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ABSTRACT

This paper seeks to analyse the present and future land-use change transition intensity (using Pontius 
intensity model) and landscape pattern using landscape metrics to investigate the relationship between 
the land cover regions, landscape pattern and the changes in the size of Bojiang lake in Ordos basin 
from 1987-2017. The accelerated changes in each land use region from 1987 and 2017 subsequently 
led to changes in landscape pattern. The changes experienced within 1987 and 2017 including the 
future changes indicated that the grassland and sparsely vegetated region increased significantly, 
dominating the study region which however indicated an increase in anthropogenic activities like 
agricultural activities in the study region. Based on our observation in this study, the change in each 
land use region although showed a significant relationship with the change in water region including 
Bojiang lake, other external factors also contributed to the changes in the size of the lake.

INTRODUCTION

Wetland is referred to a very significant ecological environ-
ment and also one of the most important living environments 
known to man. It is responsible for controlling our ecological 
environment including plant and animal species with a global 
area coverage of only 6.2-7.6% of the entire world’s land 
surface (Finlayson 2012, Lehner & Döll 2004). Wetland plays 
a major role in ensuring the provision of certain ecological 
services such as ground and freshwater supply, biodiversity, 
flood and drought mitigation, erosion control and mitigation 
of water pollution (Bolund & Hunhammar1999, Zedler & 
Kercher 2005, Ramsar 2007, Alabisky et al. 2011). Within the 
timeframe of 10 years between 1990 and 2000, about 30% 
of China’s natural wetland has been lost and in the past 50 
years, over 50% of wetlands in China have been lost (Guo 
et al. 1990, Ren et al. 2007, Cyranoski 2009). The driving 
forces for this decrement experienced in the wetlands are 
believed to be the changes in climate and increased water 
extractions from anthropogenic activities. For instance, the 
continuous drought experienced in the popularly known 
Yangtze river system and the southwest China’s wetland area 
is believed to possibly result in the decline in the wetland 
areas in those regions (Cao et al. 2012, Tian et al. 2016). 
The development of remote sensing technology has been 

advantageous in ensuring proper evaluation of the ecological 
health of the environment (Cao 2013). For instance, to mon-
itor wetland changes, the multi-spectral and multi-temporal 
images (Landsat images) have proven to be quite advanta-
geous because of the possibility to quickly differentiate the 
Spatio-temporal quality of a landcover region with high 
accuracy especially in cases of worse climatic conditions 
such as droughts (Cao et al. 2012) and floods (Hereher 2010, 
Tian et al. 2016). Land-use change and global processes 
like climate change, increased population, urbanization, 
land degradation etc. are interrelated (Kertész et al. 2019). 
With the continuous growth in population globally (different 
rates at the different locations in the world) the demand for 
space, food and infrastructure also increases which requires 
changes in the land use structure (Szabó et al. 2016). The 
intensification of the urban growth experienced globally 
is accompanied by a large increment in the consumption 
of natural resources, increased habitat fragmentation and 
ecological disturbance (biodiversity loss) (Foley et al. 2005, 
Lawler et al. 2014). The establishment of an efficient and 
effective strategy to manage and conserve the present and 
future land use is based on adequate knowledge of the land 
use process (Al-doski et al. 2013, Alo & Pontius 2008). 
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Shallow assessment of land-use change might not reveal the 
most significant land-use change dominancy signals which 
might lead to insufficient management approaches and con-
servative measures (Pontius et al. 2004). Several studies made 
use of the land-use transition matrices to compare changes 
between two different time intervals. The studies however 
rarely assessed the process behind the change in landscape 
pattern. The identification of these processes allows us to 
link the observed land-use transitions to the possible causes 
(Pontius et al. 2004, Teixeria et al. 2014, Braimoh 2006). 
Several studies have investigated the relationship between 
landscape pattern changes and its effect on the ecological 
process (Dadashpoor 2018, Echeverría et al. 2012, Nagendra 
et al. 2004, Schröder & Seppelt 2006, Lausch et al. 2015, 
Tyre et al. 2006), some other have studied just the changes 
in landscape patterns (Abdullah & Nakagoshi 2006, Cabral 
& Costa 2017, Frondoni et al. 2011, Hladnik 2005, Kienast 
et al. 2015, Wan et al. 2015), some scholars also studied 
the relationship between changes in landscape pattern and 
driving forces and urbanization growth (Bürgi et al. 2004, 
Dadashpoor 2018, Aguilera et al. 2011, Chen et al. 2014, 
Luck & Wu 2002, Reis et al. 2015). However, there are 
very few studies to analyse the magnitude and intensity of 

the present and future land-use change and its relationship 
with the landscape pattern changes and ecological process. 
In our study, we will be focusing on finding out which land 
use region are intensively targeted or avoided and analyse the 
relationship with the degraded wetland from 1987-2017 and 
also in the next 100 years. We mainly targeted the vegetative 
regions and the water region to reveal the details of the water 
reduction and expansion of the vegetative region including 
the underlying process, dynamic trends and possible driving 
forces. To the best of our knowledge, this study will be the 
first to apply the transition intensity approach in the popu-
larly known Ordos Reserve basin whose lake has been going 
through a series of area reduction.

The following research questions were investigated in 
this study.

 • What are the main LULC types and the transition inten-
sity of the area coverage in the Ordos Catchment from 
1987-2017 and the predicted future (2017-2117)?

 • What are the changes in landscape pattern and its rela-
tionship with the LULC regions?

 • What is the influence of the changes in land use and 
landscape pattern on the changes in the water size?

 What is the influence of the changes in land use and landscape pattern on the changes in the water 
size? 

DATA AND METHODOLOGY   

Study Area  

Ordos National Nature Reserve located in Ordos city of Inner Mongolia Autonomous Region in China 
is about 45km west of Dongsheng District with an area coverage of 155.66km2 (situated in latitude 
39°41’40’’ to 39° 56’ 2’’ and longitude 109° 6’ 30’’ to 109° 32’ 50’’). The reserve is located in the 
central-southern section of the Bojiang lake basin with a drainage area coverage of about 640 km2. The 
annual mean temperature from 1971-2000 of the reserve is approximately 6.160C. The annual mean 
precipitation, on the other hand, is approximately 381.2mm in this region, more than half of the 
precipitation falls between the period of July and August. Bojiang lake is situated in the central basin 
with Jigou River and Wuertu River flowing through it (Fig. 1). The major vegetation types in this 
reserve are grasslands and shrubs. According to Liang et al. (2011), Bojiang lake’s source of water is 
the water derived from precipitation and lateral runoff in the closed basin accounting for 22% of the 
total water recharge from 1996 to 2005. Because of the significance of this wetland to Ordos reserve, 
more attention should be paid towards its protection which is why it is the only wetland in the semi-
arid and arid region of China to be included in the Ramsar list of globally important wetlands. Larus 
Relictus (Relict Gull) is a species that according to the Convention of International Trade in 
Endangered Species of Wild Fauna and Flora (CITES) and the Convention on the Conservation of 
Migratory Species (CMS) is recently in urgent need of protection this makes this nature reserve a very 
important reserve solely targeted towards the protection of this specie (Liu et al. 2008).  

