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	        ABSTRACT
Grapevine (Vitis vinifera L.) is one of the major crops grown commercially throughout the 
world. In recent years, there have been major losses to grapevine production due to the 
challenges caused mainly due to fungal diseases like downy mildew, powdery mildew, grey 
mold, black rot, and anthracnose. In the last few decades, rampant chemical fertilization 
and bio-magnification of hazardous chemicals have posed a threat to human health and 
destroyed the health of the soil as well as crops. For effective management of these 
fungal diseases of grapes, nowadays, many researchers are conducting various studies 
on endophytes, which are proven to be better bio-control agents to suppress the growth 
and development of grapevine phytopathogens. Endophytes are eco-friendly, effective, and 
easy to apply at field levels, making endophyte-based formulations suppress the growth 
and development of grapevine pathogens without causing any detrimental effects to the 
beneficial micro-organisms present at the rhizospheric zone of soil and host plants as 
compared to the traditional fungicides usage. It also competes with these pathogens for 
nutrition, space, and colonization. It helps in the production of secondary metabolites with 
antifungal properties for preventing the growth of fungal pathogens that cause damage to the 
grapevine crop. It also induces a defense mechanism in grapevine crops against disease-
causing fungal phytopathogens. In this review article, biocontrol mechanisms of endophytes 
and their potential application in the management of grapevine fungal diseases have been 
discussed.

INTRODUCTION

Grapevine is one of the major commercial fruit crops grown across 7.3 million 
hectares worldwide and is used for juice, wine, raisin production, and fresh 
consumption (Karlsson  & Karlsson 2021). The total productivity of grapevine 
throughout the world in recent years is about 27.42 million metric tons (Statista 
2023). In India the grapevine is regarded as a major revenue-generating commercial 
fruit crop produced for export to other countries; it is expected that India is 
producing about 2,46,133 tons of fresh grapes with an income value of 334.79 
million dollars. Maharashtra is the leading grapevine-producing state of India, 
which produces over 81% of total grapevine production in India (Indian Grape 
Forum 2019). The major grapevine fungal diseases that are causing heavy losses 
to grapevine production throughout the world are Downy mildew, Powdery 
mildew, Anthracnose, Grey mold, Black rot, etc (Armijo et al. 2016). Endophytes 
are pervasive and mainly colonize inside the tissues of 300,000 various plant 
species without causing any detrimental effects to the plants (Narayanan et al. 
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2022). These endophytes mainly belong to Ascomycota, 
Actinobacteria, Basidiomycota, Bacteroidetes, Firmicutes, 
Proteobacteria, and Zygomycota, which are some major 
prokaryotic and eukaryotic endophytes that were identified 
till now (Yakop et al. 2019). These endophytes produce 
various enzymes, hormones, and secondary metabolites, 
which cause antagonistic effects and antimicrobial activity 
that inhibit plants from pathogen infection and play a major 
role in biotechnology (Gunatilaka 2006). Using these natural 
symbionts provides a chance to increase the production of 
grapevine while minimizing the use of hazardous pesticides 
against pathogens (Srivastava et al. 2023).

Endophytes must slowly adapt to these living conditions 
by gradually interacting with their host plant, including 
mutualism and antagonism (Dudeja et al. 2012), and 
can establish themselves in the plant after a process of 
molecular crosstalk that produces a cornucopia of favorable 
modifications for the host (Pavithra et al. 2020, Das et al. 
2021, Pavithra et al. 2021, Maurya et al. 2024). These 
endophytes promote the growth and development of their 
host plant and help them to adapt to environmental changes, 
and they produce various compounds to sustain symbiosis 
between host plant and endophytes (Das & Varma 2009). 
In the present situation, increasing crop production and 
maintaining ecological sustainability in an eco-friendly 
manner is possible by using microbial bio-products that 
include various types of bio-formulations like bio-fertilizers, 
bio-pesticides, bio-stimulants, bio-inoculants, etc. (Singh et 
al. 2016). To sustain the goal of increasing crop production 
and controlling various diseases throughout the world, there 
is an urgent need to develop microbe-based bio-formulations 
that are greener and safer alternatives to agrochemicals 
(Mishra et al. 2015). These microbe-based bio-formulations 
are strong in comparison to agrochemicals as the formulation 
includes a single microbe that interacts with the pathogen 
directly and suppresses its growth and development, which 
leads to a decrease in disease rate and improves plant growth 
(Rodrigo et al. 2011). 

GRAPEVINE FUNGAL DISEASES AND THEIR 
IMPACT ON GRAPE PRODUCTION

The major fungal diseases of grapevine (Vitis vinifera) as 
mentioned in Table 1 are powdery mildew, downy mildew, 
grey mold, black rot, anthracnose which are caused by 
these phytopathogens like Uncinula necator, Plasmopara 

viticola, Botrytis cinerea, Guignardia bidwelli and Elsinoe 

ampilina (Armijo et al. 2016). Downy mildew disease causes 
severe yield losses to the grapevine in vivo when optimum 
temperate and humidity are present, which is suitable for 
survival and increases infection-causing capacity, leading to 

losses of about 40-90% of grapevine (Toffolatti et al. 2018). 
Powdery mildew disease causes severe losses to the quality 
and quantity of grapevine. If not managed properly during 
high disease pressure years, it leads to yield losses of about 
75-100% (Fermaud et al. 2016). Anthracnose disease causes 
yield losses to crop productivity of grapevine about 10-15% 
and on highly susceptible grapevine varieties due to severe 
infection on them, crop losses occur up to 100% (Zhi Li et 
al. 2021). Grey mold disease causes major economic yield 
losses to the grapevine, about 20-50% throughout the world 
at post-harvest season, mainly due to rotting of ripe berries 
(Fedorina et al. 2022). Black rot disease causes yield losses 
to the grapevine by about 80% due to the availability of its 
optimum humid condition to produce its primary inoculum 
and causes infection to the grapevine (Jackson 2014).

