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ABSTRACT
Accurate and fast locating of diseased plants is critical for the sustainability of forest management. 
Recent developments in computer vision made by deep learning provide a new way for diseased plant 
detection from images captured by unmanned aerial vehicles (UAV). In this paper, we developed an 
anchor-free detector, an enhanced CenterNet named as Enhanced CenterNet (ECenterNet) model, 
which significantly improved the overall accuracy over the original CenterNet model without any 
increase in the running speed or number of parameters. Compared with the original model, in the 
newly proposed model improvements had been made in the training stage to increase the accuracy 
of the detector, while procedures in the test stage remained unchanged. Under the hold-out dataset, 
the proposed model is trained on 5,281 tiles and tested on 3,842 images, the results showed that the 
overall detection accuracy of ECenterNet reached 54.7% by COCO Challenge metrics (mean average 
precision (mAP) @[0.5, 0.95]), while mAP accuracy of the original CenterNet was 49.8%. This research 
indicates that the proposed deep learning detection model provides a better solution for detecting 
diseased plants from UAV images with high accuracy and real-time speed.   

INTRODUCTION 

Forests play a vital role in a country’s economic, social and 
environmental benefits (Dash et al. 2017). Plant diseases and 
pests pose a serious threat to the growth of forests. Tradition-
ally, the range and severity of plant diseases and pests are 
manually identified and scored by field investigations with 
expensive cost and low efficiency (Chiu 1993). Therefore, 
more accurate and faster detection of diseased and pest plants 
could help in developing an early treatment technology, while 
substantially reducing economic losses (Fuentes et al. 2017).

In the past, spectral detection technology using satellite 
remote sensing data or traditional computer vision methods, 
coupled with global positioning systems and geographic 
information systems, were widely used in detecting pest 
distribution and proved to be effective (Cao 2015). However, 
the efficiency of these methods was low and sometimes failed 
to accurately locate infected plants. Luckily, with the rapid 
technological developments of unmanned aerial vehicles 
(UAV), an inexpensive and fast way of getting high-resolu-
tion images of forest distribution becomes available. Based 
on these images, a variety of image processing methods have 
been developed to detect the distribution of diseased plants. 

Advances in hardware technology have allowed for the 
evolution of deep convolutional neural network (CNN), 

which has achieved greater success in many fields, including 
image classification (He et al. 2016, Krizhevsky et al. 2012, 
Szegedy et al. 2015), facial recognition (Kshirsagar et al. 
2011), segmentation (Chen et al. 2018, Long et al. 2015) and 
object detection (Dai et al. 2016, Liu et al. 2016, Redmon et 
al. 2016, Ren et al. 2017). Recently, the application of deep 
CNN for plant disease severity detection has been proposed 
and has shown a good performance. 

This paper aims at detecting forest plant diseases and 
insect pests using the object detection method. In the past, 
many object detection methods had been proposed (e.g., 
Faster RCNN (Ren et al. 2017), YOLO (Redmon et al. 2016), 
SSD (Liu et al. 2016), and RFCN (Dai et al. 2016)). All 
these methods relied on a set of pre-defined anchor boxes 
and showed good results on the PASCAL VOC (Everingham 
& Williams 2010), COCO (Lin et al. 2014), and ILSVRC 
(Russakovsky et al. 2015) datasets. However, anchor boxes 
result in excessively many hyper-parameters, which need 
to be carefully tuned to achieve high performance. Mean-
while, anchor-based detection methods also bring complex 
IoU computation and matching between anchor boxes and 
ground-truth boxes during training. To avoid these draw-
backs, some anchor free detectors are proposed, such as 
CornerNet (Law & Deng 2020), CenterNet (Zhou et al. 
2019a), FCOS (Tian et al. 2020), and ExtremNet (Zhou et al. 
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2019b), all of which take the object detection as a standard 
key-point estimation problem. Among various anchor-free 
object detection algorithms, CenterNet uses the key-point 
estimation method to regress the center point, the width, 
and the height of an object. It is a simple, fast, and accurate 
detector without any Non-Maximum Suppression (NMS) 
postprocessing. Yet it still has some drawbacks in the appli-
cation of UAV forestry image, especially in the image where 
the plants are close to each other. The objective of this study 
is to propose an enhanced CenterNet (ECenterNet) model 
for plant diseases and pest detection based on UAV images. 

