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	       ABSTRACT
This research aimed to identify the most appropriate probability distribution for modeling 
average monthly rainfall in the agro-climatic zones of West Bengal and to detect any 
trends in this data. The study utilized historical rainfall data spanning 51 years (1970-2020) 
obtained from the IMD in Pune. To determine the best-fitting distribution and assess trends, 
23 different probability distributions were employed, with the Mann-Kendall test and Sen’s 
slope estimator used for trend analysis. Goodness-of-fit tests, including the Kolmogorov-
Smirnov, Anderson-Darling, and Chi-square tests, were employed to determine the most 
suitable distribution. The findings indicated that the Generalized Extreme Value, Gamma, 
and Lognormal (3-parameter) distributions were the best fits for two specific districts. The 
monthly rainfall distributions can be effectively used for predicting future monthly rainfall 
events in the region. The Mann-Kendall test revealed an increasing trend in rainfall for 
Kalimpong and Nadia Districts and a decreasing trend for Malda District.

INTRODUCTION

As climate change faces unprecedented changes, the 
stability of atmospheric conditions that administer rainfall 
is being disrupted, leading to a reflective influence on 
rainfall patterns, distribution, intensity, and frequency. 
The production and policy-induced abatement operations 
of the agricultural economy are highly affected by the 
impact of climate change (Mandal et al. 2013). One of 
the most obvious impacts of climate change on rainfall is 
the increase in extreme weather events and the effects of 
cropping systems and production. Intense and long-lasting 
periods of rainfall, often accompanied by harsh storms 
and flooding, have become frequent phenomena in many 
regions. Moreover, in India-like countries, the agriculture 
and allied sectors are highly dependent on the monsoon 
rains that occur between June to mid-October (Sathish et 
al. 2017). The active monsoon period rainfall is vital for 
irrigating crops, restocking water reservoirs, and sustaining 
groundwater levels. In many regions where irrigation 
infrastructure is limited, the timely arrival and distribution of 
monsoon rainfall is a vital source of agricultural productivity. 
Only adequate rainfall can ensure soil moisture balance 
which is essential for crop growth, development, and yield. 
Increasingly erratic, unpredictable monsoons coupled with 
extended dry spells disrupt agricultural planning, constrain 
crop growth, and increase the risk of pests and disease 
attacks. Thus, a climate change-induced hazard in rainfall 

patterns is a significant challenge to agriculture (Dastidar 
et al. 2010).

The distinctive characteristics of West Bengal confine the 
sub-Himalayan in the north and coastal region in the south 
which makes the state disparate rainfall and cropping pattern 
in the agro-climatic zones. Hence, the state embraces the six 
agro-climatic zones namely Northern hilly, Terai-Teesta 
alluvial, Gangetic alluvial, Vindhyan alluvial, Undulating 
Red and Laterite and Coastal saline zone with their annual 
rainfall ranging from 1700 to 3550 mm (Mondal 2021). The 
state is at the forefront of inland fish, rice, and jute production 
and the second largest producer of potatoes owing to having 
expanded alluvial plains in Gangetic and Vindhyan alluvial 
zones and river basins namely the Ganga at the area of 81%, 
the Brahmaputra (12%) and Subarnarekha (Bandyopadhyay 
et al. 2014). 

Studied probability analysis of daily maximum rainfall 
data for 37 years in six distinct locations of West Bengal 
to find out the best distribution model that could represent 
rainfall extremities, the sum of rank results revealed that 
Log Pearson type 3 distributions were best fit for three 
geographical places, namely Kharagpur, Bolpur, and 
Balurghat, Gumble distribution and Log logistic for Kolkata 
and Darjeeling, respectively (Basak et al. 2019). The 
distribution of Log-Logistic, Generalized Extreme Value, 
Pearson 5, Log-Pearson 3, 3-parameter Dagum, 4-parameter 
Generalized Gamma, and 3-parameter Generalized Gamma 

Nat. Env. & Poll. Tech.
Website: www.neptjournal.com

Received: 28-02-2024
Revised:    25-03-2024
Accepted: 05-04-2024

Key Words:
Rainfall
Probability distribution
Mann-Kendall test   
Agro-climatic zones 

https://orcid.org/0000-0002-9638-3995


2454 Bhawishya Pradhan et al.

Vol. 23, No. 4, 2024 • Nature Environment and Pollution Technology  This publication is licensed under a Creative 
Commons Attribution 4.0 International License

This publication is licensed under a Creative 
Commons Attribution 4.0 International License

turned out to be best fit for monthly rainfall time series 
data from 1901 to 2013 in thirteen districts of Gangetic 
West Bengal (Pal & Majumdar 2015), Generalized Pareto 
distribution as best daily seasonal rainfall data from June 
to September in Nanded district (Alam et al. 2018), the 
best-fitted distribution for daily maximum rainfall in 
Karnataka is selected according to goodness of fit criteria 
mainly Kolmogorov-Smirnov, Anderson Darling and Chi-
squared (Bhavyashree & Bhattacharyya 2018). Existing 
monotonically increasing and decreasing trends by Mann-
Kendal Test and Sen’s slope estimator test to assess their 
strength (Gowthaman et al. 2023). Due to climate change 
long-term upward and downward significant rainfall trends 
in West Kalimantan (Aditya et al. 2021) and rainfall trend 
analysis using Mann-Kendal and Sen’s slope estimator test 
in Vamanapuram River basin, South Kerala (Brema 2018). 
Thus, the present study emphasizes the identification of the 
best-fitted probability distribution to model rainfall amounts 
by comparing different probability distributions for agro-
climatic regions of West Bengal. Moreover, patterns or 
trends of climatic variables (Rainfall) have been examined.