VARIOUS TYPES OF ANTAGONISTIC 
ENDOPHYTES ASSOCIATED WITH  
HOST PLANTS

Endophytes can reside inside (intercellular) and outside 
(intracellular) the cells of the host plant, and they can live 
inside (systematically) and outside (locally) of the host 
body in a symbiotic relationship with the host without 
causing any harm to the host plant (Kusari et al. 2012, Lo 
Presti et al. 2015, Schulz et al. 2015). Endophytes are found 
existing all over the places of agricultural ecosystems and 
natural forests and are mainly present in the plant tissues of 
spermatophytes, ferns, equisetopsids, mosses, liverworts, 
lycophytes, hornworts, etc. (Kusari et al. 2012, Jeewon et 
al. 2013, Doilom et al. 2017, Potshangbam et al. 2017). 
Clavicipitaceous endophytes live as intracellular symbionts, 
mainly in various grasses. They are found more in the leaves 
and stems of mother plants as compared to young plants, 
and these endophytes are transmitted both vertically and 
horizontally through sexual or asexual spores and seeds, etc. 
(Yan et al. 2015, Santangelo et al. 2015). Both the fungal 
and bacterial endophytes have great potential as bio-control 
agents as they have antagonistic activity (Table 2), which 
produces various secondary metabolites like antioxidants, 
bioactive antimicrobial and antiviral metabolites that 
help in suppressing the growth of various disease-causing 
phytopathogens, thus reducing the losses caused by them 
(Gouda et al. 2016). 

De Bary (1866) introduced the endophyte term. He 
defined it as an organism that grows inside of the plant tissues 
and has a symbiotic relationship with its host without causing 
any detrimental effects to its host, sometimes helping in 
providing essential nutrients for the host for its growth and 
development. Its types are fungal and bacterial endophytes, 
which act as both obligate or facultative relationships with 
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Table 1: List of major fungal diseases of grapevine with their causal organisms and peculiar symptoms.

Diseases Causal organism Symptoms References
Downy mildew Plasmopara viticola Rough circular yellow discoloration and oily spots on leaves. Whitish 

downy fungal growth appearance on the lower side of leaves and 
stem (sporulation of fungi). Infected shoot tips turn curl (Shepherd’s 
crook). Severely infected leaves turn yellow to brown and finally get 
dry and dropdown.

Koledenkova 
et al. (2022)

Powdery mildew Uncinula necator Lesions first occur on the lower side of the leaves. Minute orange to 
black circular structures, i.e., cleistothecia, appear on both the upper 
and lower surfaces of leaves and berries. Affected berries finally 
dried out and dropped down.

Kunova et al. 
(2021)

Anthracnose Elsinoe ampilina It causes small round spots on the surface of leaves. These spots 
later become holes on leaves (shot-hole appearance). The appearance 
of deep elongated cankers with a greyish color in the center and 
with a black border on the stem. Violet color spots with a greyish 
appearance in the center appearance on berries. Finally, these infected 
berries dried and dropped prematurely.

Li et al. (2021)

Grey mold Botrytis cinerea It causes necrotic brown spots.
Infected berries are covered with greyish substances consisting of 
spores of the fungus.

Shen et al. 
(2021)

Black rot Guignardia Bidwell It causes small brown lesions with a border of dark marginal rings 
consisting of black pustules (fruiting body of fungi). Infected berries 
fist turns white, then purple, and finally turns black color. Severely 
infected berries are covered by black pustules.

Szabó et al. 
(2023)

Ripe rot Colletotrichum spp. It causes tiny, sunken, reddish-brown spots with yellow halos. 
Infected berries become soft and concentric rings are formed on 
berries consisting of small fruiting body structures (acervuli). Infected 
fruits turn from light to brown color. The final stage of infection 
results in the drying and mummification of decaying berries.

Hsieh et al. 
(2023)

Angular leaf 
scorch

Psuedopezicula tetraspora The first appearance of symptoms occurs on leaves. Lesions appear as 
faint, yellow spots on the leaf surface and leaf veins and later turn to 
reddish-brown color. At severe infection, death of leaf tissue occurs.

Fischer et al. 
(2022)

Armillaria root rot Armillaria mellea The first appearance of symptoms occurs as stunting of shoots. Later 
white mycelial mat appears below the bark of the plant. At severe 
infection, and trunk and root of the plant get rotten with a soft and 
spongy appearance, and its color changes from white to dark brown.

Calamita et al. 
(2021)

Bot Canker Lasiodiplodia theobromae Foliar symptoms may be observed as mild chlorosis or wilting due 
to inhibition of water transport. Berries of infected white-fruited 
varieties may develop small, flat lesions with pycnidia, with berries 
turning light brown.

DeKrey et al. 
(2022)

Phomopsis 
dieback

Phomopsis viticola Small, black spots on the internodes at the base of developing shoots 
are probably the most common disease symptom. These spots are 
usually found on the first three to four basal internodes. It is also 
known as the “dead arm”.

Úrbez-Torres 
et al. (2013)

Grapevine leaf 
stripe 

Phaeomoniella 

chlamydospora and several species 
of Phaeoacremonium

Foliar symptoms on established grapevines have been widely 
described and include various types of discoloration, typically 
interveinal discolorations evolving into necrotic areas resembling 
“tiger stripes”. 

Serra et 
al. (2018), 
Calzarano et 
al. (2021)

Botryosphaeria 
dieback

It is caused by several pathogens, 
primarily Neofusicoccum parvum, 

Diplodia seriata, Botryosphaeria 

stevensii, and Botryosphaeria 

dothidea.

Symptoms of Botryosphaeria dieback include dead spurs, stunted 
shoots, and bud mortality.

Kenfaoui et al. 
(2022)

Eutypa dieback Eutypa lata It is a major trunk disease in grapevines associated with the heavy 
loss of production.

Gramaje et al. 
2018

Leaf blight/ Fruit 
rot

Alternaria alternata, A. vitis The disease attacks both leaves and fruits. Small yellowish spots first 
appear along the leaf margins, which gradually enlarge and turn into 
brownish patches with concentric rings.