MATERIALS AND METHODS

Study Area

The study area is located in Lingyuan City, Liaoning Province 
in northeast China. The dominant vegetation is Chinese red 
pine (Pinus tabuliformis) with a few poplar trees (Populus 
spp.) occasionally occurring. The pest Dendroctonus (Sco-
lytidae) has caused serious damage and tree mortality within 
the area. To quickly detect the damage level of the forest, six 
different sample sites distributed in the county were selected 
as the study area, namely Site 1, Site 2, Site 3, Site 4, Site 
5, and Site 6. Fig. 1 shows the location and distribution of 
these sample plots on a map.

Data Collection

The UAV-based data acquisition was carried out in the study 
area on August 11th and August 12th, which was the best 
time window for catching leaf symptoms. The UAV model 
was a four-rotor DJI Inspire2, carrying a DJI x5 professional 
camera with an effective resolution of 2 × 107 pixels, pro-
viding an image size of 5280 × 3956 pixels. On each sample 
plot, a certain number of pictures were toke from 40 to 240 
meters above sea level. With the increase in height, the forest 
land covered by the photos becomes larger and larger, and 
the size of individual trees in the photos becomes smaller 
and smaller. To capture images without overexposure or 
shadows, capture times when the sunlight was too strong or 
too weak were avoided.

Implementation Details

CenterNet Principles

One aim of CenterNet was to produce a key point 
heatmap, where C was the number of categories. An-
other aim of the CenterNet was to output the object size 
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where α and β were hyper-parameters, respectively, and fixed to α = 2 and β = 4 during training. N was 

the number of objects in the image. 
ˆ
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 was the prediction probability of an object with center 

coordinate (x, y) with the label of c, xycY
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, which was considered as a positive sample, where Sx and 
Sy were the horizon and vertical scale parameters, respec-
tively. Points other than the center point were regarded as 
negative samples. The training objective function was a 
penalty-reduced pixel-wise logistic regression with focal 
loss (Lin et al. 2017):
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Fig. 1: The study area. 

 

Data Collection 

The UAV-based data acquisition was carried out in the study area on August 11th and August 12th, 

which was the best time window for catching leaf symptoms. The UAV model was a four-rotor DJI 

Inspire2, carrying a DJI x5 professional camera with an effective resolution of 2 × 107 pixels, providing 

an image size of 5280 × 3956 pixels. On each sample plot, a certain number of pictures were toke from 

Fig. 1: The study area.

regression, respectively. Ldet was the total loss of the 
CenterNet detector, Lk was the heatmap value of the center 
of an object, more details about CenterNet please see Zhou 
et al. (2019a).

Separate Overlapping Center Points of Two Objects

In the original CenterNet, the positive sample of an object 
was the center of the bounding box obtained by mapping the 
object from the original image to a 128 × 128 size feature 

map, and the pixels around the center point were considered 
negative samples. If two objects of the same class were close 
to each other on a larger original image, the center points of 
the two objects were mapped to the same point on the 128 
× 128 size feature map, as it was shown in Fig. 2(a). This 
situation would bring confusion to the training of the net-
work. To solve this problem, in this paper, one of the center 
points was forced to offset by one pixel if two center points 
on the feature map coincided with each other. The improved 
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operation which was Separate Overlapping Center Points 
of two objects (SOCP) aimed to separate two overlapping 
center points of two objects on the feature map [Fig. 2(b)]. 
The detailed rules of SOCP were as follows:

Step 1. Between the two objects’ center points, the one with 
a larger bounding box area was selected to make the offset.