 

Fig. 1: Regional location of Ordos National Nature Reserve (Kang 2017). 

Data  

Fig. 1: Regional location of Ordos National Nature Reserve (Kang 2017).
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DATA AND METHODOLOGY  

Study Area 

Ordos National Nature Reserve located in Ordos city of Inner 
Mongolia Autonomous Region in China is about 45km west 
of Dongsheng District with an area coverage of 155.66km2 

(situated in latitude 39°41’40’’ to 39° 56’ 2’’ and longitude 
109° 6’ 30’’ to 109° 32’ 50’’). The reserve is located in the 
central-southern section of the Bojiang lake basin with a 
drainage area coverage of about 640 km2. The annual mean 
temperature from 1971-2000 of the reserve is approximately 
6.160C. The annual mean precipitation, on the other hand, 
is approximately 381.2mm in this region, more than half of 
the precipitation falls between the period of July and August. 
Bojiang lake is situated in the central basin with Jigou River 
and Wuertu River flowing through it (Fig. 1). The major 
vegetation types in this reserve are grasslands and shrubs. 
According to Liang et al. (2011), Bojiang lake’s source of 
water is the water derived from precipitation and lateral run-
off in the closed basin accounting for 22% of the total water 
recharge from 1996 to 2005. Because of the significance of 
this wetland to Ordos reserve, more attention should be paid 
towards its protection which is why it is the only wetland in 
the semi-arid and arid region of China to be included in the 
Ramsar list of globally important wetlands. Larus Relictus 
(Relict Gull) is a species that according to the Convention 
of International Trade in Endangered Species of Wild Fauna 
and Flora (CITES) and the Convention on the Conservation 
of Migratory Species (CMS) is recently in urgent need of 
protection this makes this nature reserve a very important 
reserve solely targeted towards the protection of this specie 
(Liu et al. 2008). 

Data 

In this research, the remote sensing images for 1987, 1995, 
2003, 2010, 2017 were obtained via the United States Geo-
logical Survey’s (USGS) database (http://earthexplorer.usgs.
gov/). The downloaded images were the TM/ETM+ and 
the OLI with a resolution of 30m which already had some 
standard pre-processing done by the USGS (https://landsat.

usgs.gov/landsat-processing-details) which we considered to 
be sufficient for the intended analysis in this paper (Mwangi 
et al. 2017, Phiri & Morgenroth 2017, Young et al. 2017). 
The images were chosen during the peak vegetation coverage 
period of summer (August) with minimal cloud coverage. 
An interval of approximately 8 years was selected as it was 
considered quite appropriate in tracking the dynamic change 
in landscape and proper management of the amount of data 
involved for analysis. 

Methodology

Land use classification: In this paper, supervised classifica-
tion using maximum likelihood algorithm was adopted using 
the ArcGIS 10.5 software which enabled us to categorize 
the land cover regions into 5 different categories such as 
grassland/shrub, highly vegetated, sparsely vegetated, barren 
soil and water region (Fig. 2 and Table 1). According to Lu 
& Weng (2007), image classification comprises of several 
stages such as the selection of a suitable classification meth-
od, processing of post-classification images, and accuracy 
assessment of the map. A geometric image correction was 
first carried out to reduce the presence of displacement errors, 
atmospheric calibrations (atmospheric corrections) were also 
carried out to eliminate the presence of atmospheric effects 
on each of the image.

A stratified random sampling approach was applied for 
the assessment of the land use classification accuracy. To 
measure the extent of landcover accuracy, the Kappa test 
was applied due to its ability to not only analyse the diagonal 
elements but all the elements in the land use map confusion 
matrix (Rosenfield and Fitzpatric-Lins 1986). After the ex-
traction of the land use map using ArcGIS, transfer matrix 
post-classification change technique was applied to analyse 
the dynamic changes of the land usage during the period 
of study. 

In this research, the following equation was used; 

Table 1:  Description of the classified regions of the reserve.  

Classified Regions  Description of the Classified Region  

Grassland/Shrubs Mixed grasses and trees, shrub plants, agricultural land, aquatic vegetation and 
wetland vegetation.  

Highly Vegetated Healthy trees, afforested trees, mixed forest,  

Sparsely Vegetated Little to no vegetation land, uncultivated agricultural lands.  

Barren Soil  Open soil with no vegetations, lakeshore free of vegetation, road networks, 
build-up areas.  

Water Lakes  
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Land-use transition intensity analysis: To analyse the dynamics of land-use change, intensity and 
landscape patterns, the land-use transition intensity analysis was performed using the framework of 
(Aldwaik & Pontius 2012). First, to quantify the land-use change over time, the transitional matrix was 
applied. A transitional matrix is a two-dimensional table in which land use categories at the earlier time 
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loss, the transition level analysis was used to compare the observed intensity of each transition with a 
hypothetical uniform transition that would occur if there was a uniform distribution of the transition 
between land use categories. Equations 4 and 5 were used to analyse the transition level analysis from an 
arbitrary category i to the gaining category n (Aldwaik & Pontius 2012, Pontius et al. 2013) hence 
identifying which land use category is intensively avoided or targeted by either the loss or gain of a 
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given time interval. The observed intensity Rtin was compared with the uniform intensity Wtn calculated in 
equation 5 if the Rtin>Wtn, then gain of n is considered to target i. 
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Table 1:  Description of the classified regions of the reserve. 

Classified Regions Description of the Classified Region 

Grassland/Shrubs Mixed grasses and trees, shrub plants, agricultural land, aquatic vegetation and wetland vegetation. 

Highly Vegetated Healthy trees, afforested trees, mixed forest, 

Sparsely Vegetated Little to no vegetation land, uncultivated agricultural lands. 

Barren Soil Open soil with no vegetations, lakeshore free of vegetation, road networks, build-up areas. 

