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ABSTRACT

Intending to remove toxic graphene oxide (GO) from wastewater, LDH (layered double hydroxide) was 
employed to recover GO by adsorption method. The adsorption performance and the mechanism of 
LDH for GO have been systematically studied by diverse characterization technologies and methods. 
The relevant effects of solution pH (2-9), absorbent dosage (5-25mg) and the concentration of GO 
(20-160mg/L) were investigated in detail. The main driving force of GO condensation on LDH may 
be electrostatic interaction and hydrogen bonding, SEM, TEM, AFM, FT-IR and XRD analysis further 
confirmed this. XPS test shows that the adsorption process is carried out through C−O and O−C=O. 
We have got a high removal rate of 92% and an adsorption capacity of 1472 mg/g under an optimized 
conditions (pH = 3.0, equilibrium time = 6.0 h, dosage = 10mg, C0 = 160 mg/L). The analyses implied 
that LDH will be a very promising candidate for recovery of GO from wastewater.  

INTRODUCTION

Graphene oxide (GO) is synthesized by the oxidation of 
two-dimensional carbon allotrope graphene, known for its 
extraordinary specific surface area and abundant O-con-
taining functional groups (such as -COOH and -OH). GO 
shows great potential in multi-disciplinary fields such as 
medical, energy, environmental pollution (Azadian et al. 
2020, Baragaño et al. 2020, Wu et al. 2020). Particularly, 
these characteristics provide graphene oxide with many 
adsorption sites for various heavy metal ions and organic 
pollutants (Awad et al. 2020, Duru et al. 2016, Xing et al. 
2020). For example, magnetic GO composite materials have 
been synthesized and used to remove Cd(II) and Pb(II) from 
aqueous solutions (Bao et al. 2020). A graphene oxide/ben-
tonite-loaded nano-iron synthesized by liquid-phase redox 
method was used to treat lead-contaminated water (Yu et al. 
2020). Continuously photocatalytic removal of chromium 
(VI) reduced graphene oxide microspheres (Liu et al. 2020) 
by using structured porous Ag/Ag3PO4.

Although GO and GO-based nanomaterials have been 
widely used as adsorbents for clean environmental pollution, 
GO will inevitably be released into the environment and 
ecosystems, including surface water and groundwater (Zhang 
et al. 2020). Once in natural and drinking water, GO may 
undergo physical and chemical changes due to exposure to 
sunlight and chlorination disinfection, respectively. Besides, 

the transformation of GO under light leads to the increase of 
toxicity of GO to biological cells (Gao et al. 2019). Because 
of these potential negative risks associated with GO, it is 
important to remove GO during drinking and wastewater 
treatment. Besides, in mammals, GO exposure may lead 
to lung or reproductive toxicity (Liang et al. 2015. Yang 
et al. 2013a), exposure to GO may have adverse effects on 
organisms, such as fish and shrimp (Batista de Melo et al. 
2019, Paital et al. 2019).

Generally, layered double hydroxide (LDH) adopts 
an anionic layered structure like hydrotalcite, which is 
assembled through a non-covalent bond interaction between 
the cationic host layer and the anion guest intermediate 
layer (Pang et al. 2019). LDH materials can be expressed 
according to the general formula [M2+

1-pM
3+
p(OH)2]

p+[(Aq-)p/q]
p-·y H2O, in which M2+ and M3+ represent bi-/trivalent metal 
cations (Mg2+, Ca2+, Ni2+, Al3+ and Fe3+), Aq- represents 
non-framework (in)organic q-valent interlayer anions 
(NO3

-, ClO4
-, and SO4

2-), p denotes the molar ratio of M2+/
(M2++M3+), and y denotes the molar amount of intercalated 
water. Due to its special structural advantages, such as 
larger interlayer spacing, wider chemical composition, and 
ion exchange capacity, LDH materials are widely used as 
catalysts or adsorbents in the field of water remediation 
(Song et al. 2018, Wang et al. 2016, Wang et al. 2018, Yang 
et al. 2017, Yu et al. 2017). Compared with conventional 
flocculants, LDHs can be produced from the natural 
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environment and can aggregate with nanomaterials, which 
can form target stable complexes in aqueous solutions and 
form new minerals (secondary minerals). However, as far as 
we know, there are few studies on the interaction between 
GO and LDH in aqueous solution. This knowledge is very 
important to improve the surface condensation/precipitation 
model and to better assess the environmental fate of toxic 
GO nanomaterials.