Li et al. (2023)

Grapevine Esca 
disease colonizing 
the xylem tissues 
of vine plants

Phaeomoniella chlamydospora

Phaeoacremonium aleophilum

The typical Esca internal symptoms are vascular discoloration with 
the production of dark tarry drops and wood necrosis. In leaves, both 
chlorotic and necrotic areas have typically been described as tiger-
striped leaves and later as grapevine leaf stripe disease.

Mugnai et al. 
1999, Gramaje 
et al. 2018
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Table 2: Effectiveness of antagonistic endophytes against grapevine phytopathogens.

Endophytes Effective against grapevine phytopathogens Reference

Pseudomonas spp. Phytoplasmas
Botrytis cinerea

Gamalero et al. (2017)
Gruau et al. (2015)

Burkholderia spp. Phytoplasmas Bulgari et al. (2014).

Methylobacterium spp. Phytoplasmas Bulgari et al. (2014).

Pantoea spp. Phytoplasmas
Neofusicoccum parvum

Andreolli et al. (2016)
Haidar et al. (2021)

Bacillus spp. Botrytis cinerea 

Plasmopara viticola

Andreolli et al. (2016).
Zhang et al. (2017).

B. subtilis strain AG1 Phaeomoniella chlamydospora

and Phaeoacremonium aleophilum

Alfonzo et al. 2009

Bacillus pumilus and Paenibacillus sp. (S19) Phaeomoniella chlamydospora Haidar et al. (2016b)
Pseudomonas 

protegens MP12 strain 
Phaeomoniella chlamydospora

and Phaeoacremonium aleophilum

Andreolli et al. (2019)

Brevibacillus spp.
Lysinibacillus spp.
Nocardioides spp.
Stenotrophomonas spp.
Microbacterium spp.

Botrytis cinerea Andreolli et al. (2016)

Streptomyces anulatus Botrytis cinerea Vatsa-Portugal et al. (2017)

Paraburkholderia phytofirmans strain PsJN Botrytis cinerea Ait Barka et al. (2000), 
MiottoVilanova et al. (2016)

Acinetobacter lwoffi Botrytis cinerea Verhagen et al. (2011)

Enterobacter spp.
Rahnella aquatilis

Paenibacillus spp.
Staphylococcus spp.
Acremonium spp.
Alternaria alternata

Epicoccum nigrum

Botrytis cinerea, Plasmopara viticola, 

Agrobacterium vitis, Xylella fastidiosa

Pacifico et al. (2019)

Paenibacillus spp. Botrytis cinerea, Plasmopara viticola, 

Agrobacterium vitis, Xylella fastidiosa

Neofusicoccum parvum

Pacifico et al. (2019),
Haidar et al. (2021)

Albifimbria verrucaria Botrytis cinerea, Lasiodiplodia theobromae, 

Elsinoe ampelina

Li et al. (2000)

Beauveria bassiana Plasmopara viticola Rondot and Reineke (2019)
Cochliobolus, Bipolaris, Fusarium, Alternaria, 

Diaporthe, Phoma and Phomopsis.

Alternaria sp., Sphaceloma sp.
And Glomerella sp. 

Felber et al. (2016)

Lophiostoma cortisol (from leaves) Botrytis cinerea Kulišová et al. (2021)
Alternaria

alternata and Fusarium proliferatum

Plasmopara viticola Mondello et al. (2019),
Aleynova  et al. (2021)

 Acremonium byssoides Plasmopara viticola Burruano et al. (2008)

the host plant (Brader et al. 2017). These endophytes colonize 
the plant tissues, both intercellular and intracellular, and 
have a mutualistic association with the host in their lifetime. 
Recent studies show that the health, survival, growth, and 
development of these host plants are mostly dependent 
on these endophytes (Hardoim et al. 2015, Potshangbam 
et al. 2017). Obligate endophytes are those that depend 
on the host plant metabolism for their survival, and their 
movement inside the plant occurs through different vectors 
or vertical transmission (Hardoim et al. 2008). Facultative 

endophytes are those that can survive outside of the host plant 
for a certain period of their life cycle, and they are mostly 
associated with host plants as compared to their natural 
environment in soil (Abreu-Tarazi et al. 2010).

ROLE OF ANTAGONISTIC ENDOPHYTES 
IN GRAPEVINE FUNGAL DISEASE 
MANAGEMENT

Endophytes are helpful in plant growth and provide biotic/
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abiotic stress resistance by the production and release of 
secondary metabolites, plant hormones, antibiotics, and 
biocides, which leads to improving resistance in plants 
against abiotic stress and various diseases (Lugtenberg & 
Kamilova 2009, Compant et al. 2013). The endophytic 
colonization in the grapevine helps the plant to be in an active 
state to respond to any attack by grapevine disease-causing 
pathogens (Martinez-Medina et al. 2016, Mauch-Mani et al. 
2017).  It is proved by many researchers believe that these 
endophytes help in triggering defense responses in plants, 
which provide resistant against various fungal, oomycete, 
bacterial, and viral pathogens and insects (De Vleesschauwer 
& Höfte 2009, Van der Ent et al. 2009, Pineda et al. 2010). 
Some endophyte bacteria like Pseudomonas spp. and Bacillus 
spp. can produce HCN which helps in breaking summer bud 
dormancy in grapevine (Shameer & Prasad 2018, Sudawan 
et al. 2016). The endophytic bacteria Pseudomonas migulae 
can act as a biocontrol agent against phytoplasmas which 
causes grapevine yellows disease in grapevine (Gamalero 
et al. 2017). The bacterial species associated with induced 
systemic resistance (ISR), such as Burkholderia spp., 
Methylobacterium spp., and Pantoea spp. the population 
increased and helped in triggering defense responses for 
resistance when phytoplasmas attack the grapevine (Bulgari 
et al. 2014). The endophytic fungus Alternaria alternata, 
isolated from grapevine leaves, has been reported to be 
efficacious in controlling downy mildew disease through 
the production of toxic diketopiperazines metabolites 
(Musetti et al. 2006, Srivastava et al. 2024). Several other 
microorganisms, isolated either from rhizosphere or grape 
fruit surfaces, have also been selected as BCAs over the last 
decades to control Plasmopara viticola, such as Bacillus 

subtilis KS1, Lysobacter capsici AZ78, Trichoderma 

harzianum T39 and Fusarium proliferatum G6 (Perazzolli 
et al. 2008, Zhang et al. 2017).

