210 0.7 0.1 0.9 4.6

600-800 3963514 45730 0.8 0.0 1.0 3.8

>800 74340288 73054 -0.1 0.9 0.1 0.3

Dist_Road 0-500 2889524 129326 0.5 0.0 1.0 14.8

500-1000 2402126 88376 0.7 0.2 0.8 12.2

1000-1500 2287711 36399 0.8 0.3 0.7 5.3

1500-2000 2214121 10905 0.9 0.4 0.6 1.6

>2000 81954962 11684 0.1 0.4 0.6 0.0

SPI (-5.7 - -1.20) 7395668 22606 0.8 0.0 1.0 1.0

(-1.20 - 0.37) 31839391 55789 0.5 0.4 0.6 0.6

(0.37 - 1.20) 38492081 131706 0.1 0.7 0.3 1.1

(1.20 - 10.43) 14021304 66589 0.6 0.2 0.8 1.6

LC Natural forest 342085 48 1.0 1.0 0.0 0.0

Orchards 410062 3678 1.0 1.0 0.0 3.0

Agriculture land 199084 623 1.0 1.0 0.0 1.0

Summer Pasture 2399038 2649 1.0 1.0 0.0 0.4

Winter Pasture 2244705 16382 0.9 0.9 0.1 2.4

River/Lakes 113378 33 1.0 1.0 0.0 0.1

Settlements 27535 124 1.0 1.0 0.0 1.5

Barren land 61298772 253131 -0.6 0.0 1.0 1.4

Snow/Glacier 24189260 22 0.7 0.7 0.3 0.0

Precipitation >6 10679048 0 0.9 1.1 -0.1 0.0

6 - 12 19270617 9081 0.8 1.0 0.0 0.1

12-18 14131172 29114 0.8 1.0 0.0 0.3

18 - 24 29012457 565691 -0.3 0.0 1.0 2.9

24 - 30  10731572 2271 0.9 1.1 -0.1 0.0

30-36  7153291 0 0.9 1.2 -0.2 0.0

TWI >12 78961564 267502 -0.8 0.0 1.0 1.1

12- 24 7237810 3186 0.9 0.9 0.1 0.1

24- 36 2559283 713 1.0 1.0 0.0 0.1

36-48 614958 165 1.0 1.0 0.0 0.1

>48 2374829 5124 1.0 1.0 0.0 0.7

...Cont. Table 1

Factor Classes (STP) 
Stable Pixel

(LDP) 
Landslide 
Pixel 

Intuitionistic Fuzzy Divergence (IF-D) FR

Hesitancy Divergence (^1) Similarity FR
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Fig. 5 showcases the validation of the U-Net model using 
70% of the training dataset for 10 epochs. The IOU curve 
displayed an initial value of 0.3, eventually reaching 0.79. 
Likewise, the IOU value of 0.69 for the 30% validation 
dataset indicates good prediction accuracy and alignment 
with the ground truth. Additionally, the Loss curve validation 
for the U-Net model yielded a value of 0.4, further affirming 
the model’s reliable prediction accuracy. See Fig. 6. 
Overall, the IOU and Loss curves demonstrate that both the 
deeplabV3+ and U-Net models exhibit excellent detection 
and prediction accuracy.

Validation of DMLT Models Using Confusion Matrix

The confusion matrix is an N*N matrix that evaluates the 
classification performance of the ML model. In the confusion 
matrix, the matrix compares the actual target values with 
predicted values by machine learning technique for a given 
set of data. In ML, a good model is with those high true 
positive and true negative rates. Additionally, in this study, 
three DML models were also validated based on the scores 
of the confusion matrix. The results showed that the three 
ML models have good classification performance in landslide 
detection for the given data set. see Fig. 7.

Validation of DMLT Models Using Recall, Precision  
and F1 Score

Based on the comparative assessment of the three execut-
ed models, namely DeeplabV3+ and U-Net, the results 
indicate favorable performance for classification in the 
relevant study area. For both the DeeplabV3+ and U-Net 
models, the precision and recall values were found to be 
0.85 and 0.89, respectively. These results suggest that all 
the models performed well and exhibited good classification  
abilities.