Step 2. Offset the selected object’s center point by one pixel 
along the long side of the object’s bounding box. Ordinary, 
either of the two directions (right or left) was selected to 
make the offset.

Step 3. Choose one of the two directions randomly. If one of 
them encountered the boundary of the image or the center of 
the other object’s bounding box, this direction was abandoned 
and another direction was chosen.

Step 4. If two of the above directions were not selected due 
to the reasons in step 3, the long side direction was given up 
and the short side direction of the object would be chosen.

Step5. Randomly choose one of the two directions along 
the short side of the object. If one of them encountered 
the boundary of the image or the center of another object’s 
bounding box, this direction would be abandoned and another 
direction would be selected.

Step 6. If neither of the directions was selected to move due 
to the reason in step 3, the offset operation was given up and 
the original strategy in original CenterNet was kept.

Controlled Sampling Strategy for Objects on the 
Boundary

In the original CenterNet, before the data were sent to the 
network, an affine transformation of random center shift 
and scaling was performed on the image. At this time, some 
objects were moved out of the image’s boundary, some stayed 
in the image’s boundary, and some fell on the boundary. For 
the objects that fell on the boundary, the original CenterNet 
method used clip operation to recalculate the bounding box 
coordinates of the remaining part. However, the new coor-
dinates of the bounding box calculated by clipping were 
often inaccurate, as shown in Fig. 3(b), while the accurate 
coordinates of the left object’s bounding box are shown in 
Fig. 3(c).

To avoid the above-mentioned problems as far as possi-
ble, there was a limitation that the bounding box area of the 
remaining object on the image’s boundary should be more 
than 90% of that of the original one. In detail, before perform-
ing the affine transformation, the randomly generated offset 
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not satisfied, a new set of parameters O and S were randomly created and then tried again until it was 

satisfied. This strategy was called a controlled sampling strategy (CSS). With the help of CSS, the 

bounding box recalculated by clip operation was very close to the accurate bounding box, especially for 

the trees whose shapes were approximately circular in this study. In addition, in the experiment, when 

replacing the affine transformation with the resize operation and no offset operation, the accuracy 

declined. The reason might be that the resize operation reduced the richness of data compared with the 

random affine transformation operation. 

   

Fig. 3: (a) The original labeled picture, (b) the bounding box create in CenterNet after the affine 

transform, and (c) the real bounding box of the left part after the affine transform to picture. 

 

Positive Pixel Choosing Mechanism 

In the original CenterNet, the center of the object's bounding box in the original image was 

considered to be a positive sample to object’ category classification. However, for some objects, as shown 

in Fig. 4, the center point did not seem to be a good representation of the object. In addition, during the 

training of the original CenterNet, it was found that some pixels nearby the center pixel had larger IoU 

formed by the predicted bounding box and ground truth than that of the center pixel (Fig. 5). This 

phenomenon indicated that some pixels in the neighborhood of the center point were more suitable for 

an object’s bounding box regression. 
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Fig. 4: Samples of the center point of the bounding box that cannot represent well of the related 
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bounding box but also the eight neighboring pixels around the center point were considered as candidate 
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points competed with each other, and the suitable one was selected as the positive sample of the object. 

Specifically, after a certain number (experiments show 30 was better) of epochs in the training stage, if 

one of the eight neighboring pixels’ IoU formed by the bounding box and ground truth was 0.2 higher 

than that of the center pixel, the pixel was selected as a positive sample to calculate the loss of 

classification and regression in the following training stage.  
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parameter O and scaling factor S for affine transformation 
should be satisfied the limitation mentioned above. If it was 
not satisfied, a new set of parameters O and S were randomly 
created and then tried again until it was satisfied. This strate-
gy was called a controlled sampling strategy (CSS). With the 
help of CSS, the bounding box recalculated by clip operation 
was very close to the accurate bounding box, especially for 
the trees whose shapes were approximately circular in this 
study. In addition, in the experiment, when replacing the 
affine transformation with the resize operation and no offset 
operation, the accuracy declined. The reason might be that 
the resize operation reduced the richness of data compared 
with the random affine transformation operation.