MATERIALS AND METHODS

Rainfall data for six districts, namely Kalimpong, Malda, 

Coochbehar, Nadia, Birbhum, and Sagar Island, located in 
different agro-climatic zones, was collected from the Indian 
Meteorological Department (IMD) in Pune. The dataset 
covers a time frame of 51 years (1970 -2020). This data 
pertains to seasonal rainfall and specifically represents the 
average precipitation occurring during the active monsoon 
period, spanning from June to October. Fig. 1 provides a 
visual representation of the selected district within each 
corresponding agro-climatic zone.

Fitting Probability Distributions 

The study involved the use of 23 different continuous 
probability distribution models to assess their goodness of 
fit. Three statistical tests, namely the Kolmogorov-Smirnov, 
Anderson-darling, and Chi-Squared tests, were applied to 
evaluate the suitability of these selected distributions for 
seasonal rainfall data recorded during the monsoon period 
from June to October. Each GOF test generated a test statistic, 
which was then tested at a significance level of α=0.05. 
Subsequently, for each of the three GOF tests, individual 
rankings were assigned to all the distributions based on their 
test statistic values. A ranking-based scoring technique was 
employed to identify the most appropriate distribution for 
monthly rainfall data, following the methodology outlined 

 

Fig. 1: Selected observatory in agro-climatic zones of West Bengal. 

 

Fig. 1: Selected observatory in agro-climatic zones of West Bengal.
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Table 1: Description of continuous probability distributions.

S No. Distribution Probability density Function f(x) Parameters
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12. Mondal, C., 2021. Inland fish production of West Bengal are declining – Its problems 
and protection. International Journal of Scientific Research Multidisciplinary, 7, 
pp.36-40. 

13. Pal, S. and Mazumdar, D., 2015. Stochastic modelling of monthly rainfall volume 
during monsoon season over Gangetic West Bengal, India. Nature Environment and 
Pollution Technology, 14(4), pp.951. 

14. Sathish, G., Banjul, B., Debashis, B. and Ramesh, D., 2017. Determination of onset 
and withdrawal of summer monsoon in different meteorological stations of West 
Bengal. Trends in Biosciences, 10(26), pp.5428-5433. 

15. Sen, P.K., 1968. Estimates of the regression coefficient based on Kendall's tau. 
Journal of the American Statistical Association, pp.1379-1389. 

16. Sharma, M.A. and Singh, J.B., 2010. Use of probability distribution in rainfall 
analysis. New York Science Journal, 3(9), pp.40-49. 
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1
𝜎𝜎

(1 + 𝜉𝜉𝜉𝜉)���
���� 

Where, 𝑧𝑧 = ���
�

 

𝜎𝜎 = Scale 
𝜉𝜉 = Shape 
𝜇𝜇 =Location 
 

10 Gumbel Max 
𝑓𝑓(𝑥𝑥) =

1
𝜎𝜎

𝑒𝑒𝑒𝑒𝑒𝑒�−𝑧𝑧 − 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑧𝑧)� 

Where,𝑓𝑓(𝑥𝑥) = ���
�

 