Water Lakes 
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Error analysis: To estimate the minimum errors in maps accounting for the difference in two maps from 
the same extent but different time intervals, (Aldwaik & Pontius 2013) proposed a framework best suited 
for analysing the error. This error analysis method assesses the strength of the changes identified through 
the transition intensity analysis. The uniform hypothesis assumes a uniform change intensity with no 
temporal change in the map. In this analysis, two types of error were estimated (omission and commission 
error). The commission error indicates that the observed intensity of change > the uniform hypothesized 
intensity. In the case of omission, the reverse is the case. Both errors are the difference between the 
observed change and uniform change. Hence, a larger omission and commission error indicates stronger 
evidence against the null hypothesis of uniform change which also means that there is a great possibility the 
difference in the maps are not necessarily due to classification errors but rather an actual change in the land 
use.  
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In this research, the remote sensing images for 1987, 1995, 2003, 2010, 2017 were obtained via the United 
States Geological Survey’s (USGS) database (http://earthexplorer.usgs.gov/). The downloaded images were 
the TM/ETM+ and the OLI with a resolution of 30m which already had some standard pre-processing done 
by the USGS (https://landsat.usgs.gov/landsat-processing-details) which we considered to be sufficient for 
the intended analysis in this paper (Mwangi et al. 2017, Phiri & Morgenroth 2017, Young et al. 2017). The 
images were chosen during the peak vegetation coverage period of summer (August) with minimal cloud 
coverage. An interval of approximately 8 years was selected as it was considered quite appropriate in 
tracking the dynamic change in landscape and proper management of the amount of data involved for 
analysis.  

Methodology 
Land use classification: In this paper, supervised classification using maximum likelihood algorithm was 
adopted using the ArcGIS 10.5 software which enabled us to categorize the land cover regions into 5 
different categories such as grassland/shrub, highly vegetated, sparsely vegetated, barren soil and water 
region (Fig. 2 and Table 1). According to Lu & Weng (2007), image classification comprises of several 
stages such as the selection of a suitable classification method, processing of post-classification images, 
and accuracy assessment of the map. A geometric image correction was first carried out to reduce the 
presence of displacement errors, atmospheric calibrations (atmospheric corrections) were also carried out to 
eliminate the presence of atmospheric effects on each of the image. 

Fig. 2: Land use regions for Ordos catchment in 1987. 
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an interval’s initial time point; j = Index for a category at an 
interval’s final time point; n = Index for the gaining category 
for the selected transition; Ctij = Number of pixels that tran-
sition from category i to category j during the interval (Yt, 
Yt+1); Ctin = Number of pixels that transition from category 
i to category n during the interval (Yt, Yt+1); Ctnn = Number 
of pixels that remained category n during the interval (Yt, 
Yt+1); J = Number of categories.

Error analysis: To estimate the minimum errors in maps 
accounting for the difference in two maps from the same 
extent but different time intervals, (Aldwaik & Pontius 2013) 
proposed a framework best suited for analysing the error. This 
error analysis method assesses the strength of the changes 
identified through the transition intensity analysis. The uni-
form hypothesis assumes a uniform change intensity with 
no temporal change in the map. In this analysis, two types 
of error were estimated (omission and commission error). 
The commission error indicates that the observed intensity 
of change > the uniform hypothesized intensity. In the case 
of omission, the reverse is the case. Both errors are the dif-
ference between the observed change and uniform change. 
Hence, a larger omission and commission error indicates 
stronger evidence against the null hypothesis of uniform 
change which also means that there is a great possibility the 
difference in the maps are not necessarily due to classification 
errors but rather an actual change in the land use. 
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Where, ER
tin, = number of elements that are observed 

transitions from category i to category n during interval  
[Yt, Yt+1] but are hypothesized transitions from a non-i 
category to category n, OR

tin = number of elements that are 
observed transitions from a non-i category to category n 
during the interval [Yt, Yt+1] but are hypothesized transitions 
from a category i to category n.

Prediction analysis: In this paper, the prediction analysis 
was carried through the application of both Markov chain 
model and Cellular Automata (CA) methods using the 
CA-Markov model. Both the Markov and CA models are dis-
crete dynamical models of time and status (Liu et al. 2008). 
The CA possess a powerful ability to simulate spatio-tem-
poral changes of complex spatial systems (Sang et al. 2011), 
while the Markov model as earlier discusses focus mainly on 
the simulation and prediction of land cover changes. In this 
study both the CA and Markov model (CA-Markov model) 
was applied which is an integrated model that combines the 
spatial simulation ability of CA and the prediction ability 
of Markov to analyse and monitor the change evolution of 
the Ordos Basin. In this paper, based on both models we 
were able to simulate and predict the changes in the Ordos 
basin using IDRIS Selva (version 17.02) software under the 
CA-Markov Model (Eastman 2003).

Spatial pattern estimation: The analysis of the spatial 
pattern variations of the different regional landscape was 
used to reveal the dynamic changes on the wetland over 
time (YuhaiBao et al. 2011). For this study, we estimated 
the landscape metrics with one of the most popular spatial 
pattern analysis programs designed specifically for this pur-
pose, FRAGSTAT Software (FRAGSTST 4.2) (Mcgarigal et 
al. 2000). The FRAGSTAT software offers a diverse choice 
of landscape metrics and has been greatly applied for the 
quantification of landscape structure. This approach is mainly 
used by ecologist and decision-makers in analysing the level 
of fragmentation of landscape and also to characterize the 
components of those landscapes. Considering the current 
situation of the Ordos basin’s classification system, to analyse 

Table 2: Landscape spatial pattern metrics details. 

Metrics Index Index Name Unit 

Patch NP Number of Patches n (n³1)

PD Patch Density n/100Ha

MPS Mean Patch Size (Area Mean) Ha

Edge TE Total Edge m

ED Edge Density m/Ha

Shape MSI Mean Shape Index Ha

Diversity SHDI Shannon’s Diversity Index -

SHEI Shannon’s Evenness Index -
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the landscape pattern of the study site, we selected four met-
rics shown in Table 2. These metrics comprises of the Patch 
metrics, shape metrics, edge metrics, and diversity index.  

RESULTS

Land Use Change 

This study area was aggregated into different land-use re-
gions as shown in Fig. 2. The kappa’s coefficient accuracy 
assessment carried out on the classified images in this study 
recorded a value between 88 and 99% which indicates a very 
good agreement among the referenced data and the classified 
data. The result in Fig. 3 and 4A showed that over the years 
1987 to 2017 significant changes occurred in the grassland 
region and the water region over the year 1987-2017. Within 
this period, the grassland region emerged the most dominant 
land cover type covering a total area of 338.75km2 in 2017 
(52.88%) the sparsely vegetated region on the other hand 
also covered a considerable amount of the area covering 
34.89% in 2017. The proportion of the water and the highly 
vegetated region were the smallest compared to the other 
land cover regions. However, the water region on the other 
had experienced a dramatic decline in size from 1.13% to 
0.36% during the year 1987-2017. 

The upsurge of the grassland region is a clear indication 
of the increased anthropogenic activities in the region. Based 
on the examination of the other land use region, in 2017 all 

other regions except the grassland region showed a reduction 
in area. The area of the highly vegetated, barren soil and 
the sparsely vegetated region reduced by 1.73, 10.14, and 
34.89% respectively (Fig. 3). The result of the transfer matrix 
showed that the conversion of all the land-use regions was 
a two-way conversion with one region changing to another 
land use region and vice versa. 

