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ABSTRACT

Based on the 30-province panel data in China during 2005-2018, this paper uses the DEA-SBM model 
and DEA-Malmquist model to measure rural financial efficiency and agricultural technological progress 
respectively and then uses the mediating effect model to analyze the linear influence. The results 
show that rural financial efficiency and agricultural technological progress both can inhibit agricultural 
carbon emissions, while agricultural technological progress plays a mediating role when rural financial 
efficiency influences agricultural carbon emissions. What’s more, this paper uses the threshold effect 
model to analyze the non-linear influence. The findings reveal that when rural financial efficiency 
improves, the effects of rural financial efficiency and agricultural technology advances on agricultural 
carbon emissions shift from promoter to inhibitor.   

INTRODUCTION 

Since the industrial revolution, mankind has over-exploited 
and over-utilized natural resources, and the global climate 
has become worse and worse. The greenhouse effect, which 
is produced by excess carbon dioxide emissions, has become 
a major source of worry among academics. Global warming 
might reach 1.5°C between 2030 and 2052 (IPCC 2018). The 
world is actively taking measures to combat global warming. 
At the 75th United Nations General Assembly in 2020, China 
stated that it will strive to peak carbon emissions by 2030 
and achieve carbon neutrality by 2060. Various industries 
in China are actively exploring measures to reduce carbon 
emissions that are appropriate for them to meet these targets 
as soon as feasible.

Rapid agricultural development can ensure food security 
and economic benefits (Maraseni et al. 2020). However, as a 
largely agricultural country, China’s share of global agricul-
tural greenhouse gas emissions is constantly increasing, and 
in 2016 this share reached 13.07% (FAO 2020). Therefore, 
the current goal of China’s agriculture isn’t only to ensure 
food security, but also to protect the environment (Luo et al. 
2014). Exploring the method of reducing agricultural carbon 
emissions is of great significance.

The Paris Agreement on Climate Change emphasized 
the important role of funding to address the challenges 
of climate change. Some academics have researched the 

influence of financial development on carbon emissions 
from a macroeconomic viewpoint in recent years. Shahbaz 
et al. (2018) stated that financial development can reduce 
carbon emissions. What’s more, scholars have studied various 
influencing factors of agricultural carbon emissions, such 
as agricultural production (Owusu & Asumadu-Sarkodie 
2016), rural population scale (Chen et al. 2018), agricultural 
economic development (Zhang & Liu 2018), energy 
consumption (Zhang et al.2019), urbanization (Ridzuan et 
al.2020), R&D investment (Chen & Li 2020) and industrial 
structure (Guo et al.2021). But there is little literature 
studying the influencing factor - rural finance. Therefore, the 
purpose of this paper is to investigate how rural financing 
influences agricultural carbon emissions.

Financial development helps to fund technical advance-
ment, which in turn helps to minimize greenhouse gas emis-
sions (Paroussos et al. 2020). Some researchers have looked 
at the mechanism of “financial development → technolog-
ical progress → carbon emissions” from a macroeconomic 
perspective (Tamazian et al. 2009, Shahbaz et al. 2013, Yan 
et al. 2016). From the agricultural sector perspective, some 
scholars have only studied the relationship between the two, 
such as the impact of financial development on technological 
progress (Liu et al. 2021), and the impact of technological 
progress on carbon emissions (Chen & Li 2020). In gen-
eral, only a few scholars have studied the mechanism of 
“rural financial development→agricultural technological 
progress→agricultural carbon emissions”.
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Based on the above background, this article, by using 
30-province panel data in China during 2005-2018, studies 
the mechanism of “rural financial efficiency → agricultural 
technological progress→agricultural carbon emissions”, and 
focuses on the following four analyses: (1) By measuring 
rural financial efficiency by DEA-SBM model, analyze 
the efficiency and quality of rural financial development, 
instead of only focusing on the financial scale and quantity. 
(2) By measuring agricultural technological progress by 
DEA-Malmquist model, analyze the dynamic changes of 
agricultural technological progress. (3) Using the mediat-
ing effect model, analyze the influence mechanism of rural 
financial efficiency on agricultural carbon emissions when 
agricultural technological progress plays the mediating role. 
(4) Using the threshold effect model, analyze the non-linear 
impact of rural financial efficiency and agricultural techno-
logical progress on agricultural carbon emissions.