𝜎𝜎 = Scale 
𝜇𝜇 = Location 

11 Laplace 𝑓𝑓(𝑥𝑥) =
1
2

λ𝑒𝑒𝑒𝑒𝑒𝑒��|���| 
λ =  Scale 
µ= Location 

12 Logistic 𝑓𝑓(𝑥𝑥) =
1

1 + 𝑒𝑒�(���)
�

 𝛼𝛼 =Location 
𝛽𝛽 = Scale 

13 Lognormal 𝑓𝑓(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) =
1

𝜎𝜎𝜎𝜎√2𝜋𝜋
𝑒𝑒𝑒𝑒𝑒𝑒��

��������
� �

�

 
µ= Scale 
𝜎𝜎�= Shape 

14 Lognormal 
(3P) 

𝑒𝑒𝑒𝑒𝑒𝑒 �− 1
2 �𝐼𝐼𝐼𝐼(𝑥𝑥 − 𝛾𝛾) − 𝜇𝜇

𝜎𝜎 �
�

�

(𝑥𝑥 − 𝛾𝛾)𝜎𝜎√2𝜋𝜋
 

𝜎𝜎 = Shape 
𝜇𝜇 = Scale 
𝛾𝛾 = Location 

15 Normal 𝑓𝑓(𝑥𝑥) =
1

𝜎𝜎√2𝜋𝜋
𝑒𝑒𝑒𝑒𝑒𝑒��

�����
� �

�

 
𝜇𝜇 = Scale 
𝜎𝜎 = Shape 

16 Pareto 𝑓𝑓(𝑥𝑥) =
𝜃𝜃
𝑥𝑥�

�
𝑥𝑥�

𝑥𝑥 �
���

 
𝑥𝑥� = Scale 
𝜃𝜃 = Shape 

17 Rayleigh 𝑓𝑓(𝑥𝑥) =
1

𝜎𝜎� 𝑥𝑥 𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝑥𝑥�

2𝜎𝜎�� 𝜎𝜎 =Scale 

18 Rayleigh(2P) 𝑓𝑓(𝑥𝑥) = 2𝜆𝜆(𝑥𝑥 − 𝜇𝜇)𝑒𝑒𝑒𝑒𝑒𝑒��(���)� 
𝜆𝜆 = Scale 
𝜇𝜇 = Location 

19 Student’s t 

f(t���) =
1

√νβ �1
2 , ν

2� �1 + t�

ν �
�(���)/� 

since𝛽𝛽 ��
�

, �
�
� =

�����
� �

��
�√�

  𝑎𝑎𝑎𝑎𝑎𝑎  Γ �
�

= √𝜋𝜋 

ν = Degrees of 
freedom 
 

20 Triangular 𝑓𝑓(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧ 2(𝑥𝑥 − 𝑎𝑎)

(𝑏𝑏 − 𝑎𝑎)(𝑐𝑐 − 𝑎𝑎)        , 𝑎𝑎 < 𝑥𝑥 ≤ 𝑐𝑐

2(𝑏𝑏 − 𝑥𝑥)
(𝑏𝑏 − 𝑎𝑎)(𝑏𝑏 − 𝑐𝑐)   , 𝑐𝑐 < 𝑥𝑥 < 𝑏𝑏

 
𝑎𝑎 = Lower Limit 
𝑏𝑏 = Upper Limit 
𝑐𝑐 = Mode 

21 Uniform 𝑓𝑓(𝑥𝑥) =
1

𝑏𝑏 − 𝑎𝑎
 

𝑎𝑎 = Minimum 
𝑏𝑏 = Maximum 

22 Weibull 𝑓𝑓(𝑥𝑥) =
𝛼𝛼
𝛽𝛽 �

𝛼𝛼
𝛽𝛽�

���
exp �− �

𝑥𝑥
𝛽𝛽�

�
� 

α = Shape 
β = Scale 

23 Weibull(3p) 𝑓𝑓(𝑥𝑥) =
𝛼𝛼
𝛽𝛽 �

𝑥𝑥 − 𝛾𝛾
𝛽𝛽 �

���
exp � − �

𝑥𝑥 − 𝛾𝛾
𝛽𝛽 �

�
� α = Shape 

l = Scale
µ= Location

12 Logistic

9 Gen.Pareto 
𝑓𝑓(𝑥𝑥) =

1
𝜎𝜎

(1 + 𝜉𝜉𝜉𝜉)���
���� 

Where, 𝑧𝑧 = ���
�

 

𝜎𝜎 = Scale 
𝜉𝜉 = Shape 
𝜇𝜇 =Location 
 

10 Gumbel Max 
𝑓𝑓(𝑥𝑥) =

1
𝜎𝜎

𝑒𝑒𝑒𝑒𝑒𝑒�−𝑧𝑧 − 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑧𝑧)� 

Where,𝑓𝑓(𝑥𝑥) = ���
�

 

𝜎𝜎 = Scale 
𝜇𝜇 = Location 

11 Laplace 𝑓𝑓(𝑥𝑥) =
1
2

λ𝑒𝑒𝑒𝑒𝑒𝑒��|���| 
λ =  Scale 
µ= Location 

12 Logistic 𝑓𝑓(𝑥𝑥) =
1

1 + 𝑒𝑒�(���)
�

 𝛼𝛼 =Location 
𝛽𝛽 = Scale 

13 Lognormal 𝑓𝑓(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) =
1

𝜎𝜎𝜎𝜎√2𝜋𝜋
𝑒𝑒𝑒𝑒𝑒𝑒��

��������
� �

�

 
µ= Scale 
𝜎𝜎�= Shape 

14 Lognormal 
(3P) 

𝑒𝑒𝑒𝑒𝑒𝑒 �− 1
2 �𝐼𝐼𝐼𝐼(𝑥𝑥 − 𝛾𝛾) − 𝜇𝜇

𝜎𝜎 �
�

�

(𝑥𝑥 − 𝛾𝛾)𝜎𝜎√2𝜋𝜋
 

𝜎𝜎 = Shape 
𝜇𝜇 = Scale 
𝛾𝛾 = Location 

15 Normal 𝑓𝑓(𝑥𝑥) =
1

𝜎𝜎√2𝜋𝜋
𝑒𝑒𝑒𝑒𝑒𝑒��

�����
� �

�

 
𝜇𝜇 = Scale 
𝜎𝜎 = Shape 

16 Pareto 𝑓𝑓(𝑥𝑥) =
𝜃𝜃
𝑥𝑥�

�
𝑥𝑥�

𝑥𝑥 �
���

 
𝑥𝑥� = Scale 
𝜃𝜃 = Shape 

17 Rayleigh 𝑓𝑓(𝑥𝑥) =
1

𝜎𝜎� 𝑥𝑥 𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝑥𝑥�

2𝜎𝜎�� 𝜎𝜎 =Scale 

18 Rayleigh(2P) 𝑓𝑓(𝑥𝑥) = 2𝜆𝜆(𝑥𝑥 − 𝜇𝜇)𝑒𝑒𝑒𝑒𝑒𝑒��(���)� 
𝜆𝜆 = Scale 
𝜇𝜇 = Location 

19 Student’s t 

f(t���) =
1

√νβ �1
2 , ν

2� �1 + t�

ν �
�(���)/� 

since𝛽𝛽 ��
�

, �
�
� =

�����
� �

��
�√�

  𝑎𝑎𝑎𝑎𝑎𝑎  Γ �
�

= √𝜋𝜋 

ν = Degrees of 
freedom 
 

20 Triangular 𝑓𝑓(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧ 2(𝑥𝑥 − 𝑎𝑎)

(𝑏𝑏 − 𝑎𝑎)(𝑐𝑐 − 𝑎𝑎)        , 𝑎𝑎 < 𝑥𝑥 ≤ 𝑐𝑐

2(𝑏𝑏 − 𝑥𝑥)
(𝑏𝑏 − 𝑎𝑎)(𝑏𝑏 − 𝑐𝑐)   , 𝑐𝑐 < 𝑥𝑥 < 𝑏𝑏

 
𝑎𝑎 = Lower Limit 
𝑏𝑏 = Upper Limit 
𝑐𝑐 = Mode 

21 Uniform 𝑓𝑓(𝑥𝑥) =
1

𝑏𝑏 − 𝑎𝑎
 

𝑎𝑎 = Minimum 
𝑏𝑏 = Maximum 

22 Weibull 𝑓𝑓(𝑥𝑥) =
𝛼𝛼
𝛽𝛽 �

𝛼𝛼
𝛽𝛽�

���
exp �− �

𝑥𝑥
𝛽𝛽�

�
� 

α = Shape 
β = Scale 

23 Weibull(3p) 𝑓𝑓(𝑥𝑥) =
𝛼𝛼
𝛽𝛽 �

𝑥𝑥 − 𝛾𝛾
𝛽𝛽 �

���
exp � − �

𝑥𝑥 − 𝛾𝛾
𝛽𝛽 �

�
� α = Shape 

a = Location
b = Scale

13 Lognormal

9 Gen.Pareto 
𝑓𝑓(𝑥𝑥) =

1
𝜎𝜎

(1 + 𝜉𝜉𝜉𝜉)���
���� 

Where, 𝑧𝑧 = ���
�

 