Positive Pixel Choosing Mechanism

In the original CenterNet, the center of the object’s bounding 
box in the original image was considered to be a positive 
sample to object’ category classification. However, for some 
objects, as shown in Fig. 4, the center point did not seem to 
be a good representation of the object. In addition, during 
the training of the original CenterNet, it was found that some 
pixels nearby the center pixel had larger IoU formed by the 
predicted bounding box and ground truth than that of the 
center pixel (Fig. 5). This phenomenon indicated that some 
pixels in the neighborhood of the center point were more 
suitable for an object’s bounding box regression.

In view of the above phenomenon, a positive pixel choos-
ing mechanism (PPCM) was designed in this paper to select 
a better positive sample. In the training stage, not only the 

center point of the object’s bounding box but also the eight 
neighboring pixels around the center point were considered 
as candidate positive samples. During the training process, 
the center point together with the eight neighborhood points 
competed with each other, and the suitable one was selected 
as the positive sample of the object. Specifically, after a 
certain number (experiments show 30 was better) of epochs 
in the training stage, if one of the eight neighboring pixels’ 
IoU formed by the bounding box and ground truth was 0.2 
higher than that of the center pixel, the pixel was selected as 
a positive sample to calculate the loss of classification and 
regression in the following training stage.

Experiments

Data Preparation

In the fieldwork, plants with green leaves were classified as 
healthy plants, while those with yellow leaves were regarded 
as infected stage plants, and those with red leaves were clas-
sified as dead plants. This study only focused on diseased and 
infected plant detection, therefore, only plants with yellow 
and red leaves were annotated. As the original size of the 
images was 5,280 × 3,956 size pixels, which was too big to 
train a network, a set of image tiles was created by cropping 
each original aerial image by using a sliding window with 
random sizes between 1,000 and 2,000 pixels and stride of 
1,000 pixels. In this way, one big aerial image was split into 
several small images. Before training, the images of Site 1, 
Site 3, Site 4, and Site 6 were split into training and vali-
dation datasets, while the images of Site 2 and Site 5 were 
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chosen as testing datasets. At last, the training and validation 
datasets contained 5,281 tiles and 1,319 tiles respectively, 
and the test dataset contained 3,842 images. All the images 
were manually labeled with ground truth bounding boxes 
and assigned with class labels “infected” or “dead” (only 
one per bounding box).

To get as many samples as possible, some more data were 
created through the method of data augmentation. Several 
strategies were adopted to do data augmentation, such as 
flip, random color, random rotation, random crop, and so on.

Training

In all of these experiments, the input sizes of all of the 
networks were fixed to a size of 512 × 512, while the class 
number was two, including “dead”, and “infected” classes. 
No matter how large the input image was, it would be scaled 
to the same size through affine transformation, and then pass 
through the network of CenterNet structure. ResNet-101 was 
selected as the backbone part of the network. After passing 
through the backbone network, the size of the feature layer 
became 128 × 128 because of the down sampling of the 
convolution and pooling layer. 

As PyTorch is one of the most famous and fastest deep 
learning frameworks for CNN, it is used to train models in 
this experiment. The network was then trained on a single 
NVIDIA Titan 12 GB GPU. The training was stopped 
after 140 epochs, which took roughly 4 days. The Adam 
learning method was used as the gradient descent algo-
rithm. The detailed training hyper-parameters were listed in  
Table 1.

Test and Comparison

To make a full comparison with other models, original 
CenterNet (Zhou et al. 2019a), SSD (Liu et al. 2016), and 
Faster RCNN (Ren et al. 2017) were trained with the same 
data and settings, and then were tested and compared with 
the proposed ECenterNet model. 

To evaluate the final detections, the official COCO API 
(Lin & Dollar 2016), measured mAP over IoU thresholds 

Table 1: Parameters of network training.