This paper is structured as follows: Section 2 introduces 
past studies and hypothesis development. Section 3 introduc-
es methodology. Section 4 presents results and discussion. 
Section 5 concludes.

Past Studies and Hypothesis Development

In the literature on the relationship between financial devel-
opment and carbon emissions, scholars have different views. 
Some scholars believe that financial development can reduce 
carbon emissions. The main mechanisms are as follows: (1) 
A sound financial system can provide a good environment 
for carbon trading activities (Claessens & Feijen 2007). (2) 
Mature financial system can provide sufficient funds and 
comprehensive financial services for environmentally friend-
ly projects (Tamazian & Rao 2010) and emission reduction 
projects (Zhou et al. 2019). (3) A sound financial system can 
provide support for low-carbon development through fiscal 
policy. For example, financial policy tools optimize the ener-
gy consumption structure of enterprises by adjusting energy 
prices (Zhou et al. 2019). However, some scholars believe 
that financial development can promote carbon emissions. 
According to Shen et al. (2021), a well-developed financial 
system aids corporations in expanding output and consumers 
in obtaining sufficient consumer credit, making it simpler to 
acquire high-energy-consuming commodities and thereby 
boosting carbon emissions.

There is little literature on the impact of rural finance on 
agricultural carbon emissions. This article will learn from 
the above mechanism, focus the research perspective on rural 
areas and the agricultural sector, and propose the following 
hypothesis:
Hypothesis 1: Rural financial efficiency can inhibit 
agricultural carbon emissions: In recent years, some 

scholars have begun to study the impact mechanism of 
financial development on carbon emissions. Technological 
progress has been extensively studied as a mediating role 
of financial development influencing carbon emissions on 
the macro-level. The main mechanisms are as follows: (1) 
An open and free financial policy and a developed finan-
cial system can attract more R&D-related foreign direct 
investment, thereby promoting technological progress and 
then mitigating the country’s environmental degradation 
(Tamazian et al. 2009) (2) A mature financial market has a 
strong and complete information disclosure system, which 
can reduce adverse selection and moral hazard caused by 
information asymmetry, and can enable the healthy devel-
opment of technological innovation projects. Then tech-
nological progress will optimize the utilization of energy, 
thereby reducing carbon emissions (Shahbaz et al. 2013) (3) 
A well-developed finance market provides investors with a 
sound risk diversification mechanism. It can share the risk of 
return among different investors, thereby reducing investors’ 
worries about investment in technology projects. Therefore, 
technology projects can proceed smoothly, and low-carbon 
technology projects will also receive strong support from 
the financial market to achieve emission reduction targets. 
(Zhou et al. 2019) (4) Financial development can improve 
the education system, thereby promoting the accumulation 
of human capital. Human capital carries out technological 
innovation, thereby promoting technological progress. Then 
technological progress will contribute to exploring new clean 
energy, thereby reducing carbon emissions (Zhou et al. 2019)

Some literature has studied the impact of rural finance 
on agricultural technology and the impact of agricultural 
technology on agricultural carbon emissions. Rural finance, 
according to Liu et al. (2021), may help agricultural techno-
logical innovation by easing the financial burden on creative 
businesses, diversifying investment risks in technology 
projects, and fostering talent for scientific research organ-
izations. In particular, rural finance can provide financial 
support for farmers to use new technological tools, which 
can promote the application of agricultural technological 
innovation (Makate et al. 2019). Chen & Li (2020) stated that 
the advancement of agricultural technology will contribute 
to the low-carbon development of agriculture.

This article will learn from the above mechanism, focus 
the research perspective on rural areas and the agricultural 
sector, and establish a research mechanism of “rural financial 
efficiency→agricultural technological progress→agricultural 
carbon emissions”. Hypothesis 2 is as follows:
Hypothesis 2: Agricultural technological progress plays 
a mediating role when rural financial efficiency influences 
agricultural carbon emissions
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ACE is the total agricultural carbon emissions. iACE  is the carbon emissions of each carbon 

source. i  is the amount of each carbon source. i  is the carbon emissions coefficient of each 

carbon source.  