Prediction analysis: From the 100 years prediction, the 
result in Fig. 4A and 4B showed that although the grassland 
region reduced by 5.29% in 2047, it was still observed to be 
the most dominant region in the study site. while the grass-
land region reduced slightly in 2047 followed by a continuous 
increase in the area till 2117, the sparsely vegetated region, on 
the other hand, showed a slight increase in area from 2017-
2047 followed by a continuous decrease in area. The other 
land cover regions decreased continuously from 2017-2117. 

Relationship between Bojiang lake and land-use change: 
Bojiang lake during the 30 years of study drastically reduced 
in size losing over 70% of its area to another region. Fig. 3 
and 4 showed that while other regions reduced in size the 
grassland region contrasted in area change. The correlation 
and regression analysis carried out between Bojiang lake and 
the land cover regions showed that the changes in grassland 
region were statistically significant with p-values <0.05 while 
other regions proved to be not statistically significant. Based 
on this result of comparison between the change in Bojiang 
lake and the land cover change, and the effect of the variation 

Fig. 3: Ordos Basin’s regional area coverage from 1987 to 2117.
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between Bojiang lake and grassland region showed that the 
continuous increase in grassland region was closely related 
to the drastic reduction in the lake size. 

Landscape pattern analysis: Landscape pattern of Ordos 
basin were analysed at the landscape and class level through 
four metrics (shape, patch, edge, and the diversity index). The 
parameter used were the Patch Density, Area Mean (Mean 
Patch size (MPS)), Edge Density (ED), Mean Shape Index 
(MSI), Shannon’s diversity index and Shannon’s evenness 
index (SHDI and SHEI). As shown in figure 5A, the result 
indicated changes in the entire landscape PD, MPS, ED, MSI, 

SHDI and SHEI from 1987 to 2017. MSI (1.26 to 1.25), MPS 
(5.6 to 3.7km2), SHDI (1.1 to 1.02) and SHEI (0.68 to 0.63) 
showed reduction while the PD (17.8 to 26.7) and ED (104.2 
to 129.3) increased hence indicating heterogeneity towards 
an increased level of fragmentation in the landscape pattern 
of the Ordos Basin. From the result of the landscape pattern 
analysis of the 100 years predicted image, we observed that 
the heterogeneity continued indicating a continued increase 
in the fragmentation level with the ED (129.3 to 145.9), MPS 
(3.7 to 7.9), MSI (1.25 to 1.5) increased while, PD (26.7 to 
12.6), SHDI (1.02 to 0.99) and SHEI (0.638 to 0.62) reduced. 

 

 

 

A 

B 

 

Fig. 4: Ordos Basin land-use change (A) 1987-2017, (B) 2047-2117. 
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2117.  
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Fig. 4: Ordos Basin land-use change (A) 1987-2017, (B) 2047-2117.



500 Harrison Odion Ikhumhen et al.

Vol. 19, No. 2, 2020 • Nature Environment and Pollution Technology  

At the class level shown in Figure 5B, all the regions showed 
different patterns compared to each other and from the whole 
pattern of landscape, the grassland and sparsely vegetated 
region both showed more aggregation over the 3-decade 
period of study. 

Relationship between the landscape pattern change and 
the land-use change: The land-use changes share a rela-
tionship with the changes in the landscape pattern metrics. 
In Table 3, the coefficient value of each land cover regions 

represents the intensity of the effect where the consistency or 
difference in changes between the landscape metrics and the 
land cover regions are indicated with a positive or negative 
sign. With the regression analysis proving to be statistically 
significant having a p-value equal to 0.000 which is <0.05, 
the comparison of the effect between the land-use regions 
showed that the change in the sparsely vegetated region 
proved to possess the highest effect on PD (+5.3) and ED 
(14.14), this region had the most contrasting effect in the 

Table 3: Intensity of land-use change in landscape patterns.

Metrics Landscape Change Class level change P-Value

PD 8.9391 grassland=1.03, sparsely veg=5.3, highly vegetated=1.2, barren soil=1.35, water=-0.014 0.000

ED 25.1631 grassland=37.98, sparsely veg=14.14, highly vegetated=1.89, barren soil=-3.3, water=-0.35 0.000

MPS -1.873 grassland=3.08, sparsely veg=-8.08, highly vegetated=-0.57, barren soil=-1.01, water=-15.01 0.000

MSI -0.0124 grassland=-0.09, sparsely veg=0.07, highly vegetated=-0.05, barren soil=-0.018, water=-0.11 0.000

Table 4: Land use transition between vegetative regions (Categories).

Transition to Grassland

1987-1995 1995-2003 2003-2010 2010-2017

UI=3.05 UI=3.57 UI=4.68 UI=4.92

Losing Categories TI EI TI EI TI EI TI EI

Barren Soil 1.51 57.19 1.78 58.58 1.71 72.13 1.73 73.82

Highly Vegetated (5.06) 52.56 (7.88) 76.51 (8.52) 67.00 (5.56) 17.60

Sparsely Vegetated (3.46) 15.98 (4.94) 38.80 (5.16) 13.81 (5.73) 21.67

Water 0.00 99.94 0.28 94.23 0.55 91.82 0.10 98.69

Transition to Highly Vegetated

1987-1995 1995-2003 2003-2010 2010-2017

UI=0.28 UI=0.09 UI=0.06 UI=0.16

Losing Categories TI EI TI EI TI EI TI EI

Barren Soil 0.10 65.75 0.01 91.62 0.02 60.08 (0.30) 48.75

Grassland (0.85) 68.23 (0.20) 57.25 (0.11) 46.34 (0.23) 31.09

Sparsely Vegetated 0.04 87.61 0.01 88.02 0.01 81.23 0.04 72.38

Water 0.13 55.11 (0.15) 42.56 0.02 68.40 0.02 87.42

Transition to Sparsely vegetated

1987-1995 1995-2003 2003-2010 2010-2017

UI=1.82 UI=4.51 UI=4.48 UI=3.15

Losing Categories TI EI TI EI TI EI TI EI

Barren Soil (1.91) 5.79 (7.79) 65.87 3.64 25.33 (3.58) 15.40

Grassland (1.92) 6.34 2.59 53.75 (4.83) 10.55 3.15 0.17

Highly Vegetated 0.59 70.60 0.82 87.53 0.85 86.23 0.15 96.24

Water 0.00 99.93 0.42 93.82 0.07 98.92 0.03 99.26

UI= Uniform intensity (% of other categories, excluding the concerned category); TI= Transition intensity (Parentheses values indicate targeted categories for loss 
or gain while non-parenthesis indicates the categories was avoided by the change); EI= Error Intensity (Bold values are omission, non-bold values are commission). 
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Fig. 5: Landscape pattern change (A) landscape level, (B) class level.  