Argument Value

Mini-batch size 8

Num_epochs 140

Lr_policy Multistep

Stepvalue 90, 120

Initial learning rate 1.25e-4

Gamma 0.1

from 0.5 to 0.95 with steps of 0.05, simply denoted as mAP@
[.5, .95], was used as the performance indicator.

The Average Precision (AP) was the area under the Pre-
cision-Recall curve for the detection task. As in the COCO 
Challenge, the AP was computed by averaging the precision 
over a set of spaced recall levels from 0 to 1 with steps of 0.01.
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RESULTS 

Results of Different Models 

The results of different models are shown in Table 2. The proposed ECenterNet performed very 

well in both classes. Among the anchor-based methods, RetinaNet (Lin et al. 2017) performed best with 

0.029 higher accuracies of mAP@[.5, .95] compared with the SSD method (Liu et al. 2016). In anchor 

free method, CenterNet (Zhou et al. 2019a) had a 0.07 higher accuracy of mAP@[.5, .95] than CornerNet 

(Law & Deng 2020), while it was 0.19 lower than that of CornerNet (Zhou et al. 2019a) in mAP@[.5, .95]. 

Compared with the method proposed in this paper, the accuracy of CornerNet (Law & Deng 2020) and 

CenterNet (Zhou et al. 2019a) were relatively lower. In detail, the proposed method outperformed 

CornerNet (Law & Deng 2020) with 0.056 in mAP@[.5, .95], 0.011 in mAP@[.5] and 0.053 in 
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RESULTS

Results of Different Models

The results of different models are shown in Table 2. The 
proposed ECenterNet performed very well in both classes. 
Among the anchor-based methods, RetinaNet (Lin et al. 
2017) performed best with 0.029 higher accuracies of mAP@
[.5, .95] compared with the SSD method (Liu et al. 2016). 
In anchor free method, CenterNet (Zhou et al. 2019a) had 
a 0.07 higher accuracy of mAP@[.5, .95] than CornerNet 
(Law & Deng 2020), while it was 0.19 lower than that of 
CornerNet (Zhou et al. 2019a) in mAP@[.5, .95]. Compared 
with the method proposed in this paper, the accuracy of 
CornerNet (Law & Deng 2020) and CenterNet (Zhou et al. 
2019a) were relatively lower. In detail, the proposed method 
outperformed CornerNet (Law & Deng 2020) with 0.056 in 
mAP@[.5, .95], 0.011 in mAP@[.5] and 0.053 in mAP@
[.75]. When compared with CenterNet (Zhou et al. 2019a), 
the proposed method was 0.049, 0.030, and 0.055 higher in 
mAP@[.5, .95], mAP@[.5] and mAP@[.75], respectively. 

Detection Samples 

In the first two columns of Fig. 6, plants were detected by the 
original CenterNet (Zhou et al. 2019a) model and the pro-
posed ECenterNet model. The first row showed the images 
that contained “dead” plants on the boundary of the image. 
As can be seen from the first row in Fig. 6, the boundary box 
regressed by the original CenterNet model was larger than 
the ground truth boundary box, and its category score was 
only 0.82. In contrast, the ECenterNet’s regression of the 
bounding box was more accurate as shown in the first row 
and second column in Fig. 6. Moreover, the category score of 
the boundary box was 0.95, which was also higher than that 
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Table 2: Detection results comparison using different frameworks and network architectures.

Method backbone mAP@[.5] mAP@[.75] mAP@[.5, .95]

Faster RCNN ResNet-101 0.693 0.535 0.472

SSD ResNet-101 0.573 0.489 0.451

RetinaNet ResNet-101-FPN 0.724 0.546 0.480

CornerNet Hourglass-104 0.722 0.559 0.491

CenterNet ResNet-101 0.703 0.557 0.498

ECenterNet (Ours) ResNet-101 0.733 0.612 0.547

mAP stands for mean average precision.