Since agricultural carbon emission intensity (ACEI) is of greater practical meaning, this paper 

uses it to represent agricultural carbon emissions. And it’s measured by the ratio of the total agricultural 

carbon emissions (ACE) to the total agricultural output value. 

Table 1: The agricultural carbon source coefficients and references. 

Source Coefficient Reference 
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the rationality and availability of data, the following evalu-
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el is that it can reflect the dynamic changes of agricultural 
technological progress and the method isn’t restricted by the 
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(xt, yt) and (xt+1, yt+1) represent the input-output vector 

in period t and t+1 respectively. If index M>1, it means the 
efficiency increased. If index M<1, it means the efficiency 
declined.

Based on the research of Wang & Tan (2021), consid-
ering the rationality and availability of data, the following 
evaluation index system (as shown in Table 3) is constructed:

Other Control Variables

Fiscal policy of supporting agriculture (gov): It refers 
to the fiscal expenditure provided by the government to 
support local agricultural development. This article uses the 
ratio of fiscal expenditures of supporting agriculture to the 
total output value of agriculture to measure gov, which can 
reflect the extent of government support for local agricultural 
development.

Farmland planting structure (stru): It can be measured 
by the proportion of the sown area of food crops to the total 
sown area of crops. Different planting structures will have dif-
ferent impacts on agricultural carbon emissions. Compared 
with non-food crops, food crops require less agricultural 

Table 2: Evaluation index system of rural financial efficiency.

Evaluation 
subject

Index 
type

Index

Rural 
financial 
efficiency

Input Total assets of rural financial institutions

Number of rural financial institution 
outlets

Number of employees in rural financial 
institutions

Agricultural loan balance of financial 
institutions

Output Added-value of agriculture

Table 3: Evaluation index system of agricultural technological progress.

Evaluation 
subject

Index 
type

Index

Agricultural 
technological 
progress

Input Number of employees in agriculture

Total sown area of crops

Fixed asset investment in agriculture

Total power of agricultural machinery

Output Gross output value of agriculture
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film, fertilizers, pesticides, and other agricultural chemicals. 
Therefore, the larger the proportion is, the lower agricultural 
carbon emissions will be.

Deterioration of rural environment (env): It can be 
measured by the proportion of the affected area of crops 
to the total sown area of crops. Deterioration of the rural 
environment will lead to more natural disasters in rural are-
as. The more severe the damage to crops is, the greater the 
energy consumption and the increase in agricultural carbon 
emissions will be.

Data Sources

Because the data of Tibet, Hong Kong, Macao, and Taiwan 
is incomplete, this paper uses 30-province panel data in 
China during 2005-2018 to empirically analyze the impact 
of fin and tech on ACEI. The main sources of the above 
data are the open data of the National Bureau of Statistics, 
Wind database, China Regional Financial Operation Report, 
China Financial Yearbook, China Rural Statistical Yearbook, 
China Agricultural Machinery Industry Yearbook, and China 
Statistical Yearbook. Parts of missing values are filled by 
interpolation. This article adjusts the magnitude of ACEI 
and gov so that the value of all variables is between 0-10. 
The detailed information of variables is shown in Table 4.

RESULTS AND DISCUSSION

Total Effect Analysis

This article uses a 14-year and 30-province short panel, so 
unit root testing isn’t required. The results of the F-test and 
Hausman-test show that the fixed effects model is better than 
the OLS model and the random effects model. Table 5 lists 
the results of the OLS model (model 1), random effects model 
(model 2), and fixed effects model (model 3). 

In model 3, the coefficient of the independent variable - 
fin is -1.0815, which is significant at 1%, indicating that fin 
can inhibit ACEI. Therefore, the validity of hypothesis 1 is 
proved. High-efficiency rural finance supports low-carbon 
agricultural development by capital turnover, risk-taking, 
etc. The analysis of the control variables is as follows: the 

coefficient of gov is significantly negative at 1%, which 
reflects the great inclination extent of government policy 
toward green agriculture. The coefficient of stru is signifi-
cantly negative at 1%. This is because food crops have lower 
demand for agricultural chemicals, resulting in lower carbon 
emissions. The coefficient of env is significantly positive at 
1%, indicating that the higher the extent of rural environmen-
tal degradation is, the harder the low-carbon production of 
agriculture is achieved.

