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       ABSTRACT
In recent years, interest in boron has expanded from microscopic to macroscopic levels, 
and several studies have contributed to understanding the role of boron in earth and 
natural processes. The boron isotopic composition provides a unique perspective into 
the crystallization process in granites, pegmatites, and temperature variations. Boron 
isotopic studies have been used as a tracer to understand geothermal systems, rivers, 
rock processes, reconstruction of pH and pCO2, groundwater pollution, and further help 
in understanding the changes which have occurred in oceans through geological time.  
Furthermore, boron isotopes have also been utilized to understand the genesis of ores and 
understanding subduction processes and as a tracer in groundwater pollution. In plants, it 
acts as a micronutrient. However, its deficiency and the excessive amount may inhibit the 
growth of plants, bacteria, and fungi and may also affect the soil and aquatic microflora. Boron 
maintains and regulates several metabolic pathways, and its quantity above a certain level 
may prove detrimental to the environment. This overview explains boron isotope variations 
and their implications in earth sciences and natural processes.

INTRODUCTION

Radiogenic and stable isotopes have been extensively utilized 
for understanding various phenomena, such as earth systems, 
paleoclimate, ecology, the hydrologic cycle, biology, and 
forensic investigations. Over the past few decades, the 
application of stable isotopes has grown considerably, 
each with its unique potential for illuminating particular 
processes (Rasbury & Hemming 2017). Stable isotopes of 
carbon (12C and 13C), nitrogen (14N and 15N), and oxygen  
(16O,17O, 18O) are valuable for retracing oceanic changes 
and past climatic conditions (Tiwari et al. 2015). Sulfur has 
four stable isotopes (32S, 33S, 34S, 36S), which are found 
in rivers, the atmosphere, lakes, and groundwater. The 
sulfur compounds have been tracked using stable isotopes of 
sulfate. To understand the sulfur cycle of marine sediments 
in both the present and past, stable isotopes are a crucial 
tool (Thode 1963, Jørgensen 2021). Silicon has three stable 
isotopes (28Si, 29Si, 30Si) and silicon isotope ratios can be used 
to derive paleoenvironmental information, and in phytoliths 
may be used in archaeological studies (Leng et al. 2009).

In 1808, Joseph Louis Gay-Lussac, Humphry Davy, and 
Louis Jacques Thêrnard were the first to isolate boron by 
heating boron oxide with potassium metal (Davy 1808, Gay-
Lussac & Thernard 1808). However, the first measurements 
of boron isotopes in natural materials were made in 1961 
(McMullen et al. 1961). Boron with atomic number 5 
has an extremely high affinity for oxygen (Lemarchand 
& Gaillardet 2005). When combined with oxygen, boron 
invariably forms trigonal and tetrahedral complexes, and 
boron is primarily found in weakly alkaline as the trigonal 
B(OH)3 complex but in strongly alkaline conditions as 
the tetragonal B(OH)4 (Baes & Mesmer 1976). Over the 
past years, many investigations have been conducted to 
determine whether boron isotopes in carbonates may be used 
as a proxy for paleo-ocean pH. However, for such usage of 
boron isotopes, both as sources or as a process proxy, it is 
necessary to thoroughly characterize the physicochemical 
processes that govern boron incorporation in carbonates 
and to quantify the corresponding chemical and isotopic 
fractionation (Hemming & Hanson 1992, Lemarchand et 
al. 2002, Lemarchand & Gaillardet 2005).  Material science, 
energy research, and electronics boron have a wide range 
of applications in chemistry. In medical chemistry, boron is 
either used as an atom or cluster and in recent days, boron 
has been used in antibacterial, antifungal, and antiseptic 
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treatments (Leśnikowski 2016). Boron compounds are 
employed in nuclear technology, rocket engines as fuel, the 
manufacture of heat-resistant materials, and high-resistant 
polymers (Yilmaz et al. 2008). Apart from this, boron 
isotopes have been used as a geochemical tracer, and their 
major applications are in the field of ore genesis, sedimentary 
environments, crustal mantle evolution, subduction-related 
processes, and cosmochemistry (Foster et al. 2018, Liu 
& Chaussidon 2018, Marschall & Foster 2018). Boron is 
important for the assimilation of nitrogen in plants and the 
growth of roots in nitrogen-fixing plants (Bolaños et al. 1994, 
Camacho-Cristóbal et al. 2005), boron isotopic composition 
provides a better understanding of the rate of ocean 
acidification during periods of warming events (Penman 
et al. 2014). In this study, we present a short review of the 
application and significance of boron isotopic systematics 
for understanding its importance in natural processes. 

