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       ABSTRACT
Traffic accidents remain a pressing public safety concern, with a substantial number of 
incidents resulting from drivers' lack of attentiveness to road signs. Automated road sign 
recognition has emerged as a promising technology for enhancing driving assistance 
systems. This study explores the application of Convolutional Neural Networks (CNNs) in 
automatically recognizing road signs. CNNs, as deep learning algorithms, possess the ability 
to process and classify visual data, making them well-suited for image-based tasks such as 
road sign recognition. The research focuses on the data collection process for training the 
CNN, incorporating a diverse dataset of road sign images to improve recognition accuracy 
across various scenarios. A mobile application was developed as the user interface, with the 
output of the system displayed on the app. The results show that the system is capable of 
recognizing signs in real time, with average accuracy for sign recognition from a distance of 
10 meters: i) daytime = 89.8%, ii) nighttime = 75.6%, and iii) rainy conditions = 76.4%. In 
conclusion, the integration of CNNs in automated road sign recognition, as demonstrated in 
this study, presents a promising avenue for enhancing driving safety by addressing drivers' 
attentiveness to road signs in real-time scenarios.

INTRODUCTION

With the growing demand for intelligent transport systems 
and the pursuit of safer road environments, automated road 
sign recognition has emerged as a promising technology. 
Convolutional Neural Networks (CNNs), a class of deep 
learning algorithms inspired by human visual processing, 
have revolutionized various fields, including image 
recognition tasks (Behera et al. 2022, Khan et al. 2023, Fredj 
et al. 2023, Kiliçarslan et al., 2023, Lee et al. 2021, Razi 
et al. 2023). Leveraging the power of CNNs, researchers, 
and engineers have made significant strides in developing 
automated road sign recognition systems that exhibit high 
accuracy and efficiency. This study aims to explore the 
application of CNNs in automatically recognizing road 
signs, and addressing challenges posed by diverse road sign 
designs, environmental conditions, and real-time processing 
requirements. 

This research introduces a novel solution to tackle 
challenges in road sign recognition by presenting a robust and 

efficient framework that surpasses existing methodologies 
in UAV inspection scenarios. The successful integration 
of CNN and You Only Look Once version 3 (YOLOv3) 
methodologies highlights the advantages of employing 
deep learning techniques to enhance road sign recognition 
algorithms. The framework’s development involved 
extensive investigations into dataset generation techniques, 
picture classification methods, and network parameter 
determination, all aimed at optimizing the algorithm’s 
performance.

Recognizing traffic signs is crucial for automated driving 
and driver assistance systems. However, various factors such 
as partial occlusion, diverse views, varying illuminations, and 
weather conditions pose significant challenges for computers 
in visually identifying traffic sign images. Researchers are 
actively addressing this complex task using established or 
specifically developed computer vision algorithms. Before the 
release of standardized benchmarks like the German Traffic 
Sign Benchmark (GTSRB) and German Traffic Sign Database 
(GTSDB), researchers lacked publicly accessible datasets 
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for comparison, hindering the evaluation and comparison of 
methods. Despite the availability of benchmarks, limitations 
persist, such as the focus on symbol-based traffic signs with 
regular shapes and colors, the reliance on static images, and the 
lack of comparability in identifying existing signs in a scene.

Researchers have made significant advancements in 
accurate road sign recognition by building a big dataset of 
road sign images and training CNNs on vast repositories of 
annotated data. Real-time implementation of CNN-based 
road sign recognition in cars is expected to enhance driving 
assistance systems by providing drivers with up-to-date 
information on speed limits, warnings, road signs, and 
directions (Luo et al. 2017, Chen et al. 2019, Dewi et al. 
2022). The use of CNNs for road sign recognition has been 
shown to potentially reduce accidents caused by drivers 
misinterpreting or failing to observe road signs (Khan et al. 
2023, Luo et al. 2017). This could help to improve the safety 
and dependability of driving. However, as stated there are 
still limitations to the technology which include processing 
of partially obstructed images or noisy images. This study 
aims to critically address the limitations and opportunities 
for further refinement to ensure the seamless integration 
of CNN-based road sign recognition in modern driving 
environments. Apart from CNN, other methods have also 
been deployed to enable autonomous vehicles (Sudhakar & 
Priya 2023, Ramlan et al. 2022, Rosli et al. 2018, Noor et 
al. 2017, Bin Md Fauadi & Murata 2010).

This study integrates the CNN and YOLOv3 approaches 
to create a unique framework for an algorithm that recognizes 
traffic signs. The suggested method improves the quality of 
acquired road sign pictures by high-resolution restoration of 
blurry images using CNN. The enhanced clear images are 
processed with more training images to increase the dataset 
size and enhance the network’s recognition performance. 
YOLOv3 is then utilized for precise road sign recognition 
in real-time situations. Extensive investigations were 
carried out on various aspects of the proposed framework. 
Furthermore, the dataset collection approach, picture 
classification methods, and network parameter determination 
were critically analyzed to optimize the algorithm’s  
performance. 