Mediating Effect Analysis

Wen & Ye (2014) found that when the test results are signif-
icant, the sequential test is better than the Sobel test. And 
the Bootstrap test is better than the Sobel test. Therefore, 
the appropriate mediating effect test procedure is shown in 
Fig. 1. First, the coefficient a1 of the independent variable 
- fin in model 3 is -1.0815, and it’s significant at 1%, so the 
argument of mediating effect can be grounded. Second, the 
coefficient b1 of fin in model 4 is 0.7900, which is significant 
at 1%. And the coefficient g2 of the mediating variable - tech 
in model 5 is -0.5978, which is significant at 1%. Therefore, 
there is a significant indirect effect. Third, the coefficient 
g1 of fin in model 5 is -0.6092, which is significant at 1%, 
so there is also a significant direct effect. Fourth, compare 
the sign of b1g2 and g1. If their signs are the same, there is a 
partial mediating effect. The ratio of the mediating effect to 
the total effect is 43.67% (b1g2/a1). Therefore, the validity 
of hypothesis 2 is proved.

Robustness Test

This article uses three methods to test the robustness of the 
regression results:

	(1)	 The samples from 2005 and 2018 are excluded. In Table 
6, models 6 and 7 illustrate the findings. A mediating 
impact still exists, accounting for 42.28 percent of the 
total.

	(2)	 Replace the mediating variable. Agricultural technolog-
ical progress is measured by agricultural mechanization 
(tech’) instead, which is the ratio of the total power of 
agricultural machinery to the total sown area of crops. 
The results are shown in models 8 and 9 in Table 6. 
There is still a mediating effect, accounting for 33.65%.

	(3)	 Insert the dependent variable’s one-period lagged term 
into the model. The two-step SYS-GMM can effectively 
solve the dynamic panel’s endogenous issue. The results 
are shown in models 10-12 in Table 6. In model 10, 
fin still inhibits ACEI. In model 11, fin still promotes 
tech. In model 12, fin and tech both still inhibit ACEI. 
The mediating effect is still significant. Therefore, the 
regression results are robust.

Table 4: Descriptive statistics of variables.

Variable Obs Mean Std. Dev. Min Max

ACEI 420 2.3163 0.8444 0.5451 5.1907

fin 420 0.5234 0.2809 0.0543 1.1232

tech 420 1.5956 0.7537 0.1864 6.2962

gov 420 0.1839 0.2168 0.0194 1.9408

stru 420 0.6624 0.1336 0.3628 0.9687

env 420 0.2111 0.1479 0.0000 0.9357
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Table 6: Robustness test results.

Variable Model 6
FE

Model 7
FE

Model 8
FE

Model 9
FE

Model 10
SYS-GMM

Model 11
SYS-GMM

Model 12
SYS-GMM

tech ACEI tech’ ACEI ACEI tech ACEI

fin 0.7577***
(3.49)

-0.5029**
(-2.30)

0.1225***
(3.34)

-0.7175***
(-3.39)

-0.3990***
(-9.16)

0.3956***
(12.91)

-0.1655***
(-2.63)

tech -0.6035***
(-11.03)

-0.0450**
(-2.28)

tech’ -2.9709***
(-10.25)

controls yes yes yes yes yes yes yes

ACEI(-1) 0.8713***
(104.18)

0.8578***
(44.79)

tech(-1) 0.9760***
(97.68)

cons 2.4114***
(4.05)

5.5679***
(9.23)

0.7572***
(7.97)

7.3973***
(12.66)

0.1095
(0.36)

0.5041
(1.63)

0.0910
(0.17)

N 360 360 420 420 360 360 360

R2 0.1907 0.5664 0.1791 0.5523

F 19.20*** 84.91*** 21.06*** 94.98***

AR(1)-P 0.0002 0.0235 0.0002

AR(2)-P 0.1053 0.7406 0.1261

Sargan-P 0.9737 0.9969 1.0000

Mediating Effect/Total Effect 
=42.28%

Mediating Effect/Total Effect =33.65%

Table 5: Results of total effect test and mediating effect test.