𝜎𝜎 = Scale 
𝜉𝜉 = Shape 
𝜇𝜇 =Location 
 

10 Gumbel Max 
𝑓𝑓(𝑥𝑥) =

1
𝜎𝜎

𝑒𝑒𝑒𝑒𝑒𝑒�−𝑧𝑧 − 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑧𝑧)� 

Where,𝑓𝑓(𝑥𝑥) = ���
�

 

𝜎𝜎 = Scale 
𝜇𝜇 = Location 

11 Laplace 𝑓𝑓(𝑥𝑥) =
1
2

λ𝑒𝑒𝑒𝑒𝑒𝑒��|���| 
λ =  Scale 
µ= Location 

12 Logistic 𝑓𝑓(𝑥𝑥) =
1

1 + 𝑒𝑒�(���)
�

 𝛼𝛼 =Location 
𝛽𝛽 = Scale 

13 Lognormal 𝑓𝑓(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) =
1

𝜎𝜎𝜎𝜎√2𝜋𝜋
𝑒𝑒𝑒𝑒𝑒𝑒��

��������
� �

�

 
µ= Scale 
𝜎𝜎�= Shape 

14 Lognormal 
(3P) 

𝑒𝑒𝑒𝑒𝑒𝑒 �− 1
2 �𝐼𝐼𝐼𝐼(𝑥𝑥 − 𝛾𝛾) − 𝜇𝜇

𝜎𝜎 �
�

�

(𝑥𝑥 − 𝛾𝛾)𝜎𝜎√2𝜋𝜋
 

𝜎𝜎 = Shape 
𝜇𝜇 = Scale 
𝛾𝛾 = Location 

15 Normal 𝑓𝑓(𝑥𝑥) =
1

𝜎𝜎√2𝜋𝜋
𝑒𝑒𝑒𝑒𝑒𝑒��

�����
� �

�

 
𝜇𝜇 = Scale 
𝜎𝜎 = Shape 

16 Pareto 𝑓𝑓(𝑥𝑥) =
𝜃𝜃
𝑥𝑥�

�
𝑥𝑥�

𝑥𝑥 �
���

 
𝑥𝑥� = Scale 
𝜃𝜃 = Shape 

17 Rayleigh 𝑓𝑓(𝑥𝑥) =
1

𝜎𝜎� 𝑥𝑥 𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝑥𝑥�

2𝜎𝜎�� 𝜎𝜎 =Scale 

18 Rayleigh(2P) 𝑓𝑓(𝑥𝑥) = 2𝜆𝜆(𝑥𝑥 − 𝜇𝜇)𝑒𝑒𝑒𝑒𝑒𝑒��(���)� 
𝜆𝜆 = Scale 
𝜇𝜇 = Location 

19 Student’s t 

f(t���) =
1

√νβ �1
2 , ν

2� �1 + t�

ν �
�(���)/� 

since𝛽𝛽 ��
�

, �
�
� =

�����
� �

��
�√�

  𝑎𝑎𝑎𝑎𝑎𝑎  Γ �
�

= √𝜋𝜋 

ν = Degrees of 
freedom 
 

20 Triangular 𝑓𝑓(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧ 2(𝑥𝑥 − 𝑎𝑎)

(𝑏𝑏 − 𝑎𝑎)(𝑐𝑐 − 𝑎𝑎)        , 𝑎𝑎 < 𝑥𝑥 ≤ 𝑐𝑐

2(𝑏𝑏 − 𝑥𝑥)
(𝑏𝑏 − 𝑎𝑎)(𝑏𝑏 − 𝑐𝑐)   , 𝑐𝑐 < 𝑥𝑥 < 𝑏𝑏

 
𝑎𝑎 = Lower Limit 
𝑏𝑏 = Upper Limit 
𝑐𝑐 = Mode 

21 Uniform 𝑓𝑓(𝑥𝑥) =
1

𝑏𝑏 − 𝑎𝑎
 

𝑎𝑎 = Minimum 
𝑏𝑏 = Maximum 

22 Weibull 𝑓𝑓(𝑥𝑥) =
𝛼𝛼
𝛽𝛽 �

𝛼𝛼
𝛽𝛽�

���
exp �− �

𝑥𝑥
𝛽𝛽�

�
� 

α = Shape 
β = Scale 

23 Weibull(3p) 𝑓𝑓(𝑥𝑥) =
𝛼𝛼
𝛽𝛽 �

𝑥𝑥 − 𝛾𝛾
𝛽𝛽 �

���
exp � − �

𝑥𝑥 − 𝛾𝛾
𝛽𝛽 �

�
� α = Shape 

µ= Scale
s2 = Shape
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S No. Distribution Probability density Function f(x) Parameters

14 Lognormal
(3P)

9 Gen.Pareto 
𝑓𝑓(𝑥𝑥) =

1
𝜎𝜎

(1 + 𝜉𝜉𝜉𝜉)���
���� 

Where, 𝑧𝑧 = ���
�

 

𝜎𝜎 = Scale 
𝜉𝜉 = Shape 
𝜇𝜇 =Location 
 

10 Gumbel Max 
𝑓𝑓(𝑥𝑥) =

1
𝜎𝜎

𝑒𝑒𝑒𝑒𝑒𝑒�−𝑧𝑧 − 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑧𝑧)� 

Where,𝑓𝑓(𝑥𝑥) = ���
�

 