Traffic sign recognition is a critical factor for driver 
assistance systems and automated driving. Additionally, as 
the system needs to deal with a realistic environment, partial 
occlusion, varied angles, different illuminations, weather, and 
other factors make it challenging for the system to visually 
identify photographs of traffic signs. Most methods for 
recognizing traffic signals in an image involve two primary 
steps: detection and classification. Many academics are 
using well-established or specially created computer vision 
algorithms to tackle this difficult issue (Huang et al. 2020).

There was no publicly available dataset for comparison 
before the publication of the German Traffic Sign Benchmark 
(GTSDB) and German Traffic Sign Benchmark (GTSRB) 
(Stallkamp et al. 2012). As a result, researchers have a 
uniform dataset to assess and contrast their approaches with. 
Nevertheless, there are still issues with GTSRB and GTSDB:

 i. Both benchmarks encompass only three types of 
symbol-based traffic signs with regular shapes and 
colors, which are comparatively easier to detect and 
classify than text-based traffic signs.

 ii. GTSDB solely comprises static images, yet in practical 
scenarios, continuous video footage captured by an 
in-vehicle camera proves more beneficial for detection 
and classification (Luo et al. 2017).

 iii. The ultimate goal of traffic sign recognition is to identify 
existing signs in a scene, but the two benchmarks lack 
comparability in this aspect.

The unique contribution of this research lies in the 
innovative framework that integrated CNN and YOLOv3 
methodologies, addressing challenges in road sign recognition 
and surpassing existing methodologies in UAV inspection 
scenarios. The innovative framework developed in this 
research offers a distinct advantage by compensating for 
the potential lack of state-of-the-art equipment in road sign 
recognition systems. While traditional approaches may rely 
heavily on advanced hardware or costly infrastructure to 
achieve accurate results, the integration of CNN and YOLOv3 
methodologies provides an alternative solution. By leveraging 
deep learning techniques within the proposed framework, the 
system can achieve high levels of accuracy and efficiency 
without necessarily requiring the latest and most expensive 
hardware components. This means that the framework can 
be implemented in scenarios where access to state-of-the-art 
equipment may be limited or cost-prohibitive, making it a more 
accessible and practical solution for various applications.

The remainder of the paper is divided into the following 
sections: The method for recognizing the road signs is 
described in Section II, along with the function of each 
component of the framework. This section also provides a 
thorough introduction to the theoretical underpinnings of 
the proposed CNN algorithm and the proposed YOLOv3’s 
detection principle. Section III discusses the dataset, 
experimental findings, assessment of our algorithms, and 
comparison to alternative approaches. The last section of 
this essay is Section IV.

MATERIALS AND METHODS

Proposed Model 

Fig. 1 illustrates the main procedure of CNN for detecting 
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the primary electrical components (Chen et al. 2019). In this 
research, preprocessing of the sign images involves the steps. 
Initially, the original image dataset is categorized into two 
groups. The first group comprises qualified images suitable 
for use as the training set, while the second group consists 
of blurred images with lower resolutions. Subsequently, the 
blurred image set undergoes super-resolution reconstruction 
using CNN, thereby enhancing its resolution to match that 
of the original images. The resulting processed images are 
then merged with the original images to form the appropriate 
inspection image sets. 

Furthermore, based on Peng et al. (2021) and Qingyun 
et al. (2020), the original inspection image set is resized to 
a resolution of 416×416 within the YOLOv3 architecture. 
The resized images are subsequently input into Darknet53, 
enabling the extraction of relevant features associated 
with electrical components. The feature pyramid networks 
(FPN) are subsequently utilized to generate predictions 
across three distinct scales using the feature outputs from 
Darknet-53. The comprehensive predictions obtained 
from YOLOv3 encompass essential parameters, including 
bounding box information, objectness score, and class 
predictions. To refine the predictions, YOLOv3 employs a 
filtering process to remove anchors that exhibit substantial 
overlap with the ground truth object, subject to a selected 
threshold. Following this filtering step, the network proceeds 
to output the classification outcomes and corresponding 
positioning information for each bounding box. Ultimately, 
the YOLOv3 network yields comprehensive detection 

results. The proposed flow for this study is depicted in  
Fig. 2.

Experimental Setup 

The dataset for this research project comprised a total of 
450 images, consisting of 125 negative images and 325 
positive images. The negative images encompassed road 
scenes containing objects like buildings, trees, cars, and 
roads devoid of road signs. These images were captured in 
Ayer Keroh, Melaka for several days. It is worth noting that 
all images used in the dataset were obtained directly from 
phone-captured photographs, and no images from external 
internet sources were utilized. The dataset exhibited diverse 
conditions, including variations in lighting and time of day, 
providing a comprehensive representation of real-world 
scenarios. Table 1 shows the summary of data collection. 