Variable Model 1
OLS

Model 2
RE

Model 3
FE

Model 4
FE

Model 5
FE

ACEI ACEI ACEI tech ACEI

fin -0.8280***
(-5.96)

-1.0482***
(-5.50)

-1.0815***
(-4.60)

0.7900***
(3.93)

-0.6092***
(-2.95)

tech -0.5978***
(-11.67)

gov -1.5388***
(-8.37)

-1.8929***
(-9.41）

-2.0265***
(-9.58)

0.7513***
(4.15)

-1.5773***
(-8.48)

stru 0.2004
(0.76)

-0.7884*
(-1.66)

-3.6829***
(-4.11)

-1.1232
(-1.46)

-4.3544***
(-5.63)

env 2.1204***
(9.06)

2.4680***
(10.50)

2.5915***
(10.82)

-1.4809***
(-7.23)

1.7061***
(7.77)

cons 2.4523***
(10.90)

3.2143***
(8.93)

5.1476***
(8.44)

2.1007***
(4.03)

6.4035***
(11.95)

N 420 420 420 420 420

R2 0.3275 0.4151 0.4302 0.2182 0.5791

F 52.01*** 72.85*** 26.94*** 105.95***

Wald Chi2 267.37***

Hausman Chi2 = 20.92  P = 
0.0003

Mediating Effect/Total Effect 
= 43.67%

Note: The t/z statistics are in parentheses, and the 10%, 5%, and 1% significance levels are represented by *, ** and ***, respectively.
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Further Analysis: Threshold Effect Test

This paper selects fin as the threshold variable and selects fin 
and tech as threshold-dependent variables. To calculate the 
threshold values more precisely, the self-sampling approach 
(Bootstrap) is used 300 times. The results of the threshold ef-
fect test are shown in Table 7. When the threshold-dependent 
variable is fin, the single threshold test is significant at 1%, 
and the double threshold and triple threshold tests are not sig-
nificant, so there is a single threshold with a threshold value 
of 0.0776, as shown in Fig. 2. When the threshold-dependent 
variable is tech, the double threshold test is significant at 
5%, and the single threshold and triple threshold tests are 
not significant, so there is a double threshold with threshold 
values of 0.0776 and 0.4480, as shown in Fig. 3.

Then, regression estimation of the threshold effect model 
is performed, and the results are shown in Table 8. In model 

13, when fin≤0.0776, the coefficient of fin is 17.0382, which 
is significant at 1%, indicating that when fin doesn’t cross the 
single threshold, it’s at a low level and it promotes ACEI. The 
reason may be that, at this time, its effect on the expansion of 
the agricultural production scale is greater than its effect on 
technology improvement. When fin>0.0776, the coefficient 
of fin is -1.1360, which is significant at 1%, indicating that 
when fin crosses the single threshold, it’s at a relatively high 
level and it has an inhibitory effect on ACEI. The reason may 
be that, at this time, its effect on technology improvement is 
greater than its effect on the expansion of the agricultural pro-
duction scale. In model 14, when fin ≤ 0.0776, the coefficient 
of tech is 0.6250, which is significant at 1%, indicating that 
when fin is too low, tech has a positive impact on ACEI. The 
reason may be that, at this time, rural finance cannot provide 
sufficient support for agricultural technological innovation. 
When 0.0776<fin≤0.4480, the coefficient of tech is -0.3946, 

the Sobel test. And the Bootstrap test is better than the Sobel test. Therefore, the appropriate mediating 

effect test procedure is shown in Fig. 1. First, the coefficient 
1α  of the independent variable - fin in 

model 3 is -1.0815, and it’s significant at 1%, so the argument of mediating effect can be grounded. 

