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ABSTRACT

The online spectrophotometric technique was adopted to monitor the degradation of simulated Acid 
Light Yellow 2G (ALY 2G) solution with the Fenton oxidation process, and the kinetic process was 
also discussed. The effects of the initial concentration of H2O2 and Fe2SO4, pH value, and initial dye 
concentration on the degradation process were studied. The results showed that the ALY 2G can be 
degraded by Fenton oxidation, and the colour removal rate of Acid Light Yellow 2G was 94.66% after 
300 s when the concentration of simulated wastewater was 20 mg/L, the dosage of Fe2+ was 0.1 
mmol/L, the dosage of H2O2 was 0.6 mmol/L, and the pH was 3. The degradation process was divided 
into two stages: the first stage, the degradation rate is very fast; in the second stage, with the extension 
of reaction time, the increase of decolourization rate decreases. The first stage of the reaction accords 
with the first-order kinetics, and the reaction rate constant Kap is 0.04824 s-1. The intrinsic reaction 
rate constant of ALY 2G and hydroxyl in aqueous solution in the Fenton oxidation method is 0.55 ×  
109 M-1s-1.  

INTRODUCTION

Textile and dyeing industries are one of the most important 
chemical industries. However, many printing and dyeing 
plants produce large amounts of high chroma wastewater 
during the production process (Xu et al. 2015b). Many 
aromatic agents, metals and chlorides contained in 
wastewater are toxic to aquatic organisms, human beings 
and even affect biosphere (Laszlo & Erzsebet 2008). 
Every year, 12% of synthetic dyes are run off during the 
production process, resulting in dye-containing wastewater 
with high chroma and chemical oxygen demand (COD), 
low biochemical oxygen demand, oxidation resistance and 
difficult biodegradation (Xu et al. 2016). Therefore, the most 
critical problem in the dyeing industry is how to treat visible 
pollutants contained in dye wastewater (Lee et al. 2006) to 
meet the industry emission standards.

Advanced oxidation processes (AOPs) have great poten-
tial for degrading organic pollutants in industrial wastewater. 
This oxidation mechanism produces strong oxidants, such as 
hydroxyl radicals (Cheng et al. 2016), which have high activ-
ity and are non-selective for decomposing organic pollutants 
into CO2, H2O, and inorganic salts in the water environment 
(Inmaculada et al. 2015). Fenton oxidation (Fe2+/H2O2 /H

+) 

has received the intensive attention in wastewater treatment 
due to its superior degradation efficiency, rapid reaction speed 
and moderate investment (Azizi et al. 2015). Under weak 
acidic conditions, Fe2+ is oxidized by H2O2 to form Fe3+, 
hydroxyl (·OH) and OH− (Xu et al. 2015a), which produces 
highly reactive ·OH to destroy the molecular structure of 
organic dyes, thus achieves the decolourization effect of 
dye wastewater. The spectrophotometer can record the mass 
concentration change of the dye (Gao et al. 2019a, Gao et 
al. 2019b, Sibel et al. 2012, Xu et al. 2018) and monitor the 
instantaneous state of the dye decolourization during the 
Fenton oxidation process. Therefore, the experimental results 
are real-time and reliable with a very minor error.

In the present study, azo dye Acid Light Yellow 2G was 
selected as the target pollutant. We studied the effect of initial 
Fe2+, initial H2O2 concentration, initial pH value of the solu-
tion and different dye concentrations on the degradation of 
ALY 2G by the Fenton method. The decolourization kinetics 
performance of Fenton oxidation was studied based on the 
experimental data. The kinetic model of azo dye degradation 
with Fenton’s reagent was established. In this study, the 
online spectrophotometric system was used to monitor the 
degradation of Acid Light Yellow 2G. The kinetic analysis 
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result was expected to provide basic experimental data for 
a deeper understanding of the Fenton oxidation process of 
wastewater containing ALY 2G dye.