𝜎𝜎 = Scale 
𝜇𝜇 = Location 

11 Laplace 𝑓𝑓(𝑥𝑥) =
1
2

λ𝑒𝑒𝑒𝑒𝑒𝑒��|���| 
λ =  Scale 
µ= Location 

12 Logistic 𝑓𝑓(𝑥𝑥) =
1

1 + 𝑒𝑒�(���)
�

 𝛼𝛼 =Location 
𝛽𝛽 = Scale 

13 Lognormal 𝑓𝑓(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) =
1

𝜎𝜎𝜎𝜎√2𝜋𝜋
𝑒𝑒𝑒𝑒𝑒𝑒��

��������
� �

�

 
µ= Scale 
𝜎𝜎�= Shape 

14 Lognormal 
(3P) 

𝑒𝑒𝑒𝑒𝑒𝑒 �− 1
2 �𝐼𝐼𝐼𝐼(𝑥𝑥 − 𝛾𝛾) − 𝜇𝜇

𝜎𝜎 �
�

�

(𝑥𝑥 − 𝛾𝛾)𝜎𝜎√2𝜋𝜋
 

𝜎𝜎 = Shape 
𝜇𝜇 = Scale 
𝛾𝛾 = Location 

15 Normal 𝑓𝑓(𝑥𝑥) =
1

𝜎𝜎√2𝜋𝜋
𝑒𝑒𝑒𝑒𝑒𝑒��

�����
� �

�

 
𝜇𝜇 = Scale 
𝜎𝜎 = Shape 

16 Pareto 𝑓𝑓(𝑥𝑥) =
𝜃𝜃
𝑥𝑥�

�
𝑥𝑥�

𝑥𝑥 �
���

 
𝑥𝑥� = Scale 
𝜃𝜃 = Shape 

17 Rayleigh 𝑓𝑓(𝑥𝑥) =
1

𝜎𝜎� 𝑥𝑥 𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝑥𝑥�

2𝜎𝜎�� 𝜎𝜎 =Scale 

18 Rayleigh(2P) 𝑓𝑓(𝑥𝑥) = 2𝜆𝜆(𝑥𝑥 − 𝜇𝜇)𝑒𝑒𝑒𝑒𝑒𝑒��(���)� 
𝜆𝜆 = Scale 
𝜇𝜇 = Location 

19 Student’s t 

f(t���) =
1

√νβ �1
2 , ν

2� �1 + t�

ν �
�(���)/� 

since𝛽𝛽 ��
�

, �
�
� =

�����
� �

��
�√�

  𝑎𝑎𝑎𝑎𝑎𝑎  Γ �
�

= √𝜋𝜋 

ν = Degrees of 
freedom 
 

20 Triangular 𝑓𝑓(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧ 2(𝑥𝑥 − 𝑎𝑎)

(𝑏𝑏 − 𝑎𝑎)(𝑐𝑐 − 𝑎𝑎)        , 𝑎𝑎 < 𝑥𝑥 ≤ 𝑐𝑐

2(𝑏𝑏 − 𝑥𝑥)
(𝑏𝑏 − 𝑎𝑎)(𝑏𝑏 − 𝑐𝑐)   , 𝑐𝑐 < 𝑥𝑥 < 𝑏𝑏

 
𝑎𝑎 = Lower Limit 
𝑏𝑏 = Upper Limit 
𝑐𝑐 = Mode 

21 Uniform 𝑓𝑓(𝑥𝑥) =
1

𝑏𝑏 − 𝑎𝑎
 

𝑎𝑎 = Minimum 
𝑏𝑏 = Maximum 

22 Weibull 𝑓𝑓(𝑥𝑥) =
𝛼𝛼
𝛽𝛽 �

𝛼𝛼
𝛽𝛽�

���
exp �− �

𝑥𝑥
𝛽𝛽�

�
� 

α = Shape 
β = Scale 

23 Weibull(3p) 𝑓𝑓(𝑥𝑥) =
𝛼𝛼
𝛽𝛽 �

𝑥𝑥 − 𝛾𝛾
𝛽𝛽 �

���
exp � − �

𝑥𝑥 − 𝛾𝛾
𝛽𝛽 �

�
� α = Shape 

s = Shape
m = Scale
g = Location

15 Normal

9 Gen.Pareto 
𝑓𝑓(𝑥𝑥) =

1
𝜎𝜎

(1 + 𝜉𝜉𝜉𝜉)���
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Where, 𝑧𝑧 = ���
�

 

𝜎𝜎 = Scale 
𝜉𝜉 = Shape 
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𝑓𝑓(𝑥𝑥) =

1
𝜎𝜎

𝑒𝑒𝑒𝑒𝑒𝑒�−𝑧𝑧 − 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑧𝑧)� 

Where,𝑓𝑓(𝑥𝑥) = ���
�

 

𝜎𝜎 = Scale 
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11 Laplace 𝑓𝑓(𝑥𝑥) =
1
2

λ𝑒𝑒𝑒𝑒𝑒𝑒��|���| 
λ =  Scale 
µ= Location 

12 Logistic 𝑓𝑓(𝑥𝑥) =
1

1 + 𝑒𝑒�(���)
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13 Lognormal 𝑓𝑓(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) =
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2𝜎𝜎�� 𝜎𝜎 =Scale 
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2(𝑏𝑏 − 𝑥𝑥)
(𝑏𝑏 − 𝑎𝑎)(𝑏𝑏 − 𝑐𝑐)   , 𝑐𝑐 < 𝑥𝑥 < 𝑏𝑏

 
𝑎𝑎 = Lower Limit 
𝑏𝑏 = Upper Limit 
𝑐𝑐 = Mode 

21 Uniform 𝑓𝑓(𝑥𝑥) =
1
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1
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1
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1

𝜎𝜎𝜎𝜎√2𝜋𝜋
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𝜇𝜇 = Scale 
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1
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(𝑏𝑏 − 𝑎𝑎)(𝑐𝑐 − 𝑎𝑎)        , 𝑎𝑎 < 𝑥𝑥 ≤ 𝑐𝑐

2(𝑏𝑏 − 𝑥𝑥)
(𝑏𝑏 − 𝑎𝑎)(𝑏𝑏 − 𝑐𝑐)   , 𝑐𝑐 < 𝑥𝑥 < 𝑏𝑏
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𝑏𝑏 = Upper Limit 
𝑐𝑐 = Mode 