In recent studies, the researchers identified various new 
potential endophytes as biocontrol agents in vitro. Among 
these potential endophytes, Bacillus licheniformis can 
secrete lipoproteins, which are biocontrol molecules that 
help in inhibiting the growth and development of various 
phytopathogenic fungi in grapevine, mainly against Botrytis 

cinerea, which causes grey mold disease in grapevine (Favaro 
et al. 2016, Nigris et al. 2018). The endophytic bacteria 
i.e., Bacillus spp., Brevibacillus spp., Lysinibacillus spp., 
Nocardioides spp., Stenotrophomonas spp., Microbacterium 
spp. and Pantoea spp. also exhibits antifungal activity and 
induce resistance against Botrytis cinerea phytopathogen 
causing grey mold disease in grapevine (Andreolli et al. 
2016). The most effective endophytes against Botrytis 

cinerea are Bacillus spp., Pantoea spp., and Pseudomonas 
spp., respectively. Among them, the bacterial endophyte 

Pseudomonas spp. helps in activating defense responses 
against Botrytis cinerea at both local and systemic levels 
in grapevine (Trotel-Aziz et al. 2008, Verhagen et al. 2011, 
Gruau et al. 2015). 

The endophyte i.e., Pseudomonas spp. Colonize the roots 
of grapevine and exhibits systemic defense response by 
transfer of molecular signals from roots to leaves, and it shows 
distinct defense-related gene expression patterns in roots and 
leaves of grapevine where some genes are associated with 
causing cell death and hypersensitive response (HR), which 
stops the infection from Botrytis cinerea from spreading into 
other cells and tissues of grapevine. It leads to the activation 
of oxidative burst and production of phytoalexins which 
helps in reducing the infection caused by Botrytis cinerea 
in grapevine (Gruau et al. 2015). Streptomyces anulatus is a 
potential endophytic plant growth-promoting rhizobacterium 
(PGPR) that exhibits resistance against Botrytis cinerea by 
activating defense responses in grapevine-like ion fluxes, 
extracellular alkalinization, protein kinases, oxidative burst, 
gene expression, and phytoalexin production (Vatsa-Portugal 
et al. 2017). Paraburkholderia phytofirmans is a potential 
endophytic plant growth-promoting rhizobacterium (PGPR) 
which helps in the activation of local immune response 
by inflation of phenolic compounds, ion fluxes, salicylic 
acid, and defense gene regulation for inhibiting growth 
and development of grapevine fungal pathogens mainly 
Botrytis cinerea (Compant et al. 2005, Bordiec et al. 2011, 
MiottoVilanova et al. 2016, Patya et al. 2023).  

These all of the above-mentioned bacterial endophytes 
trigger oxidative bursts in tissues of the leaf, callose deposition 
in stomata, induction of salicylic acid, jasmonic acid, and 
pathogenesis-related (PR) genes (PR1, PR2, and PR5) in 
grapevine when infected by grapevine fungal disease-causing 
pathogens. (Miotto-Vilanova et al. 2016). Some researchers 
studied and observed that Pseudomonas protegens could 
colonize inside grapevine tissues, and it helps in inhibiting 
the growth and development of various phytopathogens such 
as P. chlamydospore, P. aleophilum, B. cinerea, Alternaria 

alternata, Aspergillus niger, Penicillium expansum, and N. 

parvum at in vitro and in vivo (Andreolli et al. 2019). Some 
bacterial and fungal endophytes such as Curtobacterium 

spp., Erwinia spp., Pantoae spp., Pseudomonas spp., 
Xanthomonas spp., Biscogniauxia spp., Cladosporium spp., 
and Didymella spp., can produce secondary metabolites 
(stilbene content) in the grapevine cell suspension under 
in vitro conditions (Aleynova et al. 2021). Grapevine, 
when inoculated with some endophytes like Acinetobacter 

lwoffi, Bacillus subtilis, and Pseudomonas fluorescens, is 
effective in suppressing the growth and development of 
Botrytis cinerea, causing grey mold disease in grapevine 
due to the help of these endophytes in synthesis of stilbene 
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Table 3: Role played by antagonistic endophytes in the management of grapevine diseases.

Endophytes Role played Effective against grapevine disease References

Proteobacteria spp. Phyto-hormones production NA Baldan et al. (2015)

Streptomyces anulatus S37 Activation of protein kinases, 
induction of defense gene 
expression, and phytoalexin 
accumulation

Triggers early and late defense 
responses, such as ion fluxes, 
oxidative burst, extracellular 
alkalinization

Vatsa-Portugal et al. (2017)

Acinetobacter lwoffii Enzyme Production Grey mold Magnin-Robert et al. (2007)
Lophiostoma corticola

B. velezensis
Antifungal and antibacterial 
properties

Grey mold
Grey mold, Ripe rot, Downy 
mildew 

Kulisova et al. (2021)
Hamaoka et al. (2021)

Bacillus spp.
Variovorax spp.
Pantoea spp.
Staphylococcus spp.
Herbaspillurum spp.
Sphingomonas spp.

Biocontrol Agents Grey mold
Downy mildew

Bruisson et al. (2019)

Proteobacteria spp.
Bacillus spp.

Bio-fertilizers Grey mold Baldan et al. (2015)

Proteobacteria spp. Phosphate solubilization NA Baldan et al. (2015)
Penicillium custom

Bacillus spp.
Siderophore synthesis Grey mold Kulisova et al. (2021)

Baldan et al. (2015)
Pseudomonas fluorescens Secondary metabolites production Grey mold Gruau et al. (2015)

Aspergillus pseudodeflectus

Beauveria bassiana
Aureobasidium pullulans

Bacillus subtilis

Paenibacillus spp.