 

 

 

Fig. 5: Red bounding box is the ground truth box; The yellow pixel in the feature map is the positive 

sample produced by the rule of the original CenterNet, and the yellow bounding box is the related box 

predicted by this positive sample; the Blue pixel is the neighbor pixel of the yellow one, and the blue 

bounding box is the related bounding box of the blue pixel; IoU between red and blue bounding box is 

larger than IoU between red and yellow bounding box. 

Experiments 

Data Preparation 

In the fieldwork, plants with green leaves were classified as healthy plants, while those with yellow 

leaves were regarded as infected stage plants, and those with red leaves were classified as dead plants. 

This study only focused on diseased and infected plant detection, therefore, only plants with yellow and 

red leaves were annotated. As the original size of the images was 5,280 × 3,956 size pixels, which was 

too big to train a network, a set of image tiles was created by cropping each original aerial image by using 

a sliding window with random sizes between 1,000 and 2,000 pixels and stride of 1,000 pixels. In this 

way, one big aerial image was split into several small images. Before training, the images of Site 1, Site 

3, Site 4, and Site 6 were split into training and validation datasets, while the images of Site 2 and Site 5 

were chosen as testing datasets. At last, the training and validation datasets contained 5,281 tiles and 

1,319 tiles respectively, and the test dataset contained 3,842 images. All the images were manually 

labeled with ground truth bounding boxes and assigned with class labels “infected” or “dead” (only one 

per bounding box). 

To get as many samples as possible, some more data were created through the method of data 

Fig. 5: Red bounding box is the ground truth box; The yellow pixel in the feature map is the positive sample produced by the rule of the original 
CenterNet, and the yellow bounding box is the related box predicted by this positive sample; the Blue pixel is the neighbor pixel of the yellow one,  

and the blue bounding box is the related bounding box of the blue pixel; IoU between red and blue bounding box is larger  
than IoU between red and yellow bounding box.

of the original CenterNet. It could be seen from the second 
row in Fig. 6, that the original CenterNet might not be able 
to detect objects, which were very small in the image, while 
ECenterNet could successfully detect them from the whole 
image. It could be seen from the third row in Fig. 6 that some 
plant objects could not be detected by the original CenterNet, 
while ECenterNet detected them successfully. In addition, 
compared with ground truth, ECenterNet’s boundary box 
regression was more accurate for most objects.

DISCUSSION

Detection Accuracy with Different IoU

Fig. 7(a-c) shows the precision-recall curves when the IoU 
thresholds are 0.5, 0.7, and 0.9, respectively. Compared with 
the original CenterNet, the improvement (area surrounded 
by the red line and the green line) of mAP (area under the 
curve) of the proposed method increased with the increase 
of IoU, suggesting that the proposed method had higher pre-
dictive power than original CenterNet (larger IoU indicated 

the more accurate location of an object). On the one hand, 
strategy CSS ensured that the newly calculated bounding box 
was more accurate for objects on the boundary of the image 
after affine transformation, on the other hand, the training 
strategy in PPCM enabled to choose of a more suitable pixel 
with a higher predicted IoU formed by predicted bounding 
box and ground truth to represent the object. Both of these 
two strategies improved the accuracy of position prediction 
to a certain extent.

Architecture Ablation and Diagnosis

To demonstrate the effectiveness of the method proposed 
in this paper, different supplementary experiments were 
carried out, and the results were shown in Table 3. Adding 
SOCP strategy resulted in 0.009 improvements in mAP@
[.5, .95], while strategy CSS and strategy PPCM led to 0.16 
and 0.24 improvement in mAP@[.5, .95], respectively. The 
improvement in accuracy brought by SOCP was relatively 
little when compared with the strategies of CSS and PPCM. 
The reason was that in the current test set, the side length 
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Fig. 6: Sample images of different models: the original CenterNet (Zhou et al. 2019a) model (left), the 

ECenterNet model (middle), and the ground truth (right). 
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Fig. 6: Sample images of different models: the original CenterNet (Zhou et al. 2019a) model (left), the ECenterNet model (middle),  
and the ground truth (right).