The experiment was conducted on a personal computer 
equipped with an Intel(R) Core(TM) Pentium processor 
running at 3.7 GHz. It was configured with 8GB of RAM 
and operated on a 64-bit operating system. Data collection 
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employed an iPhone 11 camera featuring a high-definition 
(HD) 12-megapixel (MP) rear camera.

Moreover, the personal computer is equipped with Python 
3.7.2 (64-bit), enabling clear and coherent programming 
with the added benefit of automatic memory management. 
The Python libraries used in this project include Opencv 
and Numpy, essential for image processing and numerical 
computations, respectively. Additionally, Google Colab 
serves as the software platform for model training, eliminating 
the need to install or configure additional software on the 
computer. This streamlined approach ensures a straightforward 
and efficient training process for road sign image recognition.

Dataset Preparation

To construct the targeted dataset, five types of road signs 
as illustrated in Fig. 3 (a) Stop, (b) Bump Ahead, (c) 
Children Crossing, (d) Speed Limit and (e) No Entry - were 
meticulously collected as the primary data. The labels for 
these road signs are listed in Table 2. These five road sign 
types are commonly encountered on Malaysian roads. A 
total of 750 images were gathered, comprising 150 images 
for each road sign category. Subsequently, the dataset was 
automatically constructed using Google Colab, streamlining 
the data preparation process.

Network Structure of the Proposed CNN

The CNN network initially resizes the extracted blurred 
inspection image to the desired target size using the 
Bicubic interpolation algorithm, denoted as Y. The primary 
objective of super-resolution reconstruction is to recover 
Y to the high-resolution image H, resembling the original 
resolution image X. This is achieved through training to 
obtain the corresponding “end-to-end” mapping function 
F(Y). The architectural representation of the CNN network 
is illustrated in Fig. 1, comprising a multi-layer CNN. The 
network is divided into three levels, corresponding to the 
three successive steps involved in image super-resolution 
reconstruction:

	 •	 The initial convolutional layer extracts image blocks 
from Y and represents these features at a lower 
resolution level.

	 •	 The subsequent convolutional layer performs non-linear 
mapping to generate high-resolution features.

	 •	 The final convolutional layer reconstructs high-
resolution images, effectively producing images closely 
resembling the original high-resolution images.

Training and Classification Using YOLOv3

YOLOv3, a real-time object identification technique 
utilizing neural networks, was employed for training and 
classification. Due to its remarkable combination of speed 
and accuracy, this algorithm has gained widespread adoption 
among users. Notably, it has successfully detected a diverse 
range of objects, including traffic lights, pedestrians, parking 
meters, and animals. Key advantages of YOLOv3 include 
its speed, high accuracy, and learning capabilities in object 
representation and detection.

The feature detector Darknet-53 in YOLOv3’s 
architectural design draws inspiration from established 
models such as ResNet and Feature Pyramid Network 
(FPN). With 52 convolutions featuring skip connections 
akin to ResNet and three integrated prediction heads similar 
to FPN, Darknet-53 exhibits the capacity to process images 
at various spatial compressions. This amalgamation of 
influential designs empowers Darknet-53 with the ability to 
effectively detect features in images across different spatial r 
esolutions.

RESULTS AND DISCUSSION

The assessment of the overall system performance primarily 
focuses on evaluating detection and classification accuracy 
across diverse conditions encompassing varying views, 
angles, distances, light intensities, and driving environments. 
Results are systematically organized into a tabular format, 
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Similarly, experiments were conducted at night between 
8:00 pm to 10:00 pm, with illumination lower than 20 lux, 
aiming to evaluate system performance under varied lighting 
conditions. Fig. 4 illustrates the detection and recognition 
outcomes of the five road sign types at distances of 3 to 
7 meters during nighttime conditions. Similar to daytime 
evaluation, images were captured thrice at the same 
distance, and average accuracies were determined. These 
comprehensive evaluations under different conditions aim 
to ensure robust and reliable system performance.

Accuracy in Relation to Distance - Day and Night

The results demonstrate data collected from three repetitions 
for each road sign at distances of 3 to 10 meters. The 
experiment’s highest accuracy of 95.00% was achieved for 
the Speed Limit label, while the lowest accuracy of 75.00% 
was observed for the Stop label.

Additionally, during nighttime recognition at a 3-meter 
distance with an illumination of 10 lux, the Speed Bump 
demonstrated the highest accuracy of 88%, whereas the 
Speed Limit label recorded the lowest accuracy of 62.00%. 
This revised version aims to improve the academic tone, 
clarity, and coherence of the content while ensuring the 
accurate presentation of experimental procedures and results. 
The results are shown in Figs. 5 and 6 respectively.