The F1 score is a crucial evaluation metric used to 
validate the models’ performance. It combines multiple 
competing metrics to provide an overall assessment of the 
model’s analytical performance. In machine learning, an 
F1 score of 1 represents a perfect score, while a score of 
0 signifies model failure. In the case of the three executed 
DMLTs models, the results revealed that DeeplabV3+ 
achieved an F1 score of 0.89 and an accuracy of 0.8, while 
U-Net attained an F1 score of 0.89. These findings indicate 
that both DMLT models exhibited satisfactory performance 
based on their F1 scores and accuracy. Overall, the 
comparative assessment demonstrates that the DeeplabV3+ 
and U-Net models performed well as classifiers, showcasing 
their effectiveness in the classification task for the specific 
study area. See Fig. 8.

Validation Landslide Susceptibility Index Maps Based 
on AUROC

According to Fabbri and Chung (2019), validating the 
performance of a model requires splitting the dataset into 
separate subsets. In this study, particularly the dataset 
was divided into two sets for validation and prediction of 
susceptibility maps. However, no specific criteria were 
applied for the selection of the splitting datasets (Pradhan 
2013). The dataset was divided into a 30:70 ratio, where 30% 
of the dataset was used for validation and 70% for model 
building, also known as the training dataset. This validation 
method has been commonly employed in previous studies 
(Suzen & Doyuran 2004, Zhang et al. 2019).

The area under the ROC curve (AUC) values are utilized 
to assess the accuracy, often referred to as the “prediction 
rate,” of the models. The AUC value ranges from 0.5, 
indicating random prediction represented by the diagonal 
reference line, to 1, representing perfect prediction (Huang 
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2012). An AUC value of 1 signifies a perfect model, while a 
value of 0.5 indicates incorrect models (Tien Bui et al. 2016). 
Overall, splitting the dataset for validation and utilizing the 
AUC values provide a means to evaluate the accuracy and 
performance of the models, as mentioned by Fabbri and 
Chung (2019) and supported by previous studies (Suzen & 
Doyuran, 2004, Zhang et al. 2019).

The ROC curve indicates the correlation between 
“Sensitivity and “Specificity, which are as follows:

	 Sensitivity =                      …(7) 

Specificity =                     …(8) 

TP is a true positive rate, FN is a false-negative rate, TN is a true negative rate, and FP is a 

false positive rate. 

For the training and validation of LSI for statistical models. The results indicated the success 

rate cure for FR was 81% and IF-D 81%. The result revealed from the prediction rate curve for FR 

77% and IF-D 77%. The prediction accuracy for the three statistical models is satisfactory to 

estimate the newly proposed model IF-D performed well whose prediction accuracy is equal to 

FR. This concludes that the newly proposed model fits the landslide susceptibility mapping for the 

pertinent study area. See the graphical representation of the prediction and success rate cure in Fig. 

9. 

Validation of Landslide Index Maps Based on Seed Cell Area Index (SCAI) 

The Seed cell area index (SCAI) (Suzen & Doyuran 2004) was used to estimate the 

differences between the divided zones for LSM models. In this study, SCAI was applied to 

evaluate the classification capabilities of four LSM models more precisely and also to identify the 

differences between the divided zones of LSM models. The best classifier could make large 

differences between the divided zones. Likewise, the lower difference between the divided zones 

indicates the low classification capability of LSM. The landslide grid cell is called the “Seed cell,” 

and the SCAI can be calculated using the following equation (Tang et al. 2021). 

Fig.   9: Training and Validation of landslide susceptibility index maps based on AUROC. (a) Success 
Rate Curve (SRC) and (b) Prediction Rate Cure (PRC). 
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The Seed cell area index (SCAI) (Suzen & Doyuran 2004) was used to estimate the 

differences between the divided zones for LSM models. In this study, SCAI was applied to 

evaluate the classification capabilities of four LSM models more precisely and also to identify the 

differences between the divided zones of LSM models. The best classifier could make large 

differences between the divided zones. Likewise, the lower difference between the divided zones 

indicates the low classification capability of LSM. The landslide grid cell is called the “Seed cell,” 

and the SCAI can be calculated using the following equation (Tang et al. 2021). 