Table 3: Detection results comparison using ablation and diagnosis architectures.

Method mAP@[.5] mAP@[.75] mAP@[.5, .95]

CenterNet 0.703 0.557 0.498

+SOCP 0.722 0.568 0.507

+SOCP +CSS 0.731 0.599 0.523

+SOCP +CSS+PPCM(Ours) 0.733 0.612 0.547
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improvement in mAP@[.5, .95], respectively. The improvement in accuracy brought by SOCP was 

relatively little when compared with the strategies of CSS and PPCM. The reason was that in the current 

test set, the side length of the cut testing image was mostly between 1000 and 2000 pixels, which was 

less likely to yield objects with two overlapping centers when rescaled to a size of 128 × 128 pixels. 

However, it was speculated that with the increase in UAV shooting height, there would be more objects 

whose center points would coincide with each other, and thus SOCP strategy would play a more 

important role in inferring the whole big image.  

(a) Class-agnostic precision-recall curves at 
IoU =0.50.

(b) Class-agnostic precision-recall curves at 
IoU =0.70.

(c) Class-agnostic precision-recall curves at IoU 
=0.90.

Fig. 7: Precision-recall curves of different IoU.

of the cut testing image was mostly between 1000 and 
2000 pixels, which was less likely to yield objects with two 
overlapping centers when rescaled to a size of 128 × 128 
pixels. However, it was speculated that with the increase in 
UAV shooting height, there would be more objects whose 
center points would coincide with each other, and thus SOCP 
strategy would play a more important role in inferring the 
whole big image.

Difficulties in Detection

In the proposed model, the accuracy of detecting the dead 
plant was higher than that of detecting the infected plant. 
That was because color differences were greater among 
infected plants than that of dead plants, while the dead 
plants were always characterized by pure carmine with small 
color variances. Fig. 8 shows samples of images including 
infected and dead plants. It could be clearly seen that even 
if most of the infected plants were yellow, their shades were 
different from each other. Some infected yellow plants were 

mixed with some red leaves, such as the infected plants in 
Fig. 8 (a, c), while the color of other infected plants was 
different from each other, such as the infected plants in 
Fig. 8 (b, d). All of these variations of infected plants add 
difficulty in detection. On the contrary, dead plants with red 
leaves could be detected easily, resulting in relatively high  
accuracy. 

CONCLUSION

In this paper, we proposed an improved anchor-free object 
detection method based on CenterNet (Zhou et al. 2019a). 
The test results showed greater accuracy of the mAP@[.5], 
mAP@[.75], and mAP@[.5, .95] than the original CenterNet 
(Zhou et al. 2019a). The CSS was used to accurately loca-
tioning before the training stage, while SOCP and PPM were 
used to get a more suitable positive sample in the training 
stage. All the CSS, SOCP, and PPM operations helped to 
improve the detection accuracy. For the whole procedure, 
no extra parameters were introduced. In other words, the 
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accuracy of the proposed model was improved without any 
increase in running time and model size.

Compared with the original CenterNet, three hyperpa-
rameters were added in this paper: one was the IoU threshold 
of 0.9 in CSS strategy, and the other two were the number of 
neighborhood pixels (8 in this method) in PPCM strategy and 
IoU threshold (in this method, it was 0.2). These parameters 
were empirical values. To explore the precise values of these 
parameters, Neural Architecture Search (NAS) technology 
can be used in future searches.

With the development of optimizing technologies, this 
model can be continuously improved with fewer computing 
resources, lower costs, and faster inference speeds. In the near 
future, there will be a model, which adopts a deep learning 
method for diseased plant detection on a UAV device, to ena-
ble researchers for fast and accurate detections. At that time, 
UAV can transfer the detection results to a ground receiving 
station in a timely manner during its flight, and researchers 
can use these results to prevent diseases from spreading in 
forests or do further studies.
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