Second, the coefficient 
1β  of fin in model 4 is 0.7900, which is significant at 1%. And the coefficient 

2γ  of the mediating variable - tech in model 5 is -0.5978, which is significant at 1%. Therefore, there 

is a significant indirect effect. Third, the coefficient 
1γ of fin in model 5 is -0.6092, which is significant 

at 1%, so there is also a significant direct effect. Fourth, compare the sign of 
21γβ and

1γ . If their signs 

are the same, there is a partial mediating effect. The ratio of the mediating effect to the total effect is 

43.67% (
21γβ /

1α ). Therefore, the validity of hypothesis 2 is proved. 

Fig.1: The mediating effect test procedure. 

Table 5: Results of total effect test and mediating effect test. 

Variable Model 1 
OLS 

Model 2 
RE 

Model 3 
FE 

Model 4 
FE 

Model 5 
FE 

 ACEI ACEI ACEI tech ACEI 
fin -0.8280*** 

(-5.96) 
-1.0482*** 
(-5.50) 

-1.0815*** 
(-4.60) 

0.7900*** 
(3.93) 

-0.6092*** 
(-2.95) 

tech     -0.5978*** 
(-11.67) 

gov -1.5388*** 
(-8.37) 

-1.8929*** 
(-9.41） 

-2.0265*** 
(-9.58) 

0.7513*** 
(4.15) 

-1.5773*** 
(-8.48) 

stru 0.2004 
(0.76) 

-0.7884* 
(-1.66) 

-3.6829*** 
(-4.11) 

-1.1232 
(-1.46) 

-4.3544*** 
(-5.63) 

env 2.1204*** 2.4680*** 2.5915*** -1.4809*** 1.7061*** 

α1

β1  and  γ2

γ1 Bootstrap test on β1 γ2

Mediating 
effect is 

significant

Complete 
mediating effect 

is significant

Mediating effect 
is insignificant

Stop the mediating 
effect analysis

Insignificant

Significant

Both significant At least one is 
insignificant

Significant

Significant Insignificant Insignificant

Fig.1: The mediating effect test procedure.

Table 7: Results of the significance test of the threshold effect.

Threshold-de-
pendent var-
iable

Item F-statistics P-value T h r e s h o l d 
E s t i m a t i o n 
value 

95% confidence interval 10% Criti-
cal value

5% Critical 
value

1% Critical 
value 

Fin Th-1 33.39*** 0.0033 0.0776 [ 0.0752 , 0.0851 ] 18.5435 24.2863 29.0024

Th-21 14.24 0.3267 0.0776 [ 0.0752 , 0.0851 ] 88.2282 100.8478 115.5176

Th-22 0.5337 [ 0.5233, 0.5424 ]

Th-3 9.23 0.7300 0.8995 [ 0.8330 , 0.9439 ] 55.3573 73.0685 116.7123

tech Th-1 35.33 0.1033 0.4480 [ 0.4360 , 0.4587 ] 35.3562 41.5207 54.1176

Th-21 42.31** 0.0133 0.4480 [ 0.4272 , 0.4587 ] 24.4556 29.4876 43.9099

Th-22 0.0776 [ 0.0752 , 0.0851 ]

Th-3 29.40 0.6533 0.1876 [ 0.1818 , 0.2061 ] 115.9801 126.1179 146.6378
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Table 8: Regression results of the threshold effect.

Variable Model 13 Model 14

fin(fin≤0.0776) 17.0382***
(5.28)

fin(0.0776<fin ) -1.1360***
(-5.01)

tech（fin≤0.0776） 0.6250***
(3.53)

tech(0.0776<fin≤0.4480) -0.3946***
(-7.03)

tech（0.4480<fin） -0.7409***
(-14.35)

controls yes yes

cons 4.6868***
(7.91)

5.6276***
(11.23)

N 420 420

R2 0.4735 0.6416

F 69.24*** 114.57***

 
Fig. 2: Threshold estimated value and confidence interval (threshold-dependent variable: fin). 