Defense responses in host plant

Grey mold
Downy mildew
Grapevine trunk
Grapevine trunk
Downy mildew

Kulisova et al. (2021)
Rondot and Reineke (2019)
Pinto et al. (2018)
Trotel-Aziz et al. (2019)
Hao et al. (2017)

Paenibacillus spp. Induce resistance in host plants. Downy mildew Haidar et al. (2016)
Penicillium, Aspergillus, Mucor, 

Alternaria,

Cephalosporium, and Geotrichum

Resveratrol As an antioxidant compound 
known to increase resistance to 
biotic stress 

Shi et al. (2012), Yang et 
al. (2016)

Paraburkholderia phytofirmans 

strain PsJN 
Activation of a local immune 
response characterized by 
the accumulation of phenolic 
compounds, 
salicylic acid (SA) accumulation, ion 
fluxes, and defense gene regulation 

 Grey mold Miotto-Vilanova et al. 
(2016)

phytoalexins, resveratrol which help activating metabolite 
composition and triggering defense mechanism in grapevine 
(Verhagen et al. 2011). It is observed that the endophyte 
Arcopilus aureus produces high resveratrol content in 
grapevine. A study was conducted on 53 isolates of potential 
endophytes obtained from various grapevine varieties 
to observe the resveratrol content produced by various 
endophytes. Among the endophytes that produce resveratrol 
content mainly belong to seven genera, i.e., Aspergillus 

spp., Botryosphaeria spp., Penicillium spp., Fusarium 

spp., Alternaria spp., Arcopilus spp. and Lasiodiplodia spp. 
(Dwibedi & Saxena 2018). Some important role played by 
endophytes against grapevine pathogens is mentioned in  
Table 3.

RECENT APPLICATIONS OF ANTAGONISTIC 
ENDOPHYTES IN GRAPEVINE FUNGAL 
DISEASE MANAGEMENT

Nowadays, both fungal and bacterial endophytic applications 
in agriculture in vivo are very beneficial for host plants in 
which they colonize because these endophytes are eco-
friendly with the host plant by promoting growth and 
development of the plant, act as a biocontrol, help in disease 
suppression, and stress tolerance, etc (Firdous et al. 2019). 
Some endophytes application helps the host plants acquire 
nutrients, production of phytohormones, phytoenzymes, and 
secondary metabolites, act as biocontrol agents, biofertilizers, 
exhibit antifungal and antibacterial properties, phosphate 
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solubilization, siderophore synthesis, defense responses and 
induce resistance for suppressing various phytopathogens by 
inhibiting their growth and development in host plants and 
prevent them from causing diseases which leads to major 
losses in crop yield (Santoyo et al. 2016). 

Recent studies in endophytes application to grapevine 
show that some endophytes are helpful in the production 
of siderophores and exhibit antioxidant and antifungal 
activity to inhibit grapevine disease-causing pathogens 
(Fig. 1). Application of Diatrype stigma, Aspergillus niger 

and Penicillium crustose endophytes in vivo helps in the 
production of siderophores in grapevine. Application of 
Penicillium crustosum and Aspergillus pseudodeflectus 

endophytes in vivo helps in exhibiting antioxidant activity 
in grapevine. Application of Lophiostoma corticola, and 
Penicillium crustosum endophytes in vivo helps in exhibiting 
antifungal activity in grapevine. (Kulisova et al. 2021). 
Application of Bacillus subtilis and Bacillus pumilus in vivo 
acts as a biocontrol agent against downy mildew disease of 
grapevine caused by Plasmopara vitcola and helps in the 
reduction of disease incidence and severity in grapevine 
(Zhang et al. 2017).

Application of some endophytes like Pantoea 

agglomerans, Enterobacter spp., Rahnella aquatilis, 

Pseudomonas spp., Paenibacillus spp., Staphylococcus 

spp., Bacillus spp., Burkholderia phytofirmans, Acremonium 

spp., Alternaria alternata, and Epicoccum nigrum can act as 
bio-control agents for effective control of various grapevine 
diseases i.e. grey mold, crown gall, pierce, and downy mildew 
(Pacifico et al. 2019). In recent days, many endophytic 
bacteria like Streptomyces spp., Pseudomonas fluorescens, 

Bacillus spp., Pantoea agglomerans, Acinetobacter 

aeruginosa, Burkholderia phytofirmans, and Rahnella 

aquatilis when applied at in vivo these can trigger defense 
responses and activate secondary metabolites in grapevine 
which help in effective defense mechanism against various 
disease-causing pathogens of grapevine. (Compant et al. 
2013). It is observed that the application of both Pantoea 

agglomerans and Paenibacillus sp helps in the control of 
grapevine trunk disease caused by Neofusicoccum parvum. 
(Haidar et al. 2021). The potential roles and mechanisms of 
the main endophytes involved in the biotic stress tolerance 
of grapevine are given in Table 4.

A survey was conducted on various vineyards and 
observed that there are about 381 culturable bacteria 
isolated from the inner portion of stems and leaves. Of these 
isolated bacteria, 30% belongs to genus Bacillus spp., and 
the latter include Paenibacillus spp., Microbacterium spp., 

 

Fig. 1: Role of endophytes in the growth and development of plants by suppressing the 
pathogenic microbes (Source: made by authors). 
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Table 4: Potential roles and mechanisms of main endophytes involved in biotic stress tolerance of grapevine.

Pathogen Endophytes Mechanism associated with the tolerance Reference
Botrytis cinerea Acinetobacter lwoffi (PTA-113 and PTA-

152), Pseudomonas fluorescens (PTA-268 
and PTA-CT2), Pantoea agglomerans 
(PTA-AF1 and PTA-AF2), Bacillus 

subtilis (PTA-271).

Ulocladium atrum

Pseudomonas fluorescens (PTA-CT2).

Bukholderia phytofirmans (PsJN).

Bacillus subtilis (BBG-127, BBG-131, 
Bs2504, and BBG-125).