MATERIALS AND METHODS

Chemical Reagents

The structure of Acid Light Yellow 2G is shown in Fig. 1. ALY 
2G was purchased from Shijiazhuang Dyestuffs Company 
(China) and the ALY 2G solution was prepared by dissolving 
a requisite quantity of dye in ultrapure water. Ferrous sulphate 
(FeSO4·7H2O) and hydrogen peroxide (H2O2) were purchased 
from Tianjin Damao Chemical Reagent Company, and sulfuric 
acid (H2SO4) from Modern Chemical Reagent Company. They 
were of reagent analytical grade.

Apparatus Set-up

The online spectrophotometric system is shown in Fig. 2. 
Reaction section (degradation device) includes a digital 
magnetic stirrer apparatus (Shanghai Instrument Company, 
China), and a 500 mL beaker. Optical measuring part 
contains UV-Vis spectrometer (UNICO 2802, Shanghai, 
China), cycle peristaltic pump and cuvette (1 mL). The 
recording unit is a computer with the monitoring frequency 
of 12 min-1 during the oxidation process.

Experimental Procedure

Fenton oxidation process was performed in a 500 mL 
vessel. With the role of a peristaltic pump, the simulated 

dye wastewater was pumped into the cuvette of UV-Vis 
spectrophotometer. Absorbance at maximal absorption peak 
of dye was obtained by the spectrophotometer. The effects 
of FeSO4 dosage, H2O2 dosage, initial pH, and initial dye 
concentration on the degradation of Acid Light Yellow 2G 
were studied by single-factor experiments.

Feasibility Analysis of Online Spectrophotometric 
Technique

Online spectrophotometry method was applied to analyze 
the decolourization of ALY 2G dye in the Fenton process. 
The UV-Vis spectra of ALY 2G, H2SO4, Fe2+, and Fe3+ 
are presented in Fig. 3. Azo dye ALY 2G has a maximum 
adsorption peak of 402 nm, which does not vary with the 
addition of H2SO4, Fe2+ and Fe3+. Therefore, during the ex-
periment, online spectrophotometry can be used to monitor 
ALY 2G wavelength at 402 nm. The standard equations and 
standard curves for dye concentration (C) and absorbance 
(A) are given in Fig. 4. The relationship of the absorbance 
(A) at 402 nm against concentration (C) of ALY 2G is A = 
0.0309C + 0.0015 (R2 = 0.9998).
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from 0.04 to 0.4 mmol/L (temperature kept at 25°C). It can 
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becomes higher and higher as Fe2+ concentration increases. 
The colour removal rate was 93.46% when Fe2+ concentra-
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of ALY 2G increased sharply in the first 30 s stage with 
the increase of Fe2+ concentration. After 30 seconds, the 
colour removal rate of ALY 2G dye did not increase, but 
the decolourization rate decreased slightly when the con-
centration ranges of dye changed from 0.2 to 0.4 mmol/L. 
This experimental result makes us known that excessive Fe2+ 
concentration is not beneficial to decolourization of ALY 2G 
among Fenton oxidation process. This reason is that because 
the excess ferrous ion competes with the dye molecules for 
the hydroxyl radical ·OH (Fe2+ + ·OH → Fe3+ + OH-) (Xu 
et al. 2015b). Therefore, choosing an appropriate amount of 
Fe2+ can improve the degradation effect of the ALY 2G dye. 
We have chosen the initial Fe2+ concentration of 0.1 mmol/L 

as an optimum dosage for efficient decolourization to ALY 
2G aqueous solutions. 