21 Uniform 𝑓𝑓(𝑥𝑥) =
1

𝑏𝑏 − 𝑎𝑎
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1

1 + 𝑒𝑒�(���)
�

 𝛼𝛼 =Location 
𝛽𝛽 = Scale 

13 Lognormal 𝑓𝑓(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) =
1

𝜎𝜎𝜎𝜎√2𝜋𝜋
𝑒𝑒𝑒𝑒𝑒𝑒��

��������
� �

�

 
µ= Scale 
𝜎𝜎�= Shape 

14 Lognormal 
(3P) 

𝑒𝑒𝑒𝑒𝑒𝑒 �− 1
2 �𝐼𝐼𝐼𝐼(𝑥𝑥 − 𝛾𝛾) − 𝜇𝜇

𝜎𝜎 �
�

�

(𝑥𝑥 − 𝛾𝛾)𝜎𝜎√2𝜋𝜋
 

𝜎𝜎 = Shape 
𝜇𝜇 = Scale 
𝛾𝛾 = Location 

15 Normal 𝑓𝑓(𝑥𝑥) =
1

𝜎𝜎√2𝜋𝜋
𝑒𝑒𝑒𝑒𝑒𝑒��

�����
� �

�

 
𝜇𝜇 = Scale 
𝜎𝜎 = Shape 

16 Pareto 𝑓𝑓(𝑥𝑥) =
𝜃𝜃
𝑥𝑥�

�
𝑥𝑥�

𝑥𝑥 �
���

 
𝑥𝑥� = Scale 
𝜃𝜃 = Shape 

17 Rayleigh 𝑓𝑓(𝑥𝑥) =
1

𝜎𝜎� 𝑥𝑥 𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝑥𝑥�

2𝜎𝜎�� 𝜎𝜎 =Scale 

18 Rayleigh(2P) 𝑓𝑓(𝑥𝑥) = 2𝜆𝜆(𝑥𝑥 − 𝜇𝜇)𝑒𝑒𝑒𝑒𝑒𝑒��(���)� 
𝜆𝜆 = Scale 
𝜇𝜇 = Location 

19 Student’s t 

f(t���) =
1

√νβ �1
2 , ν

2� �1 + t�

ν �
�(���)/� 

since𝛽𝛽 ��
�

, �
�
� =

�����
� �

��
�√�

  𝑎𝑎𝑎𝑎𝑎𝑎  Γ �
�

= √𝜋𝜋 

ν = Degrees of 
freedom 
 

20 Triangular 𝑓𝑓(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧ 2(𝑥𝑥 − 𝑎𝑎)

(𝑏𝑏 − 𝑎𝑎)(𝑐𝑐 − 𝑎𝑎)        , 𝑎𝑎 < 𝑥𝑥 ≤ 𝑐𝑐

2(𝑏𝑏 − 𝑥𝑥)
(𝑏𝑏 − 𝑎𝑎)(𝑏𝑏 − 𝑐𝑐)   , 𝑐𝑐 < 𝑥𝑥 < 𝑏𝑏

 
𝑎𝑎 = Lower Limit 
𝑏𝑏 = Upper Limit 
𝑐𝑐 = Mode 

21 Uniform 𝑓𝑓(𝑥𝑥) =
1

𝑏𝑏 − 𝑎𝑎
 

𝑎𝑎 = Minimum 
𝑏𝑏 = Maximum 

22 Weibull 𝑓𝑓(𝑥𝑥) =
𝛼𝛼
𝛽𝛽 �

𝛼𝛼
𝛽𝛽�

���
exp �− �

𝑥𝑥
𝛽𝛽�

�
� 

α = Shape 
β = Scale 

23 Weibull(3p) 𝑓𝑓(𝑥𝑥) =
𝛼𝛼
𝛽𝛽 �

𝑥𝑥 − 𝛾𝛾
𝛽𝛽 �

���
exp � − �

𝑥𝑥 − 𝛾𝛾
𝛽𝛽 �

�
� α = Shape 

α = Shape
β = Scale 
γ=Location

by Sharma & Singh (2010). Detailed information on the 23 
continuous probability density functions and their respective 
parameters can be found in Table 1.

Kolmogorov-Smirnov Test

Let (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)  be rainfall data with CDF F(x) from 
the continuous distribution. The difference between the 
theoretical and empirical cumulative distribution functions 
gives the test statistic (D

n
) as

	
𝐷𝐷𝑛𝑛 = max

1≤𝑖𝑖≤𝑛𝑛
(𝐹𝐹(𝑥𝑥𝑖𝑖) −

𝑖𝑖 − 1
𝑛𝑛 , 𝑖𝑖𝑛𝑛 − 𝐹𝐹(𝑥𝑥𝑖𝑖)) 

Anderson-Darling Test

Comparing the fit of actual and expected actual Cumulative 
distribution function with giving weightage to tail 
characteristics of the distribution (Anderson & Darling 
1954). It is defined as
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𝐴𝐴2 = −𝑛𝑛 − 1
𝑛𝑛∑(2𝑖𝑖 − 1)[𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥𝑖𝑖) + 𝐼𝐼𝐼𝐼(1 − 𝐹𝐹(𝑋𝑋𝑛𝑛−𝑖𝑖+1))]

𝑛𝑛

𝑖𝑖=1
 

Chi-Squared Test

It is the non-parametric test that is used to test whether there 
is any difference between observed (Oi) and expected (Ei) 
frequency. The test statistic as:

	