Fig.   9: Training and Validation of landslide susceptibility index maps based on AUROC. (a) Success 
Rate Curve (SRC) and (b) Prediction Rate Cure (PRC). 

(A) (B) 

Fig. 9: Training and Validation of landslide susceptibility index maps based on AUROC. (a) Success Rate Curve (SRC) and (b) Prediction Rate  
Cure (PRC).
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low classification capability of LSM. The landslide grid cell 
is called the “Seed cell,” and the SCAI can be calculated 
using the following equation (Tang et al. 2021).

	 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  % ���� 
% ���� 

                                                                                                                                   …(9) 

Where % ���� indicates the percentage of grid cells in each susceptibility class to total grid 

cells in the whole area, while % ����  Indicates the percentage of landslide grid cells in each 

susceptibility class to grid cells of all landslides. The values of SCAI represent the proneness of 

landslide. The higher value of SCAI shows the low- proneness of the landslide, while the low value 

of SCAI indicates the high proneness of the landslide. Similarly, the Differential value (D-value) 

represents the difference in SCAI for each susceptibility zone. The higher difference in D-value is 

the low proneness of the landslide, and the lower difference in D-value, the higher proneness of 

landslide probability. The higher value of SCAI shows the low- proneness of the landslide, while 

the low value of SCAI indicates a high proneness of the landslide.  

Additionally, the difference in SCAI indicated by D-Value between low and very high for 

DeeplabV3+ is 672, U-Net 7.34, IF-D 7.6, and FR 9.1. The result indicates deeplabV3+ D=6.7 

showed that the model has the highest accuracy of classification capability among the other three 

models. See Table 2.  

Table 2: Results of Seed Cell Area Index (SCAI) for all four statistical LSM models. 

LSM Models Class Total no of 
Pixel 

% Area No 
Landslide 
Pixels 

Seed % SCAI D-Value 

U-Net Very high 45961427 50.1 199003 71.9 0.7   
High 26921671 29.4 63016 22.8 1.3 0.6 

Moderate 10268183 11.2 11467 4.1 2.7 1.4 
Low 8527751 9.3 3202 1.2 8.0 5.3 

DeepLabV3+ Very high 40185752 43.8 201751 72.9 0.6   
High 29521577 32.2 61660 22.3 1.4 0.8 
Moderate 10902779 11.9 10095 3.6 3.3 1.8 
Low 11137190 12.1 3156 1.1 8.0 5.0 

IF-D Very high 16447576 18.4 124273 44.9 0.4   
High 62105787 69.4 147914 53.5 1.3 0.9 
Moderate 10890117 12.2 4502 1.6 7.5 6.2 
Low 34356 0.0 1 0.0 8.0 0.5 

FR Very high 16447576 18.4 124273 44.9 0.4   
High 62105787 69.4 147914 53.5 1.3 0.9 
Moderate 10890117 12.2 4502 1.6 7.5 6.2 
Low 34356 0.0 1 0.0 9.5 2.0 

	 …(9)

Where %
area

 indicates the percentage of grid cells in each 
susceptibility class to total grid cells in the whole area, while 
%

seed
 Indicates the percentage of landslide grid cells in each 

susceptibility class to grid cells of all landslides. The values of 
SCAI represent the proneness of landslide. The higher value of 
SCAI shows the low- proneness of the landslide, while the low 
value of SCAI indicates the high proneness of the landslide. 
Similarly, the Differential value (D-value) represents the 
difference in SCAI for each susceptibility zone. The higher 
difference in D-value is the low proneness of the landslide, 
and the lower difference in D-value, the higher proneness of 
landslide probability. The higher value of SCAI shows the 
low- proneness of the landslide, while the low value of SCAI 
indicates a high proneness of the landslide. 

Additionally, the difference in SCAI indicated by 
D-Value between low and very high for DeeplabV3+ is 
672, U-Net 7.34, IF-D 7.6, and FR 9.1. The result indicates 
deeplabV3+ D=6.7 showed that the model has the highest 
accuracy of classification capability among the other three 
models. See Table 2. 