The effect of initial H2O2 dosage: H2O2 is one of the very 
important factors affecting the degradation efficiency of dyes. 
The hydroxyl group can decompose the molecular structure 
of azo dyes, and then bleach ALY 2G dye wastewater. 
The hydroxyl group derives from H2O2. Fig. 6 displays 
the effect of the decolourization rate R of ALY 2G on 
various H2O2 concentrations. We can see from Fig. 6 that 
experimental monitoring in 300s, the decolourization trends 
of ALY 2G under 0.6, 3 and 6 mmol/L concentrations are 
very similar. The decolourization rate was 84.53% (lowest 
value) when H2O2 concentration was 0.18 mmol/L. When 
the H2O2 concentration was increased to 0.6 mmol/L, the 
dye decolourization rate reached 93.38%. However, when 
the H2O2 concentration was 12 mmol/L, the decolourization 
rate was relatively low (90.52%). The reason is that excess 
H2O2 will consume ·OH and compete with ALY 2G dye for 
hydroxyl radical ·OH (Eqs. 2-3). This process results in the 
production of the hydroperoxyl radical (·OOH as a scavenger 
of hydroxyl radical) and then decreases the colour removal 
rate of dye (Sehested et al. 2003, Xu et al. 2016). In brief, we 
choose 0.6 mmol/L as an optimum H2O2 concentration of the 
decolourization of ALY 2G in the Fenton oxidation process.
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thus the decolourization rate is relatively small. When the 
solution (pH > 3), with the formation of the iron hydroxide 
complex, the hydrogen peroxide is decomposed and the 
ferrous ion catalyst is invalidated, which ultimately leads 
to a reduction in the oxidation ability of Fenton (Gao et al. 
2014). Therefore, the pH value of 3 is considered to be the 
optimum value for the decolourization of azo dye ALY 2G 
in Fenton oxidation.

The effect of initial ALY 2G concentration: Fig. 8 shows 
the trend of the colour removal rate with various dye 
concentrations (conditions: [Fe2+] = 0.1 mmol/L, [H2O2] = 
0.6 mmol/L, and pH = 3). Although the initial concentrations 
of the dye ALY 2G were different (from 10 to 40 mg/L), the 
chroma removal rate of dye can all reach more than 90% and 
the difference of all removal rates is very small after 300s. 
Moreover, it can be seen that the reaction rate gradually 
decreases as increasing dye concentration between 50s and 
150s. The reason for this is that as the initial concentration 
of the Acid Light Yellow 2G dye solution increases, the 
number of dye molecules in the solution increases, whereas 
the amount of ·OH in the solution does not increase, which 
leads to a decrease in the reaction rate.

Reaction Kinetic Fitting Analysis

Kinetic process analysis is helpful to understand the Fenton 
oxidation process. Acid Light Yellow 2G was decolourized 
successfully in the experimental process, and the first stage 
of decolourization was analysed by first-order kinetics (Gao 
et al. 2019b). The first-order kinetics calculation formula 
(Eqs. 4-5) is as follow: 
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Kinetics Study 

The Fenton oxidation method uses a catalyst Fe2+ and H2O2 to undergo a redox reaction to form a 

highly active ·OH which can decompose the molecular structure of organic dyes. The reaction 

mechanism can be expressed by (Eqs. 6-14) (D represents dye molecules) (Gao et al. 2014, Gao et 

al. 2019b, Kušić et al. 2006, Sibel et al. 2012, Sehested et al. 2003). 

 𝐹𝐹𝐹𝐹2+ + 𝐻𝐻2𝑂𝑂2 → 𝐹𝐹𝐹𝐹3+ +∙ 𝑂𝑂𝑂𝑂 + 𝑂𝑂𝑂𝑂− …(6) 

 𝑘𝑘1 = 76 𝑀𝑀−1𝑠𝑠−1  

 D +∙ OH → 𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 …(7) 

 𝐹𝐹𝐹𝐹2+ +∙ 𝑂𝑂𝑂𝑂 → 𝐹𝐹𝐹𝐹3+ + 𝑂𝑂𝑂𝑂− …(8) 

 𝑘𝑘3 = 3.2 × 108  

 𝐻𝐻2𝑂𝑂2 +∙ 𝑂𝑂𝑂𝑂 →∙ 𝑂𝑂𝑂𝑂𝑂𝑂 + 𝐻𝐻2𝑂𝑂 …(9) 

 𝑘𝑘4 = 4.5 × 107  

 ∙ OH +∙ OOH → 𝐻𝐻2𝑂𝑂 + 𝑂𝑂2 …(10) 

 𝑘𝑘5 = 6.6 × 1011  

 𝐹𝐹𝐹𝐹3+ + 𝐻𝐻2𝑂𝑂2 → 𝐹𝐹𝐹𝐹2+ + 𝐻𝐻+ +∙ 𝑂𝑂𝑂𝑂𝑂𝑂 …(11) 

 𝑘𝑘6 = 0.02𝑀𝑀−1𝑠𝑠−1  

The reaction rate of dye can be defined as: 