Relationship between the landscape pattern change and the land-use change: The land-use changes 
share a relationship with the changes in the landscape pattern metrics. In Table 3, the coefficient value of 
each land cover regions represents the intensity of the effect where the consistency or difference in changes 
between the landscape metrics and the land cover regions are indicated with a positive or negative sign. 
With the regression analysis proving to be statistically significant having a p-value equal to 0.000 which is 
<0.05, the comparison of the effect between the land-use regions showed that the change in the sparsely 

Fig. 5: Landscape pattern change (A) landscape level, (B) class level. 
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MPS (-8.08). Grassland region, on the other hand, exhibited 
a significant effect on ED (+37.98) and MPS (+3.08) with its 
most contrasting effect recorded in MSI (-0.09). The most 
opposite effect observed was the on water region with its 
effect on metrics change exhibited in MPS (-15.01) and MSI 
(-0.11). A regression analysis carried out between Bojiang 
lake area change and the landscape pattern metrics change 
proved not to be statistically significant but the reduction in 
size confirms the opposite effect the water region had on the 
landscape metrics. 

Transition Between Grassland and Vegetated Region

The result of our analysis suggested that the grassland region 
mainly expanded into the sparsely vegetated and highly 
vegetated regions all through the study period from 1987-
2017 (Table 4). The time intervals (1987-1995, 1995-2003, 
2003-2010 and 2010-2017), were categorized based on the 
changes in the lake area, for instance, the year 1987-1995 
was chosen because the lake area increased significantly 
during this period, from 1995-2003, the lake started reducing 
gradually, however, during 2003-2010 lost more than half of 
its area and lastly from 2010-2017, the lake area increased 
slightly due to the artificial water supply.  

During the four intervals, there was an intensive sys-
tematic gain of the grassland region from both the sparsely 
vegetated and highly vegetated region (Fig. 6). An example 
of this transition is during the second interval (1995-2003) 
the annual intensity gain of the grassland region from both 
highly and sparsely vegetated regions were 7.88 and 4.94% 
respectively of the size of both regions in 1995 (Table 4) 
compared to the uniform intensity of 3.57% (of the landscape 
that was not grassland in 1995). This change implies that the 
grassland region gained from the highly vegetated region 
over 2 times more than the rate it would be expected to gain 
uniformly (from all land use categories). The annual intensity 
is higher for highly vegetated than the sparsely vegetated 
region in all intervals except the last interval which means the 
annual intensity of highly vegetated region was higher than 
the uniform intensity. It was also observed that the highly 
vegetated region consistently targeted the grassland region in 
all intervals while the sparsely vegetated region only targeted 
the grassland region in two intervals (1987-1995 and 2003-
2010). Hence indicating that the grassland region may be 
mainly a transitional land use for both the highly vegetated 
and sparsely vegetated region. 

The error intensity (EI) in Table 4 shows strong evidence 
that the grassland region gained intensively from both sparse-
ly and highly vegetated regions. Based on the deviations from 
uniform intensity observed in the study, it implies that there 
was a real temporal transition between grassland region and 

the other vegetated regions (sparsely and highly vegetated). 
An example is the commission error intensity for the tran-
sition from grassland to the highly vegetated region during 
1995-2003 which was 76.51% (Table 4) this high percentage 
of error intensity shows strong evidence against the uniform 
change hypothesis. This error analysis does not provide a 
threshold of how large an observed intensity’s deviation from 
uniform intensity should be suitable for a real change, this is 
due to the non-precise nature of the actual map classification 
error like in the case of our study (Aldwaik & Pontius 2013, 
Pontius et al. 2013, Enaruvbe & Pontius 2015). 

UI= Uniform intensity (% of other categories, excluding 
the concerned category); TI= Transition intensity (Parenthe-
ses values indicate targeted categories for loss or gain while 
non-parenthesis indicates the categories was avoided by 
the change); EI= Error Intensity (Bold values are omission, 
non-bold values are commission). 

Transition intensity for predicted image: From the 100-
year prediction analysis carried out (2017-2117), it was 
observed the grassland region intensive gain consistently 
targeted the highly vegetated. The sparsely vegetated region 
was only slightly targeted in the first interval. During the 
three intervals (2017-2047, 2047-2077 and 2077-2117). An 
example of this transition is during the interval from 2017-
2047, the annual intensity gain of the grassland region from 
the highly vegetated region was 2.27% compared to the 
uniform intensity of 1.29%. The error intensity (EI) ranging 
from 52-76.7% in Table 5 at all intervals showed strong 
evidence that the grassland region gained intensively from 
the highly vegetated region. 

Transition between the vegetated region and the water 
region: Water region which showed a continuous reduction 
in size over the cause of this study period (1987-2017), was 
directly or indirectly influenced by the changes in other land 
cover region. From the transition analysis results in Table 
4, it was observed that the gains in all vegetated region did 
not target the water region except for the highly vegetated 
region in one interval (1995-2003) with a transition intensity 
of 0.15% slightly higher than the uniform intensity of 0.09%. 
The transition to Barren Soil region on the other hand con-
sistently targeted the water and sparsely vegetated region at 
3 intervals (1995-2017). The transition intensity for the water 
region during 1995-2003 and 2003-2010 was more than 10 
times the uniform intensity of each interval. This, however, 
indicates that although the vegetated region did not directly 
target the water region in their transition, they, however, had 
an indirect impact on the change in the water region. 

Transition intensity for predicted image: From 2017-
2117, the grassland region compared to the other vegetated 
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regions gained consistently from the water region in all 
intervals 2017-2047, 2047-2077 and 2077-2117 (Fig. 7). 
The highly vegetated region, on the other hand, gained a bit 
from the water region only in the first interval (2017-2047).  
The annual transition gain of the grassland region during 
2017-2117 from water region in all intervals was 2.23, 2.66 
and 2.39 compared to the uniform of 1.29, 0.27 and 0.20 
respectively. The error intensity, on the other hand, showed 
strong evidence that the grassland region gained a subsistent 
amount from the water region with a very high Error index 
value ranging between 68.57 and 99.59%. 

UI= Uniform intensity (% of other categories, excluding 
the concerned category); TI= Transition intensity (Parenthe-
ses values indicate targeted categories for loss or gain while 

non-parenthesis indicates the categories was avoided by 
the change); EI= Error Intensity (Bold values are omission, 
non-bold values are commission). 

Land-Use Change Trend Analysis 

The land-use changes between 1987 and 2017 were inves-
tigated in this paper. The changes in the Ordos basin during 
the 3-decade duration of study made a significant influence 
on the land use structure. Significant changes in each land 
cover region occurred all through the study period with the 
grassland and sparsely vegetated region occupying a consid-
erable amount of the study region. While the highly vegetated 
region, barren soil and the sparsely vegetated region were 
experiencing inconsistency in area change, the grassland 
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Fig. 6: Transition to grassland (A)1987-1995, (B) 1995-2003, (C) 2003-2010, (D) 2010-2017. 