BORON GEOCHEMISTRY AND  
GEOCHEMICAL CYCLE 

Since 1961, when the boron isotopes were first measured, 
several research articles have been published on boron 
isotope geochemistry and its analytical techniques (Spivack 
& Edmond 1987, Barth 1993, Aggarwal & Palmer 1995, 
Marschall 2018, Trumbull & Slack 2018, Wang et al. 2019). 
Boron is a lithophile element having two stable isotopes 10B 
and 11B, with an abundance of ~ 20% and ~80%, respectively 
(Kakihana et al. 1977, Barth 1993, Palmer & Swihart 
1996, Foster et al. 2018). The boron isotopes are generally 
expressed as δ11B as,

δ B 11 (‰) = [
( B 11 B 10⁄ )sample − ( B 11

 B 10
 ⁄ )standard

( B 11  B 10  ⁄ )standard
− 1] × 103 

 And the 11B/10Bstandard  is the boron isotopic composition 
of the National Institute of Standards and Technology 
(NIST) Standard Reference Material (SRM) 951 boric 
acid, which is used in most of the studies, and the value 
of  (11B/B10=4.04367) (Catanzaro 1970). Other isotopic 
reference materials for the isotope ratio of boron are NIST-
SRM-952, IAEA-B1, IAEA-B2, and IAEA-B4 (Aggarwal 
& You 2016). There are over 250 known minerals that 
contain boron, the most prevalent of which are calcium, 
sodium, and magnesium salts (Helvaci 2017). Commercially 
important minerals with boron contents are represented in 
(Fig.1). Boron is also found in skarns, calcareous sediments, 
metasediments, metamorphic minerals, mafic and ultramafic 
igneous rocks and minerals (Henry & Dutrow 1996). The 
concentration of boron (ppm) in different rocks is represented 
in Fig. 2 (a-c). 

A significant flux of gaseous B drives the atmospheric 
component of the global B cycle in the form of boric acid 
(H3BO3) derived from sea salt aerosols (Park & Schlesinger 
2002). Exchanges primarily determine the oceanic boron 
fluxes with the atmosphere; influx and outflux occur mostly 
due to direct precipitation, dry deposition, and gaseous 
absorption and outflux through seawater aerosol production 
(Carrano et al. 2009). By delivering boron from natural and 
anthropogenic sources via riverine transport, the hydrosphere 
is the second largest flux to the oceans (Carrano et al.  
2009).
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Fig. 1: Percentage of boron in commercially important boron-containing minerals Data source: Lyday (2000).
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Fig. 2: Range of boron (ppm) in minerals (a) pelitic and psammitic sedimentary and metasedimentary rocks (b) calcareous sediments, metasediments 
and skarns (c) mafic and ultramafic igneous and metamorphic rocks. Data sources: Henry & Dutrow (1996).

METHODS FOR BORON ISOTOPE 
DETERMINATION

Mass spectrometry is one of the best analytical techniques 
that possess unparallel sensitivity, detecting range, speed, 
and a plethora of uses, and it also has played a decisive 
role in understanding the geological processes in the 
past decades (Jocelyn Paré & Yaylayan 1997, Hoffmann 
& Stroobant 2007, Joshi et al. 2021, Banerji et al.  
2022).

 For boron isotope analysis, mass spectrometry is used in 
various ways, which include: Multi-collector and Inductively 
coupled Plasma Mass spectrometry (MC-ICPMS) which 
is relatively fast with high precision and requires a small 
sample size. However, it is a bit expensive (Aggarwal et 
al. 2003). Thermal ionization mass spectrometry (TIMS), 
including negative ion thermal ionization (N-TIMS), has 