 

(a)                                   (b) 
Fig. 3: The first (a) and second (b) threshold estimated values and confidence intervals (threshold-
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than its effect on technology improvement. When fin>0.0776, the coefficient of fin is -1.1360, which is 

significant at 1%, indicating that when fin crosses the single threshold, it’s at a relatively high level and 

it has an inhibitory effect on ACEI. The reason may be that, at this time, its effect on technology 

improvement is greater than its effect on the expansion of the agricultural production scale. In model 14, 

when fin ≤ 0.0776, the coefficient of tech is 0.6250, which is significant at 1%, indicating that when fin 

is too low, tech has a positive impact on ACEI. The reason may be that, at this time, rural finance cannot 

provide sufficient support for agricultural technological innovation. When 0.0776<fin≤0.4480, the 

coefficient of tech is -0.3946, which is significant at 1%, indicating that when fin crosses the first 

threshold, tech has an inhibitory effect on ACEI. When fin>0.4480, the coefficient of tech is -0.7409, 
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in Table 8. In model 13, when fin≤0.0776, the coefficient of fin is 17.0382, which is significant at 1%, 

indicating that when fin doesn’t cross the single threshold, it’s at a low level and it promotes ACEI. The 

reason may be that, at this time, its effect on the expansion of the agricultural production scale is greater 

than its effect on technology improvement. When fin>0.0776, the coefficient of fin is -1.1360, which is 

significant at 1%, indicating that when fin crosses the single threshold, it’s at a relatively high level and 

it has an inhibitory effect on ACEI. The reason may be that, at this time, its effect on technology 

improvement is greater than its effect on the expansion of the agricultural production scale. In model 14, 

when fin ≤ 0.0776, the coefficient of tech is 0.6250, which is significant at 1%, indicating that when fin 

is too low, tech has a positive impact on ACEI. The reason may be that, at this time, rural finance cannot 

provide sufficient support for agricultural technological innovation. When 0.0776<fin≤0.4480, the 

coefficient of tech is -0.3946, which is significant at 1%, indicating that when fin crosses the first 

threshold, tech has an inhibitory effect on ACEI. When fin>0.4480, the coefficient of tech is -0.7409, 

Fig. 2: Threshold estimated value and confidence interval (threshold-de-
pendent variable: fin).

which is significant at 1%, indicating that when fin crosses 
the first threshold, tech has an inhibitory effect on ACEI. 
When fin>0.4480, the coefficient of tech is -0.7409, which 
is significant at 1%, indicating that the higher rural financial 
efficiency is, the stronger the support for agricultural techno-
logical progress will be, resulting in the stronger inhibition 
on agricultural carbon emissions. 

CONCLUSIONS

This paper uses the DEA-SBM model and DEA-Malmquist 
model to measure rural financial efficiency and agricultural 
technological progress respectively from the perspective of 

input and output. And it empirically studies the impact of 
rural financial efficiency and agricultural technological pro-
gress on agricultural carbon emissions by using provincial 
panel data from 2005-2018. The mediating effect model 
is used to demonstrate the mechanism of “rural financial 
efficiency-agricultural technological progress-agricultural 
carbon emissions”. The panel threshold effect model is used 
to study the non-linear impact of rural financial efficiency 
and agricultural technological progress on agricultural carbon 
emissions. The main conclusions are as follows:

	(1)	 Rural financial efficiency not only has a direct inhibitory 
effect on agricultural carbon emissions but can also 
inhibit agricultural carbon emissions by promoting 
agricultural technological progress.

	(2)	 When rural financial efficiency is the threshold-depend-
ent variable, it has a single threshold effect on agricul-
tural carbon emissions. When rural financial efficiency 
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does not exceed the threshold, it promotes agricultural 
carbon emissions. And when rural financial efficiency 
crosses the threshold, it inhibits agricultural carbon 
emissions.

	(3)	 When agricultural technological progress is the thresh-
old-dependent variable, it has a double threshold effect 
on agricultural carbon emissions. When rural financial 
efficiency hasn’t crossed the first threshold, agricultural 
technological progress promotes agricultural carbon 
emissions. When rural financial efficiency crosses the 
first threshold, agricultural technological progress inhib-
its agricultural carbon emissions. When rural financial 
efficiency crosses the second threshold, agricultural 
technological progress has a stronger inhibitory effect 
on agricultural carbon emissions.
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