DISCUSSION 

In general, the evaluation of landslide occurrences involves 

analyzing past landslide events caused by predisposing 
factors, which serves as a guideline for predicting future 
landslides. This connection between landslide occurrence and 
the underlying conditional factors can be identified. In this 
regard, intuitionistic fuzzy divergence provides a means to 
assess the relationship and membership among factor classes. 
The models also offer insights into the influence of conditional 
factors on landslide occurrences through similarity and 
divergence values. The present study aimed to assess landslide 
susceptibility models (LSMs) and weight estimation using 
Intuitionistic Fuzzy Divergence (IF-D) in comparison with 
Frequency Ratio (FR). The susceptibility maps generated were 
based on a pixel-based analysis of twelve landslide conditional 
factors that contribute to the level of landslide susceptibility. 
Moreover, the weights assigned to each geo-environmental 
factor for each class were objectively determined through 
a precise mathematical solution using intuitionistic fuzzy 
divergence, and these weights were compared to those derived 
from the frequency ratio model.

Moreover, this study evaluates the performance of two 
statistical models (FR and IF-D) and two deep machine 
learning models (U-Net and DeeplabV3+) for landslide 
susceptibility mapping (LSM) in the Hunza watershed basin 
of Northern Pakistan. The utilization of remote sensing, 
GIS, and Karas Python programming proved beneficial in 
developing a spatial database for susceptibility analysis. This 
research contributes to understanding the spatial contribution 
of landslide factors and predicting landslide susceptibility 
values for specific geographic locations. Previous studies 

Table 2: Results of Seed Cell Area Index (SCAI) for all four statistical LSM models.

LSM Models Class Total no of Pixel % Area No Landslide Pixels Seed % SCAI D-Value

U-Net Very high 45961427 50.1 199003 71.9 0.7  

High 26921671 29.4 63016 22.8 1.3 0.6

Moderate 10268183 11.2 11467 4.1 2.7 1.4

Low 8527751 9.3 3202 1.2 8.0 5.3

DeepLabV3+ Very high 40185752 43.8 201751 72.9 0.6  

High 29521577 32.2 61660 22.3 1.4 0.8

Moderate 10902779 11.9 10095 3.6 3.3 1.8

Low 11137190 12.1 3156 1.1 8.0 5.0

IF-D Very high 16447576 18.4 124273 44.9 0.4  

High 62105787 69.4 147914 53.5 1.3 0.9

Moderate 10890117 12.2 4502 1.6 7.5 6.2

Low 34356 0.0 1 0.0 8.0 0.5

FR Very high 16447576 18.4 124273 44.9 0.4  

High 62105787 69.4 147914 53.5 1.3 0.9

Moderate 10890117 12.2 4502 1.6 7.5 6.2

Low 34356 0.0 1 0.0 9.5 2.0
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have indicated that slopes with degrees between 30 and 
50 are more prone to landslides in the region, while slopes 
greater than 50 degrees have a lower influence on landslide 
susceptibility (Bacha et al. 2018). The findings of this 
research align with these previous studies, particularly with 
the slope of the study area. 

Furthermore, regarding the slope gradient, the weights 
derived from IF-D (with minimum D-0, S=1) and the 
maximum value of FR (1.62) indicate a higher probability 
of a spatial relationship between landslide occurrence and 
slopes ranging from 30-40 degrees. Similarly, for continuous 
data such as elevations, the results show that the maximum 
value of FR (10.16), S=1, and D=0 correspond to the class 
of elevations between 2000-3000 m, suggesting a spatial 
relationship with landslide occurrences. However, in the 
case of the influence of the river, the study reveals that the 
distance to the river does not perform well when using FR 
as a measure. It is evident that as the distance to the river 
decreases, the influence of the river on landslide occurrences 
increases. In the case of FR, the weight values follow an 
ascending order, indicating imprecise estimation. On the 
other hand, the weight values derived from IF-D provide a 
more accurate estimation of the influence of distance from 
the river on landslide occurrences. Specifically, for distances 
between 0-200 m, the divergence values exhibit an ascending 
order with D=0. See Table 2.