Microbacterium imperial (Rz19M10)
Kocuria erythromyxa (Rt5M10)
Terribacillus saccharophilus (Rt17M10)

Streptomyces annulus (S37)

Induced the activities of lipoxygenase (LOX), 
phenylalanine ammonia-lyase (PAL), β-1,3 
glucanase, and chitinase.
Induced the oxidative burst.
Accumulated the stress-related metabolites 
phytoalexin (trans-resveratrol and trans-ε-
viniferin.
Enhanced chitinase activity.
Regulated the expression of defense-related 
genes in leaf and root, including those with 
transcriptional factor functions (JAZ9, NAC1, 
and ERF1), of secondary metabolism (PAL, STS, 
LOX9, ACCsyn, GST, CHS, CHI, LAND, and 
ANR), and PR proteins (PR1, PR2, PR3, PR5, 
and PR6).
Induced callose deposition and H2O2 production.
Primed the expression of PR1, PR2, PR5, and 
JAZ in bacterized plantlets after pathogen 
challenge.
Modulated carbohydrate metabolism.
Treatment with Bacillus subtilis strains with non-
producing lipopeptides, overproducing surfactin, 
overproducing plipastatin, and overproducing 
mycosubtilin differentially activated the plant’s 
innate immune response.
Modulated genes encode a chitinase (chit4c), 
a protease inhibitor (pin), a salicylic acid (SA) 
regulated marker (W17.3), and a glucanase (gluc).
Induced a systemic response that triggers 
increases in monoterpenes, sesquiterpenes, 
tocopherols, and membrane sterols (enhanced 
antioxidant capacity).
Induced rapid and transient generation of H2O2, 
extracellular alkalinization, and activation of 
two mitogen-activated protein kinases (MAPKs) 
followed by the expression of LOX9, PAL, STS, 
and GST genes in primed cells. Induced defenses 
modulated by Ca2+ signaling.

Magnin-Robert et al. (2007)
Trotel-Aziz et al (2008)
Verhangen et al. (2011)

Ronseaux et al. (2013)
Gruau et al. (2015)

Miotto-Vilanova et al. 
(2016)

Farace et al. (2015)

Salomon et al. (2016)

Vatsa-Portugal et al. (2017)

Botrytis cinerea, 
Plasmopara 

viticola, 
Xiphinema index 
nematodes

Paenibacillus spp. strain (B2) Modulated the expression of defense-related 
genes CHI, PAL, STS, GST, and LOX and 
pathogenesis-related protein PR-6.
Reduced nematode root infection associated with 
the expression of genes resistant to nematodes 
Hero and Hs 1pro-1.

Hao et al. (2017)

Rhizobium vitis 
(Ti) VAT03-9 
(tumorigenic)

Rhizobium vitis (ARK-1) Co-inoculation of ARK-1 with a Ti strain 
(VATO3-9) into grapevine shoots suppressed the 
expression of the virulence genes VirA, VirD3, 
and VirG of VAT03-9.

Kawaguchi et al. (2019)

Flavescence 

dorée 
phytoplasma

Pseudomonas migulae (8R6) Production of 1-aminocyclopropane-1-
carboxylate (ACC) deaminase enzyme helps the 
plant to regulate the level of the stress-related 
hormone ethylene.

Gamalero et al. (2017).

Diplodia seriata 
(strains F98.1 
and Ds99.7)
(Botryosphaeria 
dieback)

Aureobasidium pullulans strain (Fito-F278) Modulated genes encoded for plant defense 
proteins: PR protein 6 (PR-6) and β-1,3 glucanase 
(Gluc), detoxification and stress tolerance: haloacid 
dehalogenase hydrolase (Hahl), α-crystalline heat 
shock protein (HSP), β1,3- glucanase (GST5), 
phenylpropanoid pathway: (STS) cell wall 
(fascAGP) and water stress (Pip2.2).  

Pinto et al. (2018).

Table Cont....
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Staphylococcus spp., Micrococcus spp., Stenotrophomonas 

spp., Variovorax spp., Curtobacterium spp. and Agrococcus 

spp., etc (Baldan et al. 2014). These are the major endophytic 
bacteria in the grapevine that provide both environmental 
and economic benefits by exhibiting plant growth-
promoting hormones, providing required nutrients to the 
host plant, activating various beneficial microorganisms in 
soil rhizosphere, protecting host plant against biotic stress 
(pathogen) attack by aggressively competing against them 
for nutrient, space, and colonization. These endophytes are 
eco-friendly and improve the environment surrounding the 
grapevine without causing any detrimental effects on the soil 
microbiome in the rhizospheric zone. (Marasco et al. 2018).

Some endophytes like Bacillus spp., Pseudomonas spp., 
and Micrococcus spp., exhibit beneficial effects to resist 
various abiotic stresses like arsenic contamination, high 
temperature, drought, chilling, and salinity, respectively 
(Pacifico et al. 2019, Parashar & Mudgal 2024). The bacterial 
endophyte Paraburkholderia phytofirmans slowly gathers 
trehalose in grapevine to resist various abiotic stress by 
forming a gel during cellular dehydration to stop excess 
water loss from the host plant (Fernandez et al. 2012). 
Pseudomonas spp. is an endophytic bacteria that helps 
grapevine in resisting against cold conditions by inducing 
various PR (Pathogenesis) genes that encode chitinase, 
phenylalanine ammonia-lyase (PAL), lipoxygenase (LOX), 
and glucanase. Some endophytes can convert detoxification 
compounds into signaling molecules by decreasing ROS 
(Reactive oxygen species) concentration with the help of 
some genes, which particularly encode the enzymes in ROS 
accumulation in grapevine (Theocharis et al. 2012). 