In this work, LDH was used as an adsorbent to remove 
GO from aqueous solutions. Environmental conditions such 
as pH, LDH content, and initial GO concentration were 
studied to evaluate the removal performance in detail. X-ray 
diffraction (XRD), Fourier transform infrared spectroscopy 
(FT-IR), scanning electron microscope (SEM), transmis-
sion electron microscope (TEM), atomic Force Microscope 
(AFM), and X-ray photoelectron spectroscopy (XPS) were 
used for characterization of the interactive mechanism. The 
results may contribute to new insights into the transportation 
and environmental fate of GO in the aquatic environment.

MATERIALS AND METHODS

Adsorption of GO

At room temperature, macro-batch experiments were carried 
out on the adsorption and co-adsorption of GO on the LDH 
surface in 100mL glass bottles. Simply put, add LDH 
suspension and GO stock solution to a glass bottle to obtain 
different components with specified concentrations. By 
adding a negligible 0.1 mol/L HCl and/or NaOH solution, the 
pH value of these interaction systems is adjusted in the range 
of 1.0-8.0. Similarly, a slight increase in the total volume of 
the interaction system has almost no obvious effect on the 
solid/liquid ratio. The interacting suspension is gently shaken 
for 6 hours to achieve adsorption equilibrium. The bottle is 
then left on a flat surface for 1.0 days to completely settle 
the large GO aggregate. Finally, LDH was separated from 
the solution by centrifugation at 18,000 RPM for 30 minutes.

The concentration of GO remaining in the supernatant 
was analysed with an ultraviolet-visible spectrophotometer 
(UV1800, chemical) at a wavelength of 210 nm. To calculate 
the GO removal rate R and distribution coefficient Kd, the 
equations (1), (2) and (3) were used.

 𝑅𝑅 = 𝐶𝐶0 − 𝐶𝐶𝑒𝑒
 𝐶𝐶0

× 100%  …(1) 

𝑄𝑄𝑒𝑒 = (𝐶𝐶0 − 𝐶𝐶𝑒𝑒) × 𝑉𝑉
m  

…(2) 

𝐾𝐾𝑑𝑑 = 𝑄𝑄e
𝐶𝐶𝑒𝑒
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 ...(3)

Where Co (mg/L) and Ce (mg/L) are the initial and 
equilibrium concentrations of GO, Qe is the amount of 
adsorption. Considering GO loss required for LDH adsorption 
(GO adsorption on glass bottle wall), calibration curves were 
obtained under the same conditions as the adsorption process, 
but without LDH. According to the calibration curve, the 
adsorption capacity of GO was calculated by subtracting 
the mass in solution from the added mass. To confirm the 
accuracy of data repeatability, experiments were carried 
out in duplicate, and each data were measured in triplicate. 
The relative error is less than 5% (Wang et al. 2016, Zou 
et al. 2016).

Materials

All the chemicals used in the experiment were purchased 
from China Petroleum & Chemical Corporation (Beijing, 
China). Mg/Al layered double hydroxide (LDH) was pre-
pared by the co-precipitation method (Chang et al. 2017, 
Hu et al. 2017). The graphene oxide aqueous solution was 
purchased from Suzhou Tanfeng Graphene Technology Co., 
Ltd. (Jiangsu, China).

Characterization

The crystal structure of the absorber was examined with X-ray 
diffractometer (XRD, Empyrean) using Cu Kα radiation. 
The functional groups were identified by Fourier transform 
infrared spectroscopy (FTIR, NEXUS) with a scanning range 
of 400-4000 cm-1. Scanning electron microscope (SEM, 
JSM-6360LV), atomic force microscopy (AFM，SPA 
400), and high-resolution transmission electron microscope 
(HRTEM, JEM-2100F) were used to study morphology and 
elemental composition of the synthetic materials. Thermo 
ESCALAB 250 performs X-ray photoelectron spectroscopy 
(XPS) spectroscopic analysis using a focused monochromatic 
Al Ka   X-ray source (hm = 1486.6 eV). 

RESULTS AND DISCUSSION

Characterization

The surface morphology of the material can be observed 
from the scanning electron microscope (SEM) and transmis-
sion electron microscope (TEM) images. The results show 
that the LDH of hexagonal overlapping crystals is smooth  
and well-shaped (Fig. 1A and B). The GO agglomerates are 
multi-layered, with lateral dimensions ranging from a few 
nanometres to tens of nanometres (C and D). Besides, The 
LDH/GO-pH < 7 presents uneven morphology (Fig. 1E). 
Compared with LDH/GO-pH < 7, the LDH/GO-pH>7 shows 
the characteristic of smooth surface and relative homogene-
ous flaky structure (Fig. 1 G). Besides, TEM images revealed 
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the sheet-like structure of LDH/GO more clearly (Fig. 1 
F). On the other hand, compared with GO and LDH before 
adsorption, after adsorption, TEM of LDH/GO adhered to 
black substance, with irregular shape and uneven thickness, 
indicating that GO adsorbed on LDH surface.