 
− d[D]

dt = 𝑘𝑘2[∙ 𝑂𝑂𝑂𝑂][𝐷𝐷] 
…(12) 

According to the steady-state assumption, [·OH] can be obtained as follow: 

 d[∙ OH]
dt = 𝑘𝑘1[𝐹𝐹𝐹𝐹2+][𝐻𝐻2𝑂𝑂2] − 𝑘𝑘2[∙ 𝑂𝑂𝑂𝑂][𝐷𝐷] − 𝑘𝑘3[𝐹𝐹𝐹𝐹2+][∙ 𝑂𝑂𝑂𝑂] − 𝑘𝑘4[𝐻𝐻2𝑂𝑂2][∙ 𝑂𝑂𝑂𝑂]

− 𝑘𝑘5[∙ 𝑂𝑂𝑂𝑂][∙ 𝑂𝑂𝑂𝑂𝑂𝑂] = 0 

…(13) 

 
− d[∙ OOH]

dt = 𝑘𝑘4[𝐻𝐻2𝑂𝑂2][∙ 𝑂𝑂𝑂𝑂] − 𝑘𝑘5[∙ 𝑂𝑂𝑂𝑂𝑂𝑂][∙ 𝑂𝑂𝑂𝑂] = 0 
…(14) 

According to Eq. (14), we obtain: 

 𝑘𝑘5[∙ 𝑂𝑂𝑂𝑂][∙ 𝑂𝑂𝑂𝑂𝑂𝑂] = 𝑘𝑘4[𝐻𝐻2𝑂𝑂2][∙ 𝑂𝑂𝑂𝑂] …(15) 

According to Eqs. (13) and (15), we obtain: 

 d[∙ OH]
dt = 𝑘𝑘1[𝐹𝐹𝐹𝐹2+][𝐻𝐻2𝑂𝑂2] − 𝑘𝑘2[∙ 𝑂𝑂𝑂𝑂][𝐷𝐷] − 𝑘𝑘3[𝐹𝐹𝐹𝐹2+][∙ 𝑂𝑂𝑂𝑂] − 2𝑘𝑘4[𝐻𝐻2𝑂𝑂2][∙ 𝑂𝑂𝑂𝑂] = 0 

…(16) 
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 𝑘𝑘4 = 4.5 × 107  

 ∙ OH +∙ OOH → 𝐻𝐻2𝑂𝑂 + 𝑂𝑂2 …(10) 

 𝑘𝑘5 = 6.6 × 1011  

 𝐹𝐹𝐹𝐹3+ + 𝐻𝐻2𝑂𝑂2 → 𝐹𝐹𝐹𝐹2+ + 𝐻𝐻+ +∙ 𝑂𝑂𝑂𝑂𝑂𝑂 …(11) 

 𝑘𝑘6 = 0.02𝑀𝑀−1𝑠𝑠−1  

The reaction rate of dye can be defined as: 

 
− d[D]

dt = 𝑘𝑘2[∙ 𝑂𝑂𝑂𝑂][𝐷𝐷] 
…(12) 

According to the steady-state assumption, [·OH] can be obtained as follow: 

 d[∙ OH]
dt = 𝑘𝑘1[𝐹𝐹𝐹𝐹2+][𝐻𝐻2𝑂𝑂2] − 𝑘𝑘2[∙ 𝑂𝑂𝑂𝑂][𝐷𝐷] − 𝑘𝑘3[𝐹𝐹𝐹𝐹2+][∙ 𝑂𝑂𝑂𝑂] − 𝑘𝑘4[𝐻𝐻2𝑂𝑂2][∙ 𝑂𝑂𝑂𝑂]

− 𝑘𝑘5[∙ 𝑂𝑂𝑂𝑂][∙ 𝑂𝑂𝑂𝑂𝑂𝑂] = 0 

…(13) 

 
− d[∙ OOH]

dt = 𝑘𝑘4[𝐻𝐻2𝑂𝑂2][∙ 𝑂𝑂𝑂𝑂] − 𝑘𝑘5[∙ 𝑂𝑂𝑂𝑂𝑂𝑂][∙ 𝑂𝑂𝑂𝑂] = 0 
…(14) 