The bacterial endophyte Bacillus licheniformis can able to 
exhibit various secondary metabolites such as monoterpenes 
(antioxidant activity) and sesquiterpenes (antimicrobial 
activity) in grapevine to protect the host plant from various 
abiotic stress (Salomon et al. 2014). Bacillus licheniformis is 
an endophytic bacteria that produces catenoids (antioxidants) 
in the grapevine that help the host plant survivability under 
various extremely unfavorable conditions to stop both plant 
growth and development; it may be due to abiotic/biotic/

environmental changes (Cohen et al. 2018). It is observed 
that bacterial endophytes like Bacillus licheniformis and 
Pseudomonas fluorescens can able to encode genes that induce 
the expression of ABA synthesis and signaling pathways in 
grapevine plants (Salomon et al. 2014). Some endophytic 
fungi like Septaglomus deserticola, Funneliformis mosseae, 
Rhizoglomus intraradices, Rhizoglomus clarum, and Glomus 

aggregatum can alter ABA metabolism when these endophytes 
are inoculated into grapevine so that they can survive 
effectively under drought condition (Torres et al. 2018).

Recently, many endophytes have been observed that 
can help grapevine accumulate protective molecules like 
melatonin, proline, and carotenoids, which are activated 
when the host plant suffers from various abiotic stress to 
help survive through that stress condition (Liu & Brettell 
2019). Certain endophytes from grapevine orchards that 
have been isolated for further investigation can modify the 
chemical and physical characteristics of both leaves and 
berries as they ripen. Particularly, fungal endophytes alter the 
modify the total content of reduced sugar, total flavonoids, 
total phenols, resveratrol, and PAL activity in grapevine. 
These endophytes can determine the quality of wine and 
other edible products produced from grapevine (Yang et al. 
2016). Some endophytes, when inoculated, help in enhancing 
growth and development, improving fruit quality and yield 
of grapevine, which help in relieving farmers’ economic 
burden by improving profits gained with each fruit sold in 
the market (Huang et al. 2018). some of the endophytes 
can exhibit secondary metabolites inside grapevine, 
which lowers the cost of buying pesticides to control  
various grapevine diseases and improves economic value 
by large-scale production of grapevine (Suryanarayanan et 
al. 2009). 

BIOFORMULATION

Role of Endophyte-Based Bioformulation in 
Sustainable Agriculture

Bioformulations are microbial-based products consisting 
of beneficial microbes called endophytes, which help in 

Pathogen Endophytes Mechanism associated with the tolerance Reference
Neofusicoccum 

parvum 
(Botryosphaeria 
dieback)

Bacillus subtilis (PTA-271) Antagonized Neofusicoccum parvum by delaying 
its mycelial growth and detoxifying both (R)-
mellein and (-) teremutin.
Primed defense genes including PR2 (β-1,3 
glucanase), NCED2 (involved in ABA synthesis), 
and PAL at systemic level after pathogen 
inoculation.

Trotel-Aziz et al. (2019).

Phaeomoniella 

chlamydospora 
(Trunk diseases)

Paenibacillus spp. (S19)
Bacillus pumilus (S32)

Induced resistance against trunk disease fungi: 
induced the expression of defense-related genes 
PR1, PR10, CHIT3, PAL, STS, CHS, ANTS, 
CALS, GST, and GLU.

Haidar et al. (2016).



10 Akhilesh Chandrapati et al.

Vol. 24, No. 2, 2025 • Nature Environment and Pollution Technology  

improving plant growth, supply nutrients to plants, and 
control various diseases caused by phytopathogens in an 
eco-friendly manner without causing any detrimental effects 
to the beneficial microbes in the rhizospheric zone and host 
plants (Burragoni & Jeon 2021). The bio-formulation process 
in agriculture involves the selection of beneficial microbial 
strains and a suitable carrier. An appropriate carrier is a 
vehicle that houses latent live microorganisms and provides 
a supportive niche to the microbial population (Khan et al. 
2023). A bioformulation of an endophyte is said to be good 
when it is effective, non-polluting, readily biodegradable, 
with high water retention capacity and sufficient shelf life 
(Chaudhary et al. 2020).

Endophytic bioformulation products can serve as a 
sustainable substitute for chemical fertilizers and pesticides. 
This is because chemical fertilizers can decrease soil fertility 
when used excessively, increase the possibility of pathogen 
mutation, and cause resistance to pesticides altogether 
(Arora & Mishra 2016, Sharma et al. 2023). Bioformulation 
products comprise active ingredients and inert ingredients. 
The active ingredient may be living microbe, spores, and 
their products, which should be in living conditions. It also 
requires some inert ingredients, i.e., peat, talc, vermiculate, 
carboxymethylcellulose, and polymers like xantham gum 
and diatomaceous earth, for bioformulation to be developed 
successfully. The inert carrier-based bioformulations 
helped insert antagonistic microbial cells into both the 
rhizospheric region and plant system through both foliar and 
soil application for a longer duration (Ardakani et al. 2010, 
Jorjani et al. 2011). Some additives, i.e., gum, silica gel, 
methyl-cellulose, and starch, help protect these endophyte 
bio-formulated products from extreme environmental 
conditions, which also improve the physical, chemical, and 
nutritional properties of these products (Schisler et al. 2004). 

Nowadays, endophyte-based bioformulation products 
are essential in sustainable agriculture to protect crops from 
phytopathogens and decrease disease-prone agricultural 
zones because of the resistance risk of pathogen mutation 
caused by using pesticides. Additionally, these bio-
formulations either directly or indirectly enhance plant 
growth and development in their native environments 
(Lugtenberg & Kamilova 2009). There are also some 
limitations in successfully producing endophyte-based 
bioformulation products as we know that they consist of 
living microbes, so extreme care should be taken to maintain 
microbial load and vigor without contamination of the 
original product, which determines the quality of the product 
sold to the market (Kashyap et al. 2023). The development 
of these products is highly constricted due to a lack of 
advanced technology, instruments, lack of knowledge, 

improper distribution, inexperienced manpower, technical 
difficulties, and importation laws, which leads to a loss 
of endophyte viability and decreases the efficacy of these 
products. Some other major limitations are high production 
costs and inconsistent performance. These living endophyte 
cells used in making bioformulations are highly sensitive to 
external factors, and the person handling them should follow 
caution during culture, distribution, and application (Arora 
& Mishra 2016, Xia et al. 2022).