Faults play a significant role as conditional factors for 
landslides. In the study area, regional faults to the south 
and the local fault system to the north are the dominant 
factors contributing to landslide occurrences. The landslide 
inventory map of the study area confirms that most landslide 
clusters are concentrated in the northern and southern parts. 
The weight derived from the statistical analysis of IF-D 
indicates that most landslides occur within a circumference 
of 0-1000 m from the faults. The analysis also reveals that 
proximity to roads is a significant factor in destabilizing 
slope stability. Areas within a radius of 0-500 m from roads 
are more susceptible to landslides. Blasting for construction 
purposes has weakened slopes and made them vulnerable to 
landslides. In the construction of the Karakoram Highway, 
extensive blasting activities have contributed to slope 
instability in the region.

Furthermore, the weight values derived from FR do 
not precisely indicate the effect of faults on landslide 
occurrences. The valley in the study area predominantly 
follows an east-west direction, with slopes dipping towards 
the south and north. This topographical characteristic 
results in less natural vegetation, rendering the slopes more 
vulnerable to landslides. The slope aspect categories—
Flat (FR=1.9, D=0.0), North (FR=1.5, D=0.1), and South 

(FR=1.7, D=0.3)—exhibit the highest probability of landslide 
occurrences in this terrain. Regarding categorical data such as 
geology, the weight values suggest that certain lithological 
units have a higher probability of landslide occurrence. The 
southern Karakoram metamorphic unit (FR=2.5, D=0.02), 
quaternary deposits (FR=10.6, D=0.00), Permian massive 
(FR=2.2, D=0.07), and cretaceous sandstone (FR=3.5, 
D=0.2) show the highest likelihood of landslides. These 
lithological units in the northern and southern parts of the 
study area are highly influenced by two major regional 
faults present in the north and south. Man-made activities 
play a crucial role in destabilizing slopes in the study area, 
as indicated by the maximum FR value of 3.0 for orchards, 
FR=2.4, D=0 for winter pastures, and FR=1.4, D=0 for barren 
land. These activities have altered the natural landscape, 
contributing to increased landslide susceptibility.

Deep machine learning techniques (DMLTs) have 
gained significant popularity in the scientific community 
for modeling various environmental phenomena, as they 
enable the exploration of complex relationships. In the 
context of landslide susceptibility analysis, several machine-
learning techniques have been employed. In this study, 
the DeeplabV3+ and U-Net models were utilized to assess 
landslide susceptibility in the Hunza watershed basin. The 
LSMs for the study area were developed using Python 
programming in the KARAS software environment and 
subsequently exported to GIS for final mapping. To address 
the issue of overfitting, a sampling ratio of 70% for training 
the model and 30% for validation was employed. The data 
was partitioned into 126/256 patches, and the model was 
trained for 10 epochs.

To comprehensively evaluate the training and validation 
of DMLT models, a wide range of state-of-the-art deep 
machine learning techniques were employed, utilizing 
accuracy statistics. Validation of the prediction map is crucial 
for assessing the implications of the results in landslide 
prediction modeling. Various validation tests, including the 
F1 score, IOU curve, and ACC score, were performed to 
validate the deep machine learning models (DMLTs). The 
validation results for IOU (0.74, 0.69) and the loss curve 
for DeeplabV3+ and U-Net (0.25, 0.1) indicate excellent 
prediction accuracy for this study. Similarly, the precision and 
recall values (0.85, 0.89) for DeeplabV3+ and U-Net suggest 
that both models are effective classifiers and demonstrate 
strong classification ability for the study area. After training 
and validating the models, landslide susceptibility maps 
were generated using DeepLabV3+ and U-Net. These 
maps were categorized into distinct susceptibility classes, 
namely very high, high, medium, and low, within the 
GIS 10.2 environment. Furthermore, to produce LSMs 
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using IF-D and FR, parameter scores and FR values were 
combined from the respective parameter maps. These 
values were then aggregated from twelve scaled parameters 
within the ArcGIS 10.2 environment to obtain a landslide 
susceptibility map. The resulting LSI map from IF-D and 
FR was subsequently classified into four susceptibility zones  
Fig. 10.