a higher analytical speed and requires minimal sample 
preparation. However, limited precision is the disadvantage 
of this technique (Hemming & Hanson 1994). The advantage 
of using Positive ionization mass spectrometry (P-TIMS) is 
that it has a high level of accuracy, whereas the drawback is 
that the sample should be pure (Aggarwal & Palmer 1995). 
Secondary-ion mass spectrometry (SIMS)  is used in the 
micro-analysis of boron in various solid rock samples and 
does not require sample preparation (Chaussidon et al. 1997). 
Laser Ablation Inductively Coupled Mass Spectrometry (LA-
ICPMS) has the benefit of high spatial resolution (Fietzke 
et al. 2010).  A Triple quadrupole-based ICP system (ICP-
QQQ) has the advantage of high abundance sensitivity and 
elimination of interferences (Fernández et al. 2015). High-
resolution inductively coupled plasma mass spectrometry 
(HR-ICPMS) is responsible for fast analysis (Gäbler & 
Bahr 1999).
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In the Himalayas, the isotopic composition of the riv-
ers varies greatly up to ~ 35 δ11B ‰. The huge difference 
seen in the boron isotopic composition of Brahmaputra and 
Ganga may be due to the variation in the chemical compo-
sition of bedrock and silicate alteration (Rose-Koga et al. 
2000). The δ11B ‰ concentrations in Himalayan rivers are 
highly variable. Range from -7‰ to 29.4‰ (Rose-Koga 
et al. 2000) with variable major ion concentrations have 
differing inputs from various weathered lithologies, in-
cluding evaporites, carbonates, and silicates. The boron 
isotopic variation of different river systems is mentioned in  
Fig. 4.

BORON ISOTOPES IN THE HIMALAYAN REGION 

Geothermal Systems and Rivers

In the Himalayas, Steller et al. (2019) analyzed the boron 
isotopic and elemental concentrations from diatom-rich 
sediments of the Puga geothermal system in India and 
reported δ11B = -41.0‰. In Tibetan, geothermal areas δ11B 
values vary from (-16.0 to 13.1‰) and indicate non-marine 
origin, whereas, in Tengchong geothermal areas in Yunnan 
province, δ11B varies from (-11.8 to 4.2‰) (Lü et al. 2014). 
The boron isotopic variations in the geothermal system are 
plotted in Fig. 3.

 
Fig. 3: Boron isotopic compositions in the geothermal system. Data sourcesSteller et al. (2019), Lü et al. (2014), Zhang et al. (2015).

 

 Fig. 4: Boron isotopic compositions of the river system. Data sources (Rose-Koga et al. 2000).
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Igneous and Metamorphic Rocks 

In the Himalayas, numerous studies on tourmaline boron 
isotopic and chemical compositions have been used to 
elucidate the genesis of leucogranite or pegmatites (Yang 
et al. 2015, Gou et al. 2017, Hu et al. 2018, Zhou et al. 
2019, Cheng et al. 2021, Srivastava et al. 2022). In igneous 
petrology, boron plays an important role as a flux for silicate 
melts, where it lowers the solidus and liquidus temperatures 
and the viscosity of the melts (Dingwell 1992, London 
et al. 2018). In peraluminous granites, boron isotopic 
composition is determined by the isotopic nature of their 
source composition (Trumbull et al. 2008). Tourmaline 
is the most common borosilicate mineral in crustal rocks 

analyzed for boron isotopic composition (Samson & Sinclair 
1992, Trumbull et al. 2008, Marschall & Jiang 2011, Yang 
& Jiang 2012). Tourmaline is ubiquitous in igneous and 
metamorphic rocks in the Himalayas (Henry & Guidotti 
1985, Henry & Dutrow 2018), and as it crystallizes at 
the late stage of magmatic evolution and its abundance in 
leucogranites makes it an appropriate tracer of source rocks 
and its genesis (London 1996, Kasemann et al. 2000, Van 
Hinsberg et al. 2011).

Some researchers inferred that tourmaline-bearing 
leucogranites are generated by dehydration melting of 
metasedimentary rocks having either muscovite, biotite, or 
both (Le Fort et al. 1987, Harris & Massey 1994, Harris et 

Table 1: Boron isotopic compositions in the Himalayan region in different systems.