According to Eq. (14), we obtain: 

 𝑘𝑘5[∙ 𝑂𝑂𝑂𝑂][∙ 𝑂𝑂𝑂𝑂𝑂𝑂] = 𝑘𝑘4[𝐻𝐻2𝑂𝑂2][∙ 𝑂𝑂𝑂𝑂] …(15) 

According to Eqs. (13) and (15), we obtain: 

 d[∙ OH]
dt = 𝑘𝑘1[𝐹𝐹𝐹𝐹2+][𝐻𝐻2𝑂𝑂2] − 𝑘𝑘2[∙ 𝑂𝑂𝑂𝑂][𝐷𝐷] − 𝑘𝑘3[𝐹𝐹𝐹𝐹2+][∙ 𝑂𝑂𝑂𝑂] − 2𝑘𝑘4[𝐻𝐻2𝑂𝑂2][∙ 𝑂𝑂𝑂𝑂] = 0 

…(16) 

	 ...(13)
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Kinetics Study 

The Fenton oxidation method uses a catalyst Fe2+ and H2O2 to undergo a redox reaction to form a 

highly active ·OH which can decompose the molecular structure of organic dyes. The reaction 

mechanism can be expressed by (Eqs. 6-14) (D represents dye molecules) (Gao et al. 2014, Gao et 

al. 2019b, Kušić et al. 2006, Sibel et al. 2012, Sehested et al. 2003). 

 𝐹𝐹𝐹𝐹2+ + 𝐻𝐻2𝑂𝑂2 → 𝐹𝐹𝐹𝐹3+ +∙ 𝑂𝑂𝑂𝑂 + 𝑂𝑂𝑂𝑂− …(6) 

 𝑘𝑘1 = 76 𝑀𝑀−1𝑠𝑠−1  

 D +∙ OH → 𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 …(7) 

 𝐹𝐹𝐹𝐹2+ +∙ 𝑂𝑂𝑂𝑂 → 𝐹𝐹𝐹𝐹3+ + 𝑂𝑂𝑂𝑂− …(8) 

 𝑘𝑘3 = 3.2 × 108  
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 𝑘𝑘6 = 0.02𝑀𝑀−1𝑠𝑠−1  

The reaction rate of dye can be defined as: 

 
− d[D]

dt = 𝑘𝑘2[∙ 𝑂𝑂𝑂𝑂][𝐷𝐷] 
…(12) 

According to the steady-state assumption, [·OH] can be obtained as follow: 

 d[∙ OH]
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 𝑘𝑘5[∙ 𝑂𝑂𝑂𝑂][∙ 𝑂𝑂𝑂𝑂𝑂𝑂] = 𝑘𝑘4[𝐻𝐻2𝑂𝑂2][∙ 𝑂𝑂𝑂𝑂] …(15) 
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dt = 𝑘𝑘1[𝐹𝐹𝐹𝐹2+][𝐻𝐻2𝑂𝑂2] − 𝑘𝑘2[∙ 𝑂𝑂𝑂𝑂][𝐷𝐷] − 𝑘𝑘3[𝐹𝐹𝐹𝐹2+][∙ 𝑂𝑂𝑂𝑂] − 2𝑘𝑘4[𝐻𝐻2𝑂𝑂2][∙ 𝑂𝑂𝑂𝑂] = 0 
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According to Eq. (14), we obtain:
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dt = 𝑘𝑘2[∙ 𝑂𝑂𝑂𝑂][𝐷𝐷] 
…(12) 

According to the steady-state assumption, [·OH] can be obtained as follow: 

 d[∙ OH]
dt = 𝑘𝑘1[𝐹𝐹𝐹𝐹2+][𝐻𝐻2𝑂𝑂2] − 𝑘𝑘2[∙ 𝑂𝑂𝑂𝑂][𝐷𝐷] − 𝑘𝑘3[𝐹𝐹𝐹𝐹2+][∙ 𝑂𝑂𝑂𝑂] − 𝑘𝑘4[𝐻𝐻2𝑂𝑂2][∙ 𝑂𝑂𝑂𝑂]
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…(16) 

	 ...(15)