𝜒𝜒2 =∑
(𝑂𝑂𝑖𝑖 − 𝐸𝐸𝑖𝑖)2

𝐸𝐸𝑖𝑖

𝑛𝑛

𝑖𝑖=1
 

TREND ANALYSIS 

Mann-Kendall Test

The linear regression trend analysis needs the distribution-
free (non-parametric) test when the estimated slope of linear 
regression is different from zero. Which can be accomplished 
by the Mann-Kendall (M-K) test (Mann 1945). Hence, it 
asses statistically the monotonic upward (downward) trend 
in time series rainfall data. In addition, the M-K test is not 
influenced by the outliers since it depends on positive and 
negative signs. The strength of the trend depends upon the 
magnitude, sample size, and variations of data series. The 
M-K test statistic is equated as:

	

𝑆𝑆 = ∑ ∑ 𝑠𝑠𝑠𝑠𝑠𝑠
𝑛𝑛

𝑗𝑗=𝑖𝑖+1

𝑛𝑛−1

𝑖𝑖=1
(𝑋𝑋𝑗𝑗 − 𝑋𝑋𝑖𝑖) 

The trend test is applied to Xi data values (i=1, 2,  …n) 
and X j (j=i+1, 2,. . .n). The data values of Xi are used as a 
reference point to compare with the data values of Xj which 
is given as:  

	

𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋𝑗𝑗 − 𝑋𝑋𝑖𝑖) = {
−1 𝑖𝑖𝑖𝑖 (𝑋𝑋𝑗𝑗 − 𝑋𝑋𝑖𝑖) < 0
0 𝑖𝑖𝑖𝑖 (𝑋𝑋𝑗𝑗 − 𝑋𝑋𝑖𝑖) = 0
1 𝑖𝑖𝑖𝑖 (𝑋𝑋𝑗𝑗 − 𝑋𝑋𝑖𝑖) > 0

} 

The above statistic represents the number of positive 
differences minus the number of negative differences for 
all the differences considered. The normal distribution with 
mean and variance (S=0) test is conducted, when the sample 
is large (>10) and the standard normal Z-statistic is given as

𝑍𝑍 =

{ 
 
  

𝑆𝑆−1
√𝑣𝑣𝑣𝑣𝑣𝑣(𝑆𝑆)  𝑖𝑖𝑖𝑖 𝑆𝑆 > 0
0               𝑖𝑖𝑖𝑖 𝑆𝑆 = 0
𝑆𝑆+1

√𝑣𝑣𝑣𝑣𝑣𝑣(𝑆𝑆)   𝑖𝑖𝑖𝑖 𝑆𝑆 < 0 } 
 
  

 where, 𝑣𝑣𝑣𝑣𝑣𝑣(𝑆𝑆) = 𝑛𝑛(𝑛𝑛−1)(2𝑛𝑛+5)−∑ 𝑡𝑡𝑖𝑖𝑛𝑛
𝑖𝑖=1 (𝑡𝑡𝑖𝑖−1)(2𝑡𝑡𝑖𝑖+5)
18  

	

𝑍𝑍 =

{ 
 
  

𝑆𝑆−1
√𝑣𝑣𝑣𝑣𝑣𝑣(𝑆𝑆)  𝑖𝑖𝑖𝑖 𝑆𝑆 > 0
0               𝑖𝑖𝑖𝑖 𝑆𝑆 = 0
𝑆𝑆+1

√𝑣𝑣𝑣𝑣𝑣𝑣(𝑆𝑆)   𝑖𝑖𝑖𝑖 𝑆𝑆 < 0 } 
 
  

 where, 𝑣𝑣𝑣𝑣𝑣𝑣(𝑆𝑆) = 𝑛𝑛(𝑛𝑛−1)(2𝑛𝑛+5)−∑ 𝑡𝑡𝑖𝑖𝑛𝑛
𝑖𝑖=1 (𝑡𝑡𝑖𝑖−1)(2𝑡𝑡𝑖𝑖+5)
18  

Where n - number of tied groups and t
i
 - number of data 

points in the ith tied groups. The upward and downward trend 
is interpreted based on the positive and negative values of Z 
statistic respectively.

Sen’s Slope Estimator Test

Although the trend is identified by the M-K test, the 
magnitude of the trend is determined by a Theil-Sen slope 
or Sen’s Slope Estimator (SSE), which is a robust method 
against outliers to estimate the slope of the trend (Sen 1968).  

	
𝑇𝑇𝑖𝑖 =

𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑘𝑘
𝑗𝑗 − 𝑘𝑘  

Where x
j
 and x

k
 are date values at the time j and k 

respectively. The median of these n values of T
i
 is represented 

as Sen’s estimator of slope which is given as:

	

𝑄𝑄𝑖𝑖 = {
𝑇𝑇𝑛𝑛+1

2
     𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜

𝑇𝑇𝑛𝑛
2

+ 𝑇𝑇𝑛𝑛+1
2

2   𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
} 

A positive value of Q
i
 indicates an upward or increasing 

trend and vice versa. 

RESULTS AND DISCUSSION

Table 2 provides a summary of statistics for a specific district 
within the agro-climatic zones of West Bengal. The results 
point out that the Kalimpong district in the Hill and Terai 
agro-climatic zones experiences the highest levels of rainfall 
throughout West Bengal. It receives significantly more 
rainfall compared to other zones, with Coochbehar coming 
next. Conversely, the Birbhum district has consistently 
received the lowest amount of rainfall over the years.

In terms of statistical characteristics, the Nadia district 
displays positive skewness and kurtosis values, suggesting 
that most of the rainfall events during this period have 
relatively lower intensity, with only occasional instances of 
heavy rainfall. For the Kalimpong district, both skewness 
and kurtosis values are negative, indicating a prevalence of 
rainfall events with lower intensity and infrequent heavy 
rainfall occurrences. In contrast, Birbhum exhibits the 
lowest kurtosis value, implying a flatter peak near the mean 
and a higher likelihood of a more even distribution with 
fewer extreme values. The skewness and kurtosis values 
collectively suggest that the data in these districts do not 
follow a normal distribution.
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distribution consistently ranked as the best fit across all 
locations. However, the Generalized Extreme Value, Gamma, 
and Lognormal (3-parameter) distributions emerged as the 
most suitable choices for the two districts. Specifically, the 
Generalized Extreme Value distribution was found to be 
the best fit for Kalimpong and Nadia districts, the Gamma 
Distribution for Coochbehar and Birbhum districts, and the 
Lognormal (3-Parameter) distribution for Malda and Sagar 
Island districts. Table 3 presents the best-fitted probability 
distribution for each district, along with the parameter 
estimates. In summary, the monthly rainfall distribution in 
West Bengal appears to be positively skewed, and the Gamma 
and Log-Normal distributions can be effectively used for 
predicting future monthly rainfall events in the region.