 
Transition between the vegetated region and the water region: Water region which showed a 
continuous reduction in size over the cause of this study period (1987-2017), was directly or indirectly 
influenced by the changes in other land cover region. From the transition analysis results in Table 4, it was 
observed that the gains in all vegetated region did not target the water region except for the highly 
vegetated region in one interval (1995-2003) with a transition intensity of 0.15% slightly higher than the 
uniform intensity of 0.09%. The transition to Barren Soil region on the other hand consistently targeted the 
water and sparsely vegetated region at 3 intervals (1995-2017). The transition intensity for the water region 
during 1995-2003 and 2003-2010 was more than 10 times the uniform intensity of each interval. This, 
however, indicates that although the vegetated region did not directly target the water region in their 
transition, they, however, had an indirect impact on the change in the water region.  
  

Fig. 6: Transition to grassland (A)1987-1995, (B) 1995-2003, (C) 2003-2010, (D) 2010-2017.
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region continuously showed a significant increase in size, the 
water region, on the other hand, proved otherwise. Most land 
use categories in the study region underwent swap change 
though the study period. A swap change depicts changes in 
land cover regions (loss) occurring in one location while an 
equal gain in another location (Pontius et al. 2004, Yuan et al. 
2016, Zaehringer et al. 2015). The last row of Table 6 reveals 
that the swap changes from 1995-2017 accounted for more 
than 50% of the overall land-use change in all three intervals, 
the same applies to the predicted images 2017-2117 (Table 
7). This indicates that land-use change in the Ordos basin was 
very dynamic during those periods which were followed by 
a high rate of land use categories relocations. Higher swap 
change percentage indicates an overall change more than the 
net change and reveals the significance of detailed analysis of 
land cover change beyond the net change (Yuan et al. 2016). 

From the swap analysis, it was observed that while other 
regions were experiencing loss in the area the grassland 
region continued to gain all through the study period in all 
intervals. For example, for the 1995-2003 interval, while 
the water and highly vegetated region had a loss rate of (2 
and 10km2/year), the grassland, barren and sparsely vege-
tated region had a gross gain of (56, 128 and 140km2/year).  
The transition matrix also explained that the changes in the 
regions which reveal that although the grassland region con-
tinuously increased in size all through the study, it targeted 
other land cover regions like the highly vegetated region and 
sparsely vegetated region during its area change. Based on the 
analysis of the predicted image (2017-2117), the grassland 
region also continued to dominate in area coverage occupying 
about 50% of the total area. This continuous increase in the 
grassland region and inconsistency in the other regions in-

Table 5: Land use transition between Vegetative Regions (Categories).

Transition to Grassland

1987-2017 2017-2047 2047-2077 2077-2117

UI=0.57 UI=1.29 UI=0.27 UI=0.20

Losing Categories TI EI TI EI TI EI TI EI

Barren Soil 0.36 40.22 (1.37) 9.14 (0.30) 10.51 (0.23) 12.12

Highly Vegetated (1.56) 76.70 (2.27) 70.36 (0.83) 73.74 (0.39) 52.03

Sparsely Vegetated (0.58) 3.63 1.22 9.46 0.25 6.64 0.19 5.56

Water 0.03 95.57 (2.23) 68.57 (2.66) 97.81 (2.39) 99.59

Transition to Highly Vegetated

1987-2017 2017-2047 2047-2077 2077-2117

UI=0.05 UI=0.01 UI=0.00 UI=0.00

Losing Categories TI EI TI EI TI EI TI EI

Barren Soil 0.02 54.10 0.01 30.86 0.00 48.04 0.00 19.57

Grassland (0.08) 32.55 (0.01) 27.10 (0.00) 41.51 (0.00) 29.91

Sparsely Vegetated 0.02 56.40 0.00 52.06 0.00 70.33 0.00 48.47

Water 0.00 95.58 (0.05) 79.67 0.00 100.00 0.00 100.00

Transition to Sparsely vegetated

1987-2017 2017-2047 2047-2077 2077-2117

UI=1.57 UI=1.15 UI=0.14 UI=0.13

Losing Categories TI EI TI EI TI EI TI EI

Barren Soil 1.47 10.94 0.80 39.77 (0.20) 34.14 (0.18) 28.82

Grassland (1.63) 7.42 (1.24) 10.65 0.12 14.17 0.12 10.02

Highly Vegetated 0.39 85.07 0.67 51.80 (0.17) 19.17 0.08 43.44

Water 0.00 99.94 0.04 97.41 0.00 100.00 0.00 100.00

UI= Uniform intensity (% of other categories, excluding the concerned category); TI= Transition intensity (Parentheses values indicate targeted categories for loss 
or gain while non-parenthesis indicates the categories was avoided by the change); EI= Error Intensity (Bold values are omission, non-bold values are commission). 
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dicates an increase in anthropogenic activities in this region. 

DISCUSSION 

Relationship Between the Land Use change and Spatial 
Pattern

In recent years, with the development and utilization of coal 
and oil and gas resources and the continuous development of 
local economy, the status of its infrastructure has been greatly 
improved, and road traffic and power facilities have begun 
to take shape. Agriculture and aquaculture are still the main 
industries of the people in the region. The industrial industries 
are mainly petrochemical, chemical, brick, carpet, cement, 

coal mining, etc. The local residents are mainly engaged in 
agriculture and aquaculture, and some labourers are engaged 
in coal mining and oil production. Transportation and other 
industries. However, the continuous exploitation of coal 
mines and oil and the rapid development of the agricultural 
industry not only led to lead to an increase in regional water 
demand, but it also increased landscape fragmentation. From 
this study, the landscape pattern and the land-use regions in 
this study showed a strong relationship. The result from the 
OLS regression model used to examine the level of accuracy 
of changes in the landscape metrics and the intensity of the 
effect each land-use changes has on the landscape pattern 
showed that the major changes in the landscape pattern had 
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Fig. 7: Transition to grassland (A)1987-2017, (B) 2017-2047, (C) 2047-2077, (D) 2077-2117. 

Transition intensity for predicted image: From 2017-2117, the grassland region compared to the other 
vegetated regions gained consistently from the water region in all intervals 2017-2047, 2047-2077 and 
2077-2117 (Fig. 7). The highly vegetated region, on the other hand, gained a bit from the water region only 
in the first interval (2017-2047).  The annual transition gain of the grassland region during 2017-2117 from 
water region in all intervals was 2.23, 2.66 and 2.39 compared to the uniform of 1.29, 0.27 and 0.20 
respectively. The error intensity, on the other hand, showed strong evidence that the grassland region 
gained a subsistent amount from the water region with a very high Error index value ranging between 68.57 
and 99.59%.  
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Fig. 7: Transition to grassland (A)1987-2017, (B) 2017-2047, (C) 2047-2077, (D) 2077-2117.
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a strong relationship with all four regions (grassland, highly 
vegetated, sparsely vegetated, and barren soil region) except 
the water region. Hence the growth experienced in the grass-
land region which was possibly as a result of the increase 
in agricultural activities was closely related to the increased 
heterogeneity and fragmentation of the whole landscape. The 
result from this study is similar to the result of (Yu & Ng 
2006, Hashem Dadashpoor et al. 2019) who believed that in 
the human landscape, changes in agriculture and garden can 
lead to fragmentation of the landscape. Several factors can 
be responsible for the increase in fragmentation an example 
is increased urbanization, economic development, agricul-
ture and garden land. As of the case of this study, all of the 
above-mentioned factors are believed to have played a role in 
the increased fragmentation experienced in the study region.