To reveal the adsorption mechanism, XRD technology 
was used to characterize the composite material. From the 
X-ray diffraction (XRD) pattern of GO (Fig. 2 a), a char-
acteristic peak can be observed at 2θ=10.32, indicating 
GO’s (001) reflection. As shown in Fig. 2 compared with 

  

  

  

  

Fig. 1: SEM (A) and TEM (B) of LDH, SEM (C) and TEM (D) of GO, SEM (E) and TEM (F) of LDH-pH<7, SEM (G) and TEM 

(H) of LDH/GO-pH>7. 

 

(A) (B) 

(C) (D) 

(E) (F) 

(G) (H) 

Fig. 1: SEM (A) and TEM (B) of LDH, SEM (C) and TEM (D) of GO, SEM (E) and TEM (F) of LDH-pH < 7, SEM (G) and TEM (H)  
of LDH/GO-pH > 7.
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the characteristic diffraction peaks of GO and LDH before 
adsorption, the characteristic diffraction peaks under acidic 
conditions are similar to GO, indicating that GO adsorption 
under acidic conditions occurs on the surface of LDH. 
However, the characteristic diffraction peak under alkaline 
conditions is almost unchanged from that of LDH, which 
shows that there is no-GO aggregation on the surface of LDH 
under alkaline conditions.

FT-IR spectroscopy is very helpful for characterizing 
surface functional groups. As shown in Fig. 2 b, the band 
at 3500 cm-1 indicates the O–H stretching mode, which 
involves hydrogen bonding or interlayer water molecules, 
the band at ~1006 cm-1 is attributed to C-O group, the band 
at ~1643 cm-1 is attributed to C=C group, the band at ~1710 
cm-1 is attributed to C=O group，indicating the presence of 
an amount of oxygen-containing functional groups on GO. 
The broadband at 3446 cm-1 is attributed to the hydrogen 
bonding or the stretching mode of the OH group with the 
interlayer water molecules involved. The C=C stretching 
vibration of GO shows the energy band in the energy range 
of ~1643cm-1 (Goh & Lim 2010, Rao et al. 2005), which 
also appeared in the spectra of LDH/GO-pH < 7 and LDH/
GO-pH > 7, indicating that GO was successfully adsorbed 
on the surface of LDH. 

Effect of pH

The adsorption of GO on non-specific and specific adsorbents 
depends on pH. pH significantly affects the surface 
chemistry and adsorption chemistry of LDH-containing 
mixtures(González et al. 2014). The removal rate, removal 
efficiency, and distribution coefficient of GO on LDH as a 
function of pH are shown in Fig. 3. The removal of GO on 

LDH was studied with a different pH value of 2, 3, 4, 5, 6, 
7, 8 and 9 respectively shows that the removal capabilities 
are influenced by pH values. It can be seen from Fig. 3 that 
when pH < 5, as the pH increases, the removal rate and 
distribution coefficient of GO decreases rapidly, while when 
pH > 5, as the pH increases, the removal rate and distribution 
coefficient remains unchanged, 17.9% and 0.43 respectively. 
The maximum removal rate of GO by LDH is 93%, which is 
due to the electrostatic action between the negative charge 
of GO and the positive charge of LDH. At pH < 5, the main 
interaction is controlled by chemical adsorption, electrostatic 
attraction and hydrogen bonding. Because of electrostatic 
attraction, the negatively charged graphene oxide is easy 
to agglomerate and adsorb on positively charged LDH. 
However, at a pH above 5.0, by increasing the pH value, the 
carboxyl group on the GO group is deprotonated and inhibits 
the bonding and accumulation of cations and graphene oxide, 

 

 

Fig. 2: XRD patterns (a) of GO, LDH, LDH-pH<7, LDH/GO-pH>7, FT-IR spectra (b) of GO, LDH, LDH-pH<7, LDH/GO-pH>7. 
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Effect of Adsorbent Dosage 

Adsorption dosage is also one of the parameters which directly affects the removal 

of pollutants from aqueous solutions. The removal of GO on LDH was studied with 

different LDH content of 5, 10, 15, 20 and 25 mg, respectively shows the removal 

capabilities are influenced by LDH content. Fig. 4 shows the effect of LDH content on 

adsorption capacity, efficiency and distribution coefficient. In the solution with pH 3.0 

and GO=100mg/L, the LDH content was changed to 5-25mg, the equilibrium time was 

6h, and the corresponding tests were carried out. It can be seen from the figure that as 

the LDH content increases, the removal rate gradually decreases and tends to 0%. 