Area Sample Description δ11B (‰) References 

Puga Geothermal system -41.0‰ Steller et al. (2019)

Tibet Geothermal system -16.0 to 13.1‰ Lü et al. (2014)

Yunnan Tengchong Geothermal -11.8 to 4.2‰

Tibet Geothermal waters -16.57 to 0.52‰ Zhang et al. (2015)

Gandaki River Basin Riverine -1.7 to 29.8‰ Rose et al. (2000)

Trishuli River Basin Riverine -3.1 to 8.5‰

Narayani River Basin Riverine -1.6 to 36.9‰

Ganga Riverine 0.1 to 5.1‰

Brahmaputra Riverine -5.7 to 21.0‰

Nyalam Leucogranites (mineral: tourmaline) -15.1‰ to -14.4‰ Yang et al. (2015)

Conadong, South Tibet Leucogranites (mineral: tourmaline) -9.78 to -8.53‰ Zhou et al. (2019)

Pegmatite -14.02 to -11.83‰

LHS, Central Himalayas Chlorite schist (mineral: tourmaline) -17.8 ‰ to -13.9‰ Liu et al. (2022)

Main Central Thrust Zone, Central 
Himalayas 

Quartz tourmaline (mineral: tourmaline) -18.3 to -12.8‰

GHS, Central Himalayas Leucogranites (mineral: tourmaline) -17.2 to -8.2‰

GHS, Central Himalayas Leucosomes (mineral: tourmaline) -11.8 to -10.7‰

GHS, Central Himalayas Garnet Amphibolite (mineral: tourmaline) -16.9 to -13.6‰

GHS, Central Himalayas Mica Schist (mineral: muscovite) -22.4 to -15.4‰

GHS, Central Himalayas Leucogranites (mineral: muscovite) -23.3 to -17.2‰

Himalayas Leucogranites (mineral: tourmaline) -7 to -13‰ Cheng et al. (2021)

Sikkim Himalayas Pegmatite (mineral: tourmaline) −13.83 to −12.78‰ Srivastava et al. (2022)

Ama Drime gneiss Ama Drime Gneiss (mineral: tourmaline) -17.6 to -14.3‰ Hu et al. (2018)

Majba Leucogranite (mineral: tourmaline) -18.9 to -17.4‰

Quedang Metapelite (mineral: tourmaline) -15.3 to -12.5‰

Malaysian Leucogranite (mineral: tourmaline) -16.2 to -8.0‰

Yardoi Leucogranite (mineral: tourmaline) -8.4 to -5.4‰

Conadong Leucogranite Two-mica granites, -15.80 to -13.25‰ Fan et al. (2021)

Muscovite Leucogranite, Biotite -rich granite -15.38 to -11.90‰

Biotite-rich granite (whole rock) -11.97 to -9.00‰
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al. 1995, Guo & Wilson 2012) while a few researchers have 
suggested that Himalayan leucogranites are crystallized from 
highly fractionated magma (Wu et al. 2015,  Zheng et al. 2016). 
Besides tourmaline, muscovite is also a major boron-bearing 
mineral in metasedimentary rocks and granites (Nakano & 
Nakamura 2001, Cheng et al. 2021, Liu et al. 2022). The 

boron isotopic compositions of tourmaline and muscovite are 
represented in Fig. 5. Fan et al. (2021) performed whole rock-
boron isotopic compositions for two-mica granite, muscovite 
leucogranite and biotite granite from the Conadong region 
represented in Fig. 5. The boron isotopic composition of the 
Himalayan region in different systems is compiled in Table 1.

 
Fig. 5: Boron isotopic composition of tourmaline, muscovite, and whole rock boron isotopic composition in Igneous and metamorphic rocks from the 

Himalayan region. Data Sources  Yang et al. (2015),  Zhou et al. (2019), Liu et al. (2022),  Cheng et al. (2021),  Srivastava et al. (2022),   
Hu et al. (2018)  Fan et al. (2021).
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BORON ISOTOPES IN EARTH SCIENCES AND 
BIOLOGICAL PROCESSES