Trend Analysis 

The study examined the average monthly rainfall data for six 
districts within the agro-climatic zones of West Bengal using 
the Mann-Kendall test and Sen’s slope estimator. Table 4 
presents the M-K test statistics and associated p-values, and 

Distribution Fitting

The study involved fitting average monthly rainfall data from 
six different districts in various agro-climatic zones of West 
Bengal to 23 different continuous probability distributions. 
For each district, three test statistics were computed using 
the Kolmogorov-Smirnov, Anderson-darling, and Chi-
square goodness of fit tests. Each distribution was ranked 
separately for each test, and distributions that failed to fit 
the data received no rank. Since different distributions 
ranked differently in each goodness of fit test, it was 
challenging to determine a single best-fit distribution for 
each district. Consequently, a scoring method was employed 
as described in the methodology. Scores were assigned to 
each distribution for all three tests, and the final score was 
calculated by summing these three scores. The distribution 
with the highest total score was considered the best fit for 
the respective district.

The analysis of goodness-of-fit test results revealed 
that, in many cases, there was minimal difference between 
various distributions for each district. Furthermore, no single 

Table 2: Descriptive statistics for agro-climatic zones.

Districts Minimum Maximum Mean SD CV Skew Kurtosis

Kalimpong 1329.45 4518.30 2914.34 797.37 27.36 -0.01 -0.73

Coochbehar 1709.61 4715.28 2670.08 587.87 22.02 0.89 1.36

Malda 401.00 2034.54 1108.09 305.42 27.56 0.14 1.16

Nadia 711.17 2370.07 1208.71 284.44 23.53 1.46 4.24

Birbhum 593.54 1820.34 1187.34 250.61 21.11 0.24 0.21

Sagar island 910.66 2794.20 1517.51 340.69 22.45 1.12 2.63

Table 3: Score-wise best fitted probability distribution with parameter estimates.

Districts Name of Distribution Total Score Parameter estimates

Kalimpong Gen Extreme value 65 k=-0.30, σ=820.68, µ=263.60

Coochbehar Gamma 59 β=129.43, α=20.62

Malda lognormal(3P) 68 γ=5565.60-, σ=0.04,µ=8.80

Nadia Gen Extreme value 68 k=-0.34, µ=1011.71, σ=304.45

Birbhum Gamma 63 β=52.89, α=22.44

Sagar island Lognormal(3P) 63 γ=422.51, σ=0.29, µ=6.95

Table 4: Results of M-K and Sen’s slope estimator test on agro-climatic zones.

Locations Kendall’s Tau S Z Sen’s Slope Trend p-Value

Kalimpong 0.421 537.00 4.353 33.192 ↑trend <0.01

Coochbehar 0.055 71.14 -0.568 -2.264 no trend 0.56

Malda -0.265 -339.37 -2.745 -9.399 ↓trend <0.01

Nadia 0.341 483.04 3.510 29.641 ↑trend <0.01

Birbhum -0.047 -61.48 -0.487 -1.216 no trend 0.62

Sagar island -0.179 -229.07 -1.851 -3.935 no trend 0.64
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Fig. 2 depicts the trend graph of rainfall for these districts. 
In this context, p-values less than 0.05 were considered 
significant, indicating a rejection of the null hypothesis, 
which assumes no trend in the data. The results revealed that 
the Kalimpong and Nadia districts had significant p-values 
of 0.42 and 0.34, respectively, with positive Kendal’s Tau 
values, suggesting an increasing trend. In contrast, the 
p-value for Malda district was below the significance level 
at 0.26, accompanied by a negative Kendal’s Tau value, 
indicating a decreasing trend.

Conversely, for Coochbehar, Birbhum, and Sagar Island 
districts, the p-values were 0.56, 0.62, and 0.64, respectively, 
exceeding the significance level of 0.05, indicating the 
absence of a significant trend in their data. The findings 
from the Sen’s slope test supported those of the M-K test, 
and the Sen’s slope values were provided in Table 4. It’s 
worth noting that Sen’s slope values were also calculated for 
districts with no discernible trend. This is because the M-K 
test considers the hypothesis above the 5% significance level, 
allowing for the possibility of a trend’s existence beyond this 
threshold. The Sen’s slope values for Kalimpong and Nadia 

indicated positive slopes of 33.19 and 29.64, respectively, 
while the remaining districts exhibited negative slopes over 
the years. These results contributed to the assessment of the 
average monthly rainfall levels in the selected districts of 
West Bengal.

CONCLUSIONS

A systematic evaluation approach was employed to 
determine the optimal probability distribution for modeling 
monthly rainfall data in six different districts of West Bengal. 
The study utilized the Mann-Kendall test and Sen’s Slope 
estimation techniques to identify any monotonic trends in 
the data. Notably, the Generalized Extreme Value, Gamma, 
and Lognormal (3-parameter) distributions were found to 
be the most suitable choices for two of the districts each. 
According to the Mann-Kendall test results, Kalimpong 
and Nadia Districts exhibited an increasing trend in rainfall, 
while Malda District showed a decreasing trend. The 
ability to identify both the distribution and trend of rainfall 
has significant implications in various fields, including 
agriculture, hydrology, and climate research.

 

Fig. 2: Trend graph of rainfall for the period from 1970 to 2020. 
Fig. 2: Trend graph of rainfall for the period from 1970 to 2020.
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