Similarly, the adsorption amount and distribution coefficient are also oriented to 0. This 

shows that, while maintaining GO concentration to a certain extent, adding LDH can 

greatly decrease the adsorption capacity of LDH. It shows that LDH has high 

coagulation ability at low concentration, which is crucial for the application of LDH in 

the coagulation treatment of GO in aqueous solution. 

When the content of LDH increased from 5mg to 15mg, the adsorption ability 

decreased, although the removal rate of GO was maintained. This was because the 

Fig. 3: Removal of GO on LDH as a function of pH value.
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of GO was maintained. This was because the adsorption 
sites in aqueous solution increased with the increase of 
the LDH, the concentration of adsorption sites with higher 
energy may lead to the reduction of active sites with lower 
energy, resulting in the reduction of adsorption (Zubair et 
al. 2017). Therefore, reducing the amount of LDH can not 
only improve the removal rate of GO in the aqueous solution 
but also save costs.

Effect of GO Initial Concentration

The removal of GO on LDH were studied with different GO 
initial concentrations of 20, 40, 60, 80, 100, 120, 140 and 
160 mg/L, respectively. The result demonstrates the removal 
capabilities are influenced by GO initial concentrations. Fig. 
5 shows the effect of GO concentration on adsorption ca-
pacity, efficiency, and distribution coefficient. In the solution 
with pH 3.0 and LDH = 10mg, the GO concentration was 
changed to 20-160mg/L, the equilibrium time was 6h, and the 
corresponding tests were carried out. There is little difference 
at GO initial concentration less than 60 mg/L, maintain at 
60%. However, it can be seen from the Fig. 5 that as the GO 
concentration increases, the removal rate gradually increas-
es and tends to 92%, the fastest rising stage is within the 
range of 60-100 mg/L, there is a similar trend in adsorption 
amount and distribution coefficient. This shows that, while 
maintaining LDH to a certain extent, adding GO can greatly 
improve the adsorption capacity of LDH, this may be due to 
the increased GO concentration increasing the electrostatic 
interaction with LDH.

Therefore, between the above description, LDH has great 
potential for the adsorption of GO in aqueous solution. Due to 
the limitation of the experimental conditions, the maximum 
adsorption amount of GO for further research is still needed.

thereby weakening the electron acceptor ability of these 
substances (Yang et al. 2013b). On the other hand, the GO 
carried when the pH value changes from 5 to 9 will cause 
the electrostatic repulsion between GO and LDH to increase, 
so the adsorption capacity decreases (Tang et al. 2020), and 
the main interaction is controlled by physical adsorption. 

Therefore, it can be concluded that low pH facilitates the 
adsorption of GO by LDH and alkaline conditions will inhibit 
the adsorption of GO by the LDH, which is the adsorption 
of LDH to GO is pH-dependent, it is recommended to carry 
out the adsorption process at a pH close to strong acidity.
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Adsorption Mechanism 

To further explore the adsorption mechanism of LDH to 
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Fig. 6: XPS spectra of LDH/GO before and after GO removal (a), the high C 1s deconvolution of GO (b), before (c), and after (d) 
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Fig. 6: XPS spectra of LDH/GO before and after GO removal (a), the high C 1s deconvolution of GO (b), before (c), and after (d) GO coagulation  
on LDH/GO.
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CONCLUSION

With the rapid development and wide application of GO 
products, it is inevitable to release them into the natural 
environment. Therefore, the rapid coagulation of GO is 
particularly important and urgent due to its high activity and 
toxicity in the environment. Here, we found that LDH can 
effectively remove GO from the aqueous solution and came 
to some meaningful conclusions: The significant change 
in GO removal indicates that the coagulation behaviour is 
pH dependent. Its adsorption capacity depends largely on 
the pH of the solution, LDH content, and GO content, the 
maximum removal rate of GO by LDH can reach 92%, the 
adsorption capacity can reach 1472mg/g. On the other hand, 
XPS spectroscopy has been fully studied, the interaction 
between GO and LDH is carried out by C-O and O-C=O 
during the coagulation process.

In a word, LDH material has high condensation ability to 
GO in aqueous solution, which indicates that LDH material 
can be a promising material to effectively remove GO from 

aqueous solution by simple and rapid chemical condensation. 
Therefore, the results of this work may contribute to a better 
understanding of the condensation behaviour of GO and other 
carbon-based materials in natural and engineering aqueous 
solutions, which is essential for eliminating GO in aqueous 
solutions and reducing the environmental toxicity of GO in 
natural environments.
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