Understanding Subduction Zone Processes 

In magmatic processes, boron behaves as an incompatible 
trace element and is a highly fluid mobile; thus, it acts as 
a perfect tracer for the role and motion of water during 
subduction (Palmer 2017). In high-pressure metamorphic 
rocks, like mantle wedge peridotites boron isotope 
concentrations have been employed as markers for mass 
fluxes, mass transfer between the slab and overlying mantle, 
and element recycling during subduction (Palmer & Helvaci 
1997, Peacock & Hervig 1999, Tonarini et al. 2001, Savov et 
al. 2007, Pabst et al. 2011). The abundance of boron and the 
isotopic compositions of fluids and lavas from subduction 
zone environments offer a great deal of information for 
understanding the mass flux along the present-day convergent 
boundaries of the earth (Bebout & Nakamura 2003). During 
serpentinization, boron is readily taken up into serpentine 
phyllosilicates (Pabst et al. 2011). The abyssal peridotites 
react with hydrothermal fluids and become serpentinized, 
due to which serpentine, amphibole, magnesite, and talc are 
formed due to the reaction of pyroxenes and olivine which 
are found along spreading ridges and transform faults (De 
Hoog & Savov 2018). Boron is significantly enriched and 
isotopically fractionated in subducted sediments, altered 
oceanic crust, and serpentinized mantle. These materials are 
among the most effective tools for studying fluid-mediated 
processes at subduction zones, and the partitioning of boron 
is independent of melt composition between hydrous fluids 
and melts (Hervig et al. 2001, De Hoog & Savov 2018). The 
boron from micas is either purged from the subduction-zone 
rocks beneath forearcs. Volcanic arcs by metamorphic fluids 
or is sequestered by developing tourmaline, where the boron 
can be entrained to even greater depths (Bebout & Nakamura 
2003). The deep mantle may recycle a small amount of 
subducted boron even if ninety percent of subducted boron 
is recycled back to the surface, and boron has also been 
used as a tracer to probe into crustal carbonate degassing 
in volcanic arcs (Savov et al. 2007, Deegan et al. 2016, De 
Hoog & Savov 2018). In arc-related and granitic magmas, the 
isotope ratios of boron are sensitive indicators of subduction 
slab components and fluid-mediated mass transfer during 
subduction (Palmer 1991, Scambelluri & Tonarini 2012). The 
amount of boron and its isotopic composition in the altered 
oceanic crust are greatly influenced by the temperature and 
water-to-rock ratio at the time of alteration (Ishikawa & 
Nakamura 1992).

Mineralization

The boron sources and the fluids involved in bentonitization 

in marine and non-marine environments are better 
understood because of the mineralogical, chemical, and 
isotopic analyses of smectites with variable interlayer cation 
occupancies from bentonite deposits in different depositional 
environments (Köster et al. 2019). It is seen that the boron 
isotope geochemistry of smectites can be used to shed 
light on the fluids responsible for the development of clay 
mineral deposits. It also offers a lot of potential for tracing 
fluids in other environments with authigenic clay minerals, 
like sedimentary basins and surfaces of crystalline rocks, 
as well as in artificial settings, like storage facilities for 
radioactive waste that is very active (Köster et al. 2019). 
The boron isotopes in tourmaline are useful in depicting 
sources (Spivack & Edmond 1987) and explicating the fluid 
processes (Palmer & Swihart 1996; Marschall et al. 2008). 
The ore-forming processes of tourmaline have been better 
constrained by mineralogical, chemical, and boron isotopic 
analyses and provide important insights on petrologic, fluid 
or magma origin, the evolution of genesis of ore deposits  
(Marschall & Jiang 2011, Trumbull et al. 2011, Yang & 
Jiang 2012). The composition of the boron sources mostly 
determines the δ11B value of boron (Palmer & Slack 1989) 
and the variation in boron isotopes of tourmaline from 
large sulfide sources also depends on the composition of 
parent rocks (Jiang 2001). The boron isotopic fingerprints 
of fluids originating from magmatic-hydrothermal and basin 
evaporitic sources are very different, and tourmaline in 
hydrothermal deposits is a great recorder of fluid sources due 
to its refractory properties. Hence tourmaline boron isotopes 
can be used as the sources of fluids in iron-oxide copper gold 
(IOCG) (Xavier et al. 2008, Pal et al. 2010, Van Hinsberg et 
al. 2011). The use of boron isotopes in investigating mineral 
resources is a relatively new advancement, and tourmaline 
is the major mineral studied, particularly in large sulfide 
deposits and hydrothermal W-Sn associated with granites 
(Slack 1996).

Erosion and Weathering 

The rivers are the main source of boron input into the 
ocean, while clay minerals are the principal boron sink, 
and this makes boron, in addition to its ability to trace the 
pH and ancient seawater, a particularly strong tracer of the 
weathering/erosion balance of terrestrial surfaces (Gaillardet 
& Lemarchand 2018). The partitioning of boron into the 
soluble and solid phases occurs when water and rock interact 
and can be included in secondary phases like clay minerals 
and amorphous iron oxyhydroxides, which are liberated 
into the hydrosphere by the dissolution of primary minerals 
(Ercolani et al. 2019). It has been suggested that isotopic 
fractionations occurring during the adsorption of riverine-
dissolved boron onto detrital clays are the causes of this 
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significant δ11B enrichment of saltwater relative to ordinary 
continental crust (Palmer et al. 1987).