Image Retraining

Fig. 7 illustrates the results, indicating that the accuracy 
of image detection for Stop and Children crossing signs 
obtained the lowest scores compared to image detection 
at a 3-meter distance. It was observed that both road signs 
did not undergo complete training in Google Colab due to 

incorporating values for True Positive, True Negative, False 
Positive, False Negative, error rates, and accuracy metrics. 
The comprehensive evaluation of the system involves 
employing computational theories through Google Colab, 
generating quantitative metrics crucial for assessing the 
system’s efficacy and robustness. The evaluation metrics 
utilized in this study are defined as follows:

	 •	 True Positive: Video frames with road signs precisely 
detected and recognized as such by the experiment.

	 •	 True Negative: Video frames without road signs 
precisely detected and recognized as lacking road signs 
by the experiment.
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enhanced resolution, depict the detection and recognition 
outcomes of the five road sign types at a 3-meter distance 
in daylight. To ensure accuracy, each image was captured 
thrice, and average accuracy was computed.
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Accuracy in Relation to Distance - Day and Night 

The results demonstrate data collected from three repetitions 
for each road sign at distances of 3 to 10 meters. The 
experiment's highest accuracy of 95.00% was achieved for 
the Speed Limit label, while the lowest accuracy of 75.00% 
was observed for the Stop label. 

Additionally, during nighttime recognition at a 3-meter 
distance with an illumination of 10 lux, the Speed Bump 
demonstrated the highest accuracy of 88%, whereas the 
Speed Limit label recorded the lowest accuracy of 62.00%. 
This revised version aims to improve the academic tone, 
clarity, and coherence of the content while ensuring the 
accurate presentation of experimental procedures and 
results. The results are shown in Figs. 5 and 6 respectively. 
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the platform’s limited training time, capped at 60 hours. 
Consequently, retraining becomes imperative to enhance the 
accuracy score, allowing these road signs to achieve higher 
accuracy levels. However, achieving optimal accuracy for 
“Berhenti” and “Bonggol” signs might necessitate a lifetime 
purchase of training resources, given the insufficient training 
time available in Google Colab for comprehensive learning.

The study presents a comparative analysis of detection 
distances at 3-, 5- and 10-meters during daytime, both before 
and after retraining. Post retraining for image detection at 
a 10-meter distance, the accuracy for “Stop” and “Speed 
bump” signs exhibited significant improvement, increasing 
from 74% to 84% for “Stop”; and from 88% to 92% for 
“Speed bump.” The enhancement is depicted in Figs. 7 and 
8, illustrating notable accuracy rates for all signs during 
daytime and night time testing, respectively.

Detection and Recognition Under Rainy Conditions

This experiment specifically aimed to evaluate the detection 
and recognition capabilities of the system in rainy weather 
conditions, assessing its ability to identify road signs 

under adverse circumstances. The image captures were 
conducted around 9:00 a.m. during daylight hours. To 
ensure a comprehensive assessment, three separate tests 
were conducted, each utilizing distinct images to showcase 
the system’s accuracy in detecting images under rainy 
conditions. All images were captured using an iPhone 11 
with enhanced resolution. The results also shed light on the 
system’s accuracy in detecting road signs consistently from 
a particular angle during rainy weather.

The data presented in Fig. 9 was obtained from three 
repetitions for each road sign under rainy conditions. The 
experiment’s highest accuracy in detection and recognition 
remains at 0.96, equivalent to a percentage score of 96.00%, 
corresponding to the “No Entry” label. Conversely, the 
lowest accuracy was observed for the “Children Crossing” 
label, scoring 0.90. These findings highlight the system’s 
varying performance in recognizing different road signs 
under challenging rainy conditions.

CONCLUSIONS

In conclusion, the study successfully developed an automated 
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CNN-based system for traffic sign recognition. Following 
a thorough evaluation in a range of conditions, including 
varying illumination, distances, and weather, the system 
demonstrated respectable average accuracy levels: 89.8% 
in the daytime, 75.6% at night, and 76.4% in the rain. 
While these results are encouraging, there are significant 
drawbacks to using a phone camera as the input device. 
Most importantly, there was inadequate training time, which 

resulted in reduced accuracy for some road sign labels (such 
as “Stop” and “Children Crossing”). Future research should 
focus on reducing these limitations by using high-speed 
cameras that can capture moving images at exposure lengths 
of less than 1/1000 seconds, potentially improving image 
quality and precision. Additionally, further exploration into 
optimizing training procedures and dataset augmentation 
techniques could contribute to improving overall system 
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performance. By addressing these challenges and exploring 
new avenues for refinement, future iterations of automated 
road sign recognition systems can aspire to achieve 
even higher levels of accuracy and reliability, ultimately 
enhancing driving safety and efficiency.
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