Effects of Ecological Restoration Measures on the 
Vegetation Transpiration 

Combining the characteristics of land-use change in the basin 
over the past decade, the impact of ecosystem type conver-
sion was analysed. The Bojiang Lake basin located in the 
transition zone between grassland and desertified grassland. 
The vegetation is sparse, grassland is the main ecosystem, 
followed by cultivated land and forest land (sparsely vege-
tated and highly vegetated region respectively). Based on the 
image classification in this study, the basin mainly includes 
grassland (grassland, meadow, agricultural land, shrub for-
est etc.), highly vegetated region (mainly the broad forest), 
water region and the barren soil.  Among the major type of 
ecosystem, the area of grassland, sparsely vegetated, and lake 
area changed the most mainly due to the implementation of 
relevant policies such as ecological forest construction in 
Inner Mongolia Autonomous Region. The Ordos began to 
implement a ban on grazing, returning farmland to forests 
and grassland in 2000. With the construction of the project, 
the area of artificial vegetation in Ordos city increased 
significantly as we can see in the changes in the grassland 

region from 182.8 in 1987 to 338.7 in 2017 (Fig. 3). After 
the enclosure, the vegetation mainly depends on precipitation 
and soil water growth, and the trees need to be irrigated at 
the initial stage of planting. After a period of growth, they 
start to draw groundwater to maintain growth. The local 
precipitation of around 364 mm cannot fully guarantee the 
water demand for tree growth, and it is necessary to use 
groundwater, and the water for ecological construction is 
increasing sharply. Although the increase of vegetation will 
play a positive role in preventing soil erosion and protecting 
the ecological environment, vegetation will have a significant 
impact on the redistribution of surface water and groundwa-
ter through canopy interception and water and will increase 
water volume due to transpiration. Consumption, thereby 
reducing the amount of water entering the lake. Vegetation 
has a significant role in preventing wind, preventing soil 
erosion and conserving water sources. However, it increases 
the amount of ecological water consumption in small areas 
and, to a certain extent, reduces the amount of lake water 
entering the lake, but the overall impact is very small.

Effect of Population and Urbanization on Lake 
Reduction 

The residents living in the reserve and 18 civil wells were 
discovered. The survey found that the villagers’ daily water 
and agricultural water are taken from the groundwater, which 
will have a certain impact on the water volume change of 
the wetlands in the gull reserve. There have been many 
large wells built since 2000. These large wells are mostly 
rectangular, about 100-200 m long, about 30 m wide, with 
a gentle slope and simple engineering. In recent years, with 
the development and utilization of coal and oil and gas re-
sources and the continuous development of local economy, 
the status of its infrastructure has been greatly improved, and 
road traffic and power facilities have begun to take shape. 
Agriculture and aquaculture are still the main industries of 
the people in the region. The industrial industries are mainly 

Table 6: Annual land-use change (km2/year) during the four intervals.

1987-1995 1995-2003 2003-2010 2010-2017

Change Total Net Swap (%) Total Net Swap (%) Total Net Swap (%) Total Net Swap (%)

Barren Soil 138 82 40.6 144 -128 11.1 52 16 69.2 52 0.5 99

Grassland 161 62 61.5 170 56 67.1 223 0.4 99.8 196 38 80.6

Highly Vegetated 21 8 61.9 19 -10 47.4 9 -4 55.5 10 4 60

Sparsely Vegetated 240 -153 36.25 242 83 65.7 237 -9 96.2 208 -43 79.3

Water 2 1 50 3 -2 33.3 4 -4 2.03 0 0.2 66.7

Overall Change 281 153 45.6 288 140 51.4 263 17 93.5 233 43 81.5

Total= gross gain + gross loss; Net= gross gain - gross loss; Swap (%) = ((Total - Net)/Total) x 100
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petrochemical, chemical, coal mining, etc. The local residents 
are mainly engaged in agriculture and aquaculture, and some 
of the labour force is engaged in coal mining, oil produc-
tion and transportation industries. However, the continuous 
exploitation of coal and oil and the development of the 
industry will lead to an increase in regional water demand. 
At the same time, surface subsidence and water-conducting 
fissures generated by coal mining exploration will affect the 
protected flow area and runoff direction. Therefore, the coal 
mining industry enterprises and the sources of agricultural 
and domestic water are related to the reduction of water in 
protected areas.

The water consumption of industrial and agricultural 
waters in the basin has reduced the surface runoff and the 
groundwater level in the basin through the demand for surface 
runoff and groundwater resources.  However, at present, there 
are fewer and fewer populations in the Neighbouring Nature 
Reserve and the surrounding areas. The number of people 
has increased year by year, and the resident population has 
declined year by year, accounting for only 21% of the total 

population (Fig. 8). Therefore, observations from long-term 
data show that activities such as human production and living 
activities and industrial and agricultural exploitation in the 
basin have certain impacts on the water table and lake water 
volume in the basin. But the long-term impact is small.

Effect of weather conditions: Over the years, climate 
factors were considered to be the primary driving force for 
this reduction due to the slight increase in human activities. 
Research by He et al. (1992), pointed out that a contributing 
factor to the reduction in the water level in the study site was 
the sediment-trapping dams built on the rivers after 2000 
which intercepted the direct flow of water into the lake in-
cluding other factors such as increased ecotourism, domestic 
use of water and so on. All of these coupled with the decrease 
in precipitation and increased temperature all play a role in 
the reduction in the water level. Kang Liang’s Study (Kang 
2017) proved that increased human activities were the main 
factor for the decrease in the annual streamflow from 2000 to 
2013. Although most of the researches ended in 2013, from 
the observation of this study the water region continued to 

industry enterprises and the sources of agricultural and domestic water are related to the reduction of water 
in protected areas. 

The water consumption of industrial and agricultural waters in the basin has reduced the surface runoff and 
the groundwater level in the basin through the demand for surface runoff and groundwater resources.  
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surrounding areas. The number of people has increased year by year, and the resident population has 
declined year by year, accounting for only 21% of the total population (Fig. 8). Therefore, observations 
from long-term data show that activities such as human production and living activities and industrial and 
agricultural exploitation in the basin have certain impacts on the water table and lake water volume in the 
basin. But the long-term impact is small. 