Depositional Environment

Depositional environment and secondary enrichments affect 
the B content of coals from sedimentary basins, and boron 
has been utilized to estimate the paleoenvironments of coal 
reserves (Williams & Hervig 2004). Using marine and 
non-marine evaporite minerals, boron isotopes are useful 
geochemical tracers to distinguish depositional environments 
(Bassett 1990). The mineralogy of borates, as well as the 
pH of the brine borate precipitation, affect the δ11B values 
of borates in the same depositional environment, and the 
minerals with the same geologic origin are observed to 
have decreasing  11B/10B values in the following order Na 
borates, Na/Ca borate and Ca borates (Oi et al. 1989, Palmer 
& Helvaci 1997). Apart from this, loess and paleosols also 
contain clay minerals, and these minerals adsorb boron 
resulting in boron fractionation (Zhao et al. 2003)

Paleo pH, Paleo Salinity and Paleo CO2

It is crucial to understand the ranges of pH variations at 
various time scales to properly comprehend the severity of 
the environmental issues posed by ocean acidification, and 
this information is necessary to determine the pH ranges 
at which marine creatures may survive and further our 
understanding of how the oceans are absorbing atmospheric 
CO2 through its many mechanisms (Pelejero & Calvo 
2008). The boron isotope fractionation is a function of pH 
(Hemming & Hanson 1992, Sanyal et al. 1995, Lécuyer et 
al. 2002),and the boron isotope ratio of marine biogenic 
carbonates can be used to reconstruct pH and pCO2 of 
seawater, as well as atmospheric CO2 concentration (Spivack 
et al. 1993, Palmer et al. 1998, Zeebe & Wolf-Gladrow 2001, 
Kubota et al. 2015, Martinez-Boti & Marino 2015), it is also 
used for the reconstruction of pH variations for glacial cycles 
(Hönisch & Hemming 2005). Foraminifers and tropical 
corals’ boron isotope ratio (δ11B) has been suggested as a 
way to measure the pH of seawater, and the long-term climate 
variability has been constructed using the  (δ11B) pH proxy 
(Pelejero & Calvo 2008, Anagnostou et al. 2012). Boron 
isotope measurements have been widely employed as proxies 
for surface oceanic pH or pCO2 in foraminiferal calcite and 
tropical coral aragonite (Hönisch & Hemming 2005, Douville 
et al. 2006 ).  The surface ocean pH often decreases during 
increasing atmospheric CO2 due to CO2 uptake (Hönisch 
& Hemming 2005). Borate B(OH)4 and boric acid  B(OH)3 
are the two main dissolved forms of boron in seawater, and 
relative quantities of each form depend on the pH of the 
environment, B(OH)3 and B(OH)4 are predominant form 

under low and high pH respectively (Klochko et al. 2006, 
Pelejero & Calvo 2008), and contrast to borate, which prefers 
the lighter isotope 10B, boric acid prefers the heavier isotope 
11B and the boron isotope composition of marine carbonate 
fossils records ancient ocean pH by incorporating only borate 
in carbonate shells (Rasbury & Hemming 2017). Since boron 
has ~14-20 million years of residence time in seawater 
(Lemarchand et al. 2000), most boron research focuses on 
pre-Quaternary  times, however, due to temporal changes of 
δ11B in seawater for these ages, the inferences can be wide-
ranging (Lemarchand et al. 2000, Pelejero & Calvo 2008).

The extreme sensitivity of seawater isotope δ11B to global 
weathering and denudation (via rivers) and the significance of 
boron isotopes in carbonates for reconstructing atmospheric 
and oceanic CO2  levels (Gaillardet & Lemarchand 2018). 
Due to its generally warmer climate, protracted volcanism, 
and CO2 emissions, quick ocean acidification events, 
and other abrupt carbon cycle alterations that occurred in 
the early Cenozoic of utmost relevance for researching 
climate sensitivity to carbon system perturbation under 
greenhouse conditions (Zachos et al. 2008) estimate paleo-
CO2 concentrations for periods older than those accessible 
from ice cores and to reconstruct surface pH fluctuations 
on glacial/interglacial, marine carbonate boron isotopic 
compositions have been used (Sanyal et al. 2000, Palmer & 
Pearson 2003, Hönisch & Hemming 2005). Due to the proven 
correlation between pH and partial pressure of atmospheric 
CO2, the boron isotope composition of calcium carbonate 
shells of marine organisms has the unique potential to 
record the surface ocean pH and enable the calculation of 
atmospheric pCO2 (Rasbury & Hemming 2017).