To assess the goodness of fit and prediction accuracy 
of LSMs, this research utilized the AUC curve and Seed 
Cell Area Index (SCAI). The AUC curve was employed 
to generate the Success Rate Curve (SCR) and Prediction 
Rate Curve (PCR) using the training and validation datasets. 
Verification and testing of the LSMs’ accuracy are crucial 
aspects that need to be addressed. In this study, we applied 
the Receiver Operating Characteristic (ROC) curve and 
calculated the Area Under the Curve (AUC). This validation 
method has been widely used in previous studies (Suzen & 
Doyuran, 2004, X. Zhang et al. 2019).

For the Prediction Rate Curve (PRC) obtained from 
the validation dataset, the AUC values were determined as 
80.8% for IF-D, 80.8% for FR, 81% for DeeplabV3+, and 
77.8% for U-Net (refer to Fig. 9). To assess the classification 
ability of the models, the Seed Cell Area Index (SCAI) test 
was employed. See Table 2. The results indicated that the 
SCAI D-value was 7.3 for U-Net, 10 for DeeplabV3+, 7.0 
for IF-D, and 9.1 for FR.

Furthermore, the accuracy statistics revealed that the 
IF-D model exhibited 44.9% of landslides in the very high 
susceptibility zone and 53.5% in the high susceptibility 
class. Similarly, the percentage area of landslides was 44.8% 
for the very high susceptibility class and 53% for the high 
susceptibility class. Table 2.

CONCLUSIONS
Landslide susceptibility mapping plays a crucial role in 
reducing the risk of disasters in landslide-prone areas. 

study, we applied the Receiver Operating Characteristic (ROC) curve and calculated the Area 

Under the Curve (AUC). This validation method has been widely used in previous studies (Suzen 

& Doyuran, 2004, X. Zhang et al. 2019). 

For the Prediction Rate Curve (PRC) obtained from the validation dataset, the AUC values 

were determined as 80.8% for IF-D, 80.8% for FR, 81% for DeeplabV3+, and 77.8% for U-Net 

(refer to Fig. 9). To assess the classification ability of the models, the Seed Cell Area Index (SCAI) 

test was employed. See Table 2. The results indicated that the SCAI D-value was 7.3 for U-Net, 

10 for DeeplabV3+, 7.0 for IF-D, and 9.1 for FR. 

Furthermore, the accuracy statistics revealed that the IF-D model exhibited 44.9% of 

landslides in the very high susceptibility zone and 53.5% in the high susceptibility class. Similarly, 

the percentage area of landslides was 44.8% for the very high susceptibility class and 53% for the 

high susceptibility class. Table 2. 

Fig.  10: Landslide susceptibility maps (LSMs) using statical techniques (IF-D & FR) and Deep Machine Learning 
models (DeeplabV3+& U-Net). Final susceptibility maps classified into four susceptibility zones. 

Fig. 10: Landslide susceptibility maps (LSMs) using statical techniques (IF-D & FR) and Deep Machine Learning models (DeeplabV3+& U-Net). 
Final susceptibility maps classified into four susceptibility zones.
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This study focused on the Hunza watershed basin in 
northern Pakistan, which experiences frequent rockslides 
and landslides as geological phenomena. The occurrence 
of landslides is directly influenced by various conditional 
factors, and each factor class contributes differently to the 
modeling and mapping of the area. To assess the significance 
of each factor class in landslide occurrences, a proposed 
model and FR model were utilized. In terms of weight 
estimation for each conditional factor, the proposed model 
demonstrated greater reliability in identifying the spatial 
relationship of the conditional factors.

Two advanced deep machine learning techniques, 
DeeplabV3+ and U-Net, along with two bi-variate statistical 
models, IF-D and FR, were executed to assess and map 
landslide susceptibility in the study area. The performance 
of these models was compared based on prediction accuracy, 
accuracy statistics, and SCAI. DeeplabV3+ demonstrated 
a prediction accuracy of 80% and an SCAI of 7.6 
D-value, making it the recommended choice for landslide 
susceptibility mapping in the study area.
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