 

Fig. 8: Ordos city population (overall, rural and urban) Versus Bojiang Lake area. 

Effect of weather conditions: Over the years, climate factors were considered to be the primary driving 
force for this reduction due to the slight increase in human activities. Research by He et al. (1992), pointed 
out that a contributing factor to the reduction in the water level in the study site was the sediment-trapping 
dams built on the rivers after 2000 which intercepted the direct flow of water into the lake including other 
factors such as increased ecotourism, domestic use of water and so on. All of these coupled with the 
decrease in precipitation and increased temperature all play a role in the reduction in the water level. Kang 
Liang’s Study (Kang 2017) proved that increased human activities were the main factor for the decrease in 
the annual streamflow from 2000 to 2013. Although most of the researches ended in 2013, from the 
observation of this study the water region continued to experience a reduction in area. From this study, a 
reduction in precipitation coupled with an increase in evaporation rate was a contributing factor to the 
reduction in water size. For example, in August where the Landsat images used for this analysis was 
acquired, the weather conditions during that period were dry and hot exhibiting monthly average 
temperatures above their mean temperature values except for 1987 and 1995, the annual temperature of the 
study site, however, showed values above its mean annual temperature values all through the study period. 
The monthly average precipitation in August was all below the mean precipitation value except for 1995 
signifying that August was one of the driest periods of the study (Fig. 9).  
  

Fig. 8: Ordos city population (overall, rural and urban) Versus Bojiang Lake area.

Table 7: Annual land-use change (km2/year) during the four predicted year intervals.

1987-2017 2017-2047 2047-2077 2077-2117

Change Total Net Swap (%) Total Net Swap (%) Total Net Swap (%) Total Net Swap (%)

Barren Soil 108.1 31 71.3 106 22 79.2 22 -4 81.8 24 -3 87.4

Grassland 260.2 -159 39 269 -37 86.2 45 9 80 48 5 89.7

Highly Vegetated 17.6 1.9 89.3 12 -8 33.3 1 -0 94 1 -0 92

Sparsely Vegetated 272.7 120 56 263 25 90.5 37 -5 86.5 44 -1 97.7

Water 5.3 4.9 7.5 2 -2.1 3.7 0 -0 0 0 -0 0

Overall Change 331.9 159 52.2 326 47 85.6 52 9 82.7 58 5 91.4
Total= gross gain + gross loss; Net= gross gain - gross loss; Swap (%) = ((Total - Net)/Total) x 100
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experience a reduction in area. From this study, a reduction 
in precipitation coupled with an increase in evaporation rate 
was a contributing factor to the reduction in water size. For 
example, in August where the Landsat images used for this 
analysis was acquired, the weather conditions during that 
period were dry and hot exhibiting monthly average temper-
atures above their mean temperature values except for 1987 
and 1995, the annual temperature of the study site, however, 
showed values above its mean annual temperature values all 
through the study period. The monthly average precipitation 
in August was all below the mean precipitation value except 
for 1995 signifying that August was one of the driest periods 
of the study (Fig. 9).  

CONCLUSION 

The land-use changes experienced in the Ordos Basin 
between 1987 and 2017 were attributed to the growth in 
population and economic development in the region. Based 
on the assessment of the remote sensing images obtained in 
1987, 1995, 2003, 2010 and 2017 the five classified regions 
(grassland, highly vegetated, sparsely vegetated, barren 
soil and water region) all regions experienced a significant 
amount of changes which subsequently led to the changes 
in landscape patterns. 

The land use classification and the transition intensity 
model were used to analyse the changes in the regions over 
the past 30 years. The changes experienced in the grassland 
and sparsely vegetated region were observed to be the great-
est in the region and these changes were a clear indication 
of the increased anthropogenic activities such as agricultural 
activities in the study region.

The future land-use changes were simulated and pre-
dicted using the CA-Markov model, and the landcover map 
changes from 1987 to 2017. And through this method, the 
next 30-100 years were predicted and the result shows that 
grassland and the sparsely vegetated region continued to 
dominate the study region. 

The landscape structural pattern was simulated based 
on four spatial metrics (patch, shape, diversity and edge 
metrics) to analyse the fragmentation and heterogeneity 
level of Ordos basin. The result, however, showed that during 
the study period the increased population, extensive human 
activities and urbanization level contributed greatly to the 
increase in fragmentation and heterogeneity experienced 
in the region. This effect was reflected in the relationship 
between the land-use change and the fragmentation level 
where changes in land use regions except the water region 
proved to significantly impact the changes in the fragmen-

   

   
 

Fig. 9: Weather condition of Ordos national nature reserve. 
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vegetated region were observed to be the greatest in the region and these changes were a clear 
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region. 
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landcover map changes from 1987 to 2017. And through this method, the next 30-100 years were 
predicted and the result shows that grassland and the sparsely vegetated region continued to 
dominate the study region.  

3. The landscape structural pattern was simulated based on four spatial metrics (patch, shape, 
diversity and edge metrics) to analyse the fragmentation and heterogeneity level of Ordos basin. 
The result, however, showed that during the study period the increased population, extensive 
human activities and urbanization level contributed greatly to the increase in fragmentation and 
heterogeneity experienced in the region. This effect was reflected in the relationship between the 
land-use change and the fragmentation level where changes in land use regions except the water 
region proved to significantly impact the changes in the fragmentation and heterogeneity level of 
Ordos basin. Between the 3-decade study period and the predicted 100 years, it was observed that 

Fig. 9: Weather condition of Ordos national nature reserve.
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tation and heterogeneity level of Ordos basin. Between the 
3-decade study period and the predicted 100 years, it was 
observed that while the change in fragmentation level showed 
no relationship with the change in water level, the changes 
in each land-use regions were both, directly and indirectly, 
related to the changes in the water region. 

Based on our observation in this study, the change in each 
land use region although showed a significant relationship 
with the change in water region including Bojiang lake, other 
external factors also contributed to the changes in the size 
of the lake an example is the current climatic conditions, 
increase in urbanization, extensive human activities such 
as agricultural and industrial activities all of which were 
accompanied by an increment in the water consumption 
which posses a long-term impact on the water level as we can 
see in the predicted images from 2017-2117. Other contrib-
uting factors were poor environmental policy and planning 
involving the building of trap dams which also blocked the 
flow of water to the lake, changes in the weather conditions 
such as increased temperature and decreased precipitation 
all play a role in the reduction in water level. For effective 
management of the ecosystem, policymakers should keep 
in mind that changes in land use also affect the regional 
climate (Foley et al. 2005). With the increased urbanization 
and extensive human activities in the study region reflected 
in the land-use changes, it is suggested that policymakers 
should emphasize more on the continuous management of 
the land-use changes and improvement of the ecosystem. 
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