One of the most pervasive processes that lower water 
quality and put future water use at risk is salinization. 
The drinkable freshwater supply is often constrained by 
groundwater salinization, especially in arid and semiarid 
regions (Vengosh et al. 1999). The geochemical properties 
of boron isotopes are used extensively to evaluate a variety 
of geological processes, including the interaction of water 
and rock, the sedimentary environment, the genesis of salt 
lakes and groundwater, wastewater recharging, and the 
causes of anthropogenic pollution (Vengosh et al. 1994, 
Widory et al. 2005, Pennisi et al. 2006, Wei et al. 2014, 
Musashi et al. 2015).

 The chemical weathering of evaporites and silicates, 
along with their mixing with seawater, regulates the amount of 
dissolved boron in groundwater; however, as a trace element 
or minor ion, boron is typically present in groundwater in 
extremely low amounts (Morell et al. 2008). For Mesozoic 
and Cenozoic clayey strata, the presence of boron is a sign 
of paleo salinity. However, clay diagenesis affects the boron 
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content of deeply buried Paleozoic and Ediacaran sediments 
(Retallack et al. 2020). As marine waters have a larger boron 
level of 20-50 ppm than freshwater, which has a boron 
content of only 2 ppm, boron in clays has been employed as 
a paleo salinity proxy (Walker & Price 1963, Couch 1971). 
The boron concentration of known marine fossils, such as 
Ediacaran stromatolites and algae, is substantially higher than 
that of Ediacaran vendobionts, which is indistinguishable 
from that of fossil plants and paleosols (Retallack et al. 2020)

Groundwater Contamination

An understanding of hydrogeological processes can be gained 
by identifying the composition and concentration of boron 
isotopes, and these isotopes further reveal that evaporite 
dissolution had an impact on salinization  (Vengosh et al. 
1994,  Bassett et al. 1995, Gómez-Alday et al. 2022). Boron 
is a useful natural isotopic tracer for identifying the sources 
of pollution in groundwater systems due to the wide range 
in the isotopic composition of the boron sources in water 
resources, both natural (such as seawater, fossil brines, and 
hydrothermal fluids) and anthropogenic (sewage effluent, 
boron fertilizers, fly ash leachate, and landfill effluents) 
(Vengosh et al. 1994, Vengosh et al. 1998). In most river 
waters, the amount of boron is below 40 µg/L, while high 
levels of boron are present in rivers draining evaporites 
due to weathering (Lemarchand et al. 2002, Lemarchand & 
Gaillardet 2006). As nitrate transformation processes do not 
affect it, the boron isotope can discriminate between sewage 
and manure sources (Vengosh et al. 1994, Barth 1998). 
The investigations have demonstrated a clear difference in 
δ11B values between seawater and terrestrial water (Barth 
1993). The ocean water, groundwater, geothermal water 
and brines have a similar range of δ11B(Bassett et al. 1995). 
Water-rock interactions and the biological cycle of B are 
the major causes of B isotopic fractionation in regolith and 
groundwater, whereas adsorption on sediments affects B 
isotopic fractionation in rivers slightly (Mao et al. 2019). 
Urban wastewater can be detected in surface water using 
boron isotopes, and also the source of boron in solution and 
the origin of the water are determined using the boron isotope 
composition of the groundwater (Petelet-Giraud et al. 2003, 
Nigro et al. 2018).

Biological Processes 

Boron is an essential plant micronutrient in their metabolic 
activities (Blevins & Lukaszewski 1998, Pereira et al. 
2021). In addition to facilitating vegetative growth and 
tissue differentiation, boron affects phenolic metabolism, 
cell wall synthesis, membrane integrity, RNA metabolism, 
indole acetic acid metabolism, and carbohydrate metabolism  
(Blevins & Lukaszewski 1998, Camacho-Cristóbal et al. 