LIMITATIONS OF ENDOPHYTES IN 
SUSTAINABLE AGRICULTURE

Many endophytes are uncultured and unidentified because 
databases for endophytes and their metabolites are still 
unavailable (Xia et al. 2022). Endophytes show specific 
characteristics towards certain plant species, and they may 
not act the same on the other plant species, which limits their 
effectiveness in the application of various crops in the world. 
Their effectiveness is influenced by some environmental 
factors like temperature, moisture, and soil characteristics, 
etc respectively. Their compatibility with agricultural 
requirements like fertilizers and pesticides is to be considered 
till now. Some combinations may be synergistic, while 
some may be antagonistic (Watts et al. 2023). It requires 
large investments to develop and commercialize endophytic 
products through numerous research, production, and 
marketing methods. It may be a challenge for the product to 
get profits exceeding its initial investment as the small-scale 
farmers cannot afford it if the price is higher. It is a complex 
and time-consuming process to get approval from regulatory 
governing bodies regarding endophytic products as they 
change from region to region and its landscape navigation 
difficulty by regulatory bodies limits its commercialization. 
Even with the recent accomplishments and advancements 
in endophyte research, there is still a knowledge gap. 
The relationship between endophytes and plants is still 
developing, and our understanding of their means of action, 
long-term impacts, and molecular interactions with the host 
plant is limited. Their risk in introducing into agricultural 
systems without proper knowledge about them is more as 
we must face the unknown consequences (Kaur et al. 2023).

In the quadritrophic system involving fruits, pathogens, 
and endophytes, the host faces limitations in terms of 
nutrition and space (Kashyap et al. 2023). Competition with 
pathogenic microorganisms for niche and nutrition, namely 
niche exclusion, is a promising mechanism for the use of 
endophytes in plant disease control (Liarzi & Ezra 2013). 
Both endophytes and pathogens rely on essential nutrients 
such as nitrogen, carbon, macro, and micronutrients for their 
survival (Kumari et al. 2022). However, after the application 
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of microbial biocontrol agents, these agents compete with 
the target pests or pathogens for space and nutrients by 
colonizing the same ecological niches or habitats as the 
target organisms, such as plant surfaces, soil, or water, 
and trying to establish themselves and proliferate. The 
biocontrol agents can out-compete the pests or pathogens 
by utilizing available resources more efficiently, depriving 
them of essential nutrients, or occupying physical spaces that 
prevent their establishment. In addition to competing with 
the target organisms, microbial biocontrol agents may also 
compete with the native microbial communities (Kumari 
et al. 2022). Native microorganisms are naturally present 
in ecosystems and play important roles in nutrient cycling, 
disease suppression, and maintaining ecosystem balance. 
The introduction of biocontrol agents can disrupt the existing 
microbial communities and create competition for resources 
(Kumar et al. 2020). Endophytes might also be ineffective 
when the disease is caused by a high presence of pathogens 
(Lahlali et al. 2014).

FUTURE ASPECTS OF ENDOPHYTES

We must explore, identify, and characterize various new 
species of endophytes to improve our understanding of their 
habitat, mode of action, how they interact with host plants, 
they will have any beneficial effect on that host plant or 
not as we explore various plant species, we can find novel 
endophytes with unique characteristics as we know that the 
endophytes are plant specific. We know that there are many 
microorganisms in the world. Some may be beneficial to 
some plants, and the remaining may be harmful to other 
plants. These beneficial microorganisms we name them as 
endophytes as their role in plant growth and development is 
diverse. To create products from these endophytes and apply 
them at the in vivo level for sustainable agriculture, we must 
first examine their properties and the impact they will have 
on the plant to which we intend to apply them.

Additionally, we need to gain a deeper understanding of 
the molecular interactions between the endophyte and the 
host plant to gain insight into potential future applications. 
For conducting molecular studies, we can use techniques such 
as transcriptomics, proteomics, and metabolomics to know 
the signaling pathways and gene regulation they do inside 
the plant. Now, as our understanding of these endophytes 
improves, we must select endophytes that are beneficial to 
a specific plant, and we can make bioformulation products 
of these endophytes, which can improve their survival, 
colonization, and efficacy on targeted plants when applied in 

vivo. These endophytes-based products are new as they have 
no records of their effectiveness in reducing abiotic/biotic 
stress in plants. So, we must investigate their efficacy under 

real-world conditions long-term to check their effectiveness 
in reducing the effect of both abiotic/biotic stress on 
targeted plants so we can apply them risk-free in sustainable 
agriculture. As the application of these endophytes-based 
products increases day by day, there is a need for some 
guidelines and safety standards should be framed by the 
regulatory bodies so that we can follow these guidelines. 
Following that these safety standards can be commercialized 
into the market to be used in agricultural practices.

CONCLUSIONS

In the past three decades, remarkable progress has been 
made in research on plant disease resistance mechanisms 
and plant-microbe interactions. Endophytes, colonizing 
plant tissues, are regarded as naturally occurring agents in 
plant disease suppression. Most of their success is attributed 
to the production of a vast array of metabolites. In this 
review, we studied the management of various fungal 
diseases of grapevine with the help of various endophytes 
(may be bacterial or fungal), which are eco-friendly. 
These endophytes also play a major role in growth and 
development of grapevine by acquiring nutrients, production 
of phytohormones, phytoenzymes, secondary metabolites, 
acting as biocontrol agents, phosphate solubilization, 
siderophore synthesis, defense responses, and inducing 
resistance for suppressing various phytopathogens by 
inhibiting their growth and development in host plants and 
prevent them from causing diseases which leads to major 
losses in crop yield of grapevine. Some endophytes help 
in reducing abiotic stress in the grapevine. Endophytes 
are reliable and environmentally friendly in plant disease 
management and crucial for sustainable agriculture.  
However, to truly achieve their large-scale commercial 
production and application, we still have some challenges 
to overcome. Biocontrol effects of endophytes are not stable 
in field trials. It is necessary to elevate the exploitation of 
endophytes and their metabolites in the biological control 
of plant diseases to the multi-omics level as a promising 
research frontier.
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