2005, 2008). The plants absorb boron as boric acid, and 
its deficiency prevents root growth and leaves expansion 
(Tanaka & Fujiwara 2008). When plants are deficient 
in boron, carbohydrates accumulate in the chloroplasts, 
increasing the rate of pentose phosphate cycle activity and 
decreasing the Krebs cycle activity (Goldbach 1997). In 
plants, the research on the first vascular plant, Zosterophyllum 

shengfengense, revealed that boron is primordial, originated 
in the root system in the terrestrial environment, and is also 
associated with the biosynthesis of lignin and differentiation 
of xylem (Lewis 1980, Pereira et al. 2021). The bacteria and 
fungi strains are affected by boron and boron-containing 
compounds (Gerretsen & Hoop 1957, Baker et al. 2009, Hunt 
et al. 2012). As boron protects plants from fungal decay, it is 
used in the timber industry as a termite and fungus repellent 
(Kartal et al. 2004) and also prevents infection in white 
fir Abir concolor by Fomes Annosus (Smith 1970). Boron 
further regulates the metabolism of numerous minerals, 
such as calcium, magnesium, phosphorus, and molybdenum 
(Wilson & Ruszler 1996). A positive correlation between 
boron and Azotobacter has also been reported (Gerloff 2006).

In cows, treatment of fatty liver (hepatic lipidosis) disease 
is costly, and researchers believe that borax (sodium borate 
Na2B4O7) helps to prevent fatty liver disease because it 
helps in significant reductions in serum triglyceride (TG) 
and very low-density lipoprotein (VLDL) levels (Basoglu 
et al. 2002, Bobe et al. 2004). When either vitamin D or 
magnesium nutrition was disrupted in chicks and rats, it 
was claimed that lack of boron increased the amount of 
insulin required to maintain plasma glucose concentrations, 
and boron deficiency has been linked to hyperinsulinemia 
in vitamin D-deficient mice (Hunt & Herbel 1991, Bakken 
& Hunt 2003).

Ocean Acidification

The growth of coral skeletons is susceptible to environmental 
changes and may be adversely affected by ocean acidification 
(Gagnon et al. 2021). The analysis of boron elemental 
and isotopic composition of coral aragonite can uncover 
important information about coral skeletal calcification 
strategies (Chalk et al. 2021), also evaporites and brines 
can be traced using boron isotope geochemistry (Palmer & 
Slack 1989, Vengosh et al. 1991). As alkalinity and total 
inorganic carbon concentration control the pH of the surface 
ocean, so does atmospheric CO2 partial pressure  (Spivack 
et al. 1993, Bröcker & Franz 1998), and the boron isotopic 
composition of foraminiferal tests may also be affected by 
pH and isotopic composition (Bröcker & Franz 1998). The 
speciation process between the borate ion and boric acid pH 
dependent and isotopically unique, boron isotope variations 
in biogenic carbonates can be used to determine the pH of 
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the calcifying medium (Blamart et al. 2007, Rollion-Bard 
et al. 2011).

CONCLUSIONS AND FUTURE SCOPE

This work includes a short compilation of boron isotopes 
in various processes, boron-containing minerals, the latest 
instrumental techniques involved in the measurement of 
boron, its distribution and applications in nature. In addition 
to this, it includes a review of boron isotopic variation in 
the Himalayas in different systems. In conclusion, boron is 
a highly mobile element with large fractionation between 
its two isotopes due to their significant mass differences. 
Compared to other stable isotopes, it is considered the 
specific geochemical tracer. In the ocean, boron occurs in 
abundance, is appraised as an essential trace element, and 
proves extremely beneficial for paleoclimatic studies. In 
subduction zones, it acts as powerful means of reconnoitering 
fluid-mediated processes. The role of boron in cell wall 
stability may have an impact on how well plants and 
algae resist infection. Altogether, the current level of 
understanding about the significance of boron has widened 
some interesting prospects for more scientific and applied 
research. In the future, boron, due to its highly incompatible 
nature and reactive nature, can further provide a special tool 
to test comprehension across various timescales. In plants 
and agroecosystems, the role of the boron cycle can be 
sufficiently evaluated as the research in this area is scarce. 
As per the literature review study in laboratory experiments, 
calibrated equations are not available for many coral species, 
and there is a scarcity of knowledge on boron incorporation, 
which can be further elaborated. 
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