According to Eqs. (13) and (15), we obtain:

0.1 0.6 2 20 0.03481 0.99652 

0.1 0.6 2.5 20 0.0447 0.99558 

0.1 0.6 3 20 0.04824 0.98836 

0.1 0.6 4 20 0.04468 0.99148 

0.1 0.6 3 10 0.05251 0.96378 

0.1 0.6 3 20 0.03869 0.94459 

0.1 0.6 3 30 0.04116 0.96418 

0.1 0.6 3 40 0.03526 0.96477 

 

Kinetics Study 

The Fenton oxidation method uses a catalyst Fe2+ and H2O2 to undergo a redox reaction to form a 

highly active ·OH which can decompose the molecular structure of organic dyes. The reaction 

mechanism can be expressed by (Eqs. 6-14) (D represents dye molecules) (Gao et al. 2014, Gao et 

al. 2019b, Kušić et al. 2006, Sibel et al. 2012, Sehested et al. 2003). 

 𝐹𝐹𝐹𝐹2+ + 𝐻𝐻2𝑂𝑂2 → 𝐹𝐹𝐹𝐹3+ +∙ 𝑂𝑂𝑂𝑂 + 𝑂𝑂𝑂𝑂− …(6) 

 𝑘𝑘1 = 76 𝑀𝑀−1𝑠𝑠−1  

 D +∙ OH → 𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 …(7) 

 𝐹𝐹𝐹𝐹2+ +∙ 𝑂𝑂𝑂𝑂 → 𝐹𝐹𝐹𝐹3+ + 𝑂𝑂𝑂𝑂− …(8) 

 𝑘𝑘3 = 3.2 × 108  

 𝐻𝐻2𝑂𝑂2 +∙ 𝑂𝑂𝑂𝑂 →∙ 𝑂𝑂𝑂𝑂𝑂𝑂 + 𝐻𝐻2𝑂𝑂 …(9) 

 𝑘𝑘4 = 4.5 × 107  

 ∙ OH +∙ OOH → 𝐻𝐻2𝑂𝑂 + 𝑂𝑂2 …(10) 

 𝑘𝑘5 = 6.6 × 1011  

 𝐹𝐹𝐹𝐹3+ + 𝐻𝐻2𝑂𝑂2 → 𝐹𝐹𝐹𝐹2+ + 𝐻𝐻+ +∙ 𝑂𝑂𝑂𝑂𝑂𝑂 …(11) 

 𝑘𝑘6 = 0.02𝑀𝑀−1𝑠𝑠−1  

The reaction rate of dye can be defined as: 

 
− d[D]
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The experimental results are shown in Fig. 13. [H2O2]/Kap 
has a good linear relationship with the dye concentration (R2 

linear fitting results of the relationship curve between ln (C0/Ct) and time (t) are given in Table 1. 

The kinetic parameters are also listed in Table 1. The values of the kinetic parameters (the correlation 

coefficients R2) are all above 0.94. It can be seen that the oxidation process of Acid Light Yellow 

2G by Fenton method accords with first-order kinetics. 

 

Fig. 9: First-order kinetics of reactions in different Fe2+ concentrations. 

 

Fig. 10: First-order kinetics of reactions in different H2O2 concentrations. 
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Fig. 12: First-order kinetics of reactions in different dye concentrations. 

 

First-order kinetics fitting is performed for the fast reaction stage. The fast stage of the Fenton 

oxidation process abides by first-order kinetics. Under the optimal reaction condition in Fenton 

oxidation, the correlation coefficient is 0.98 and the reaction rate Kap is 0.04824 s-1. 

 
 
 
 
 
 

Table 1: Degradation kinetics data. 

FeSO4 (mmol/L) H2O2 (mmol/L) pH 
Dye concentration

（mg/L） 

First-order kinetics 

Kap R2 

0.04 3 3 20 0.0239 0.98182 

0.06 3 3 20 0.02298 0.95885 

0.1 3 3 20 0.04236 0.95748 

0.2 3 3 20 0.07708 0.95702 

0.4 3 3 20 0.08617 0.96601 

0.1 0.18 3 20 0.02634 0.99524 

0.1 0.6 3 20 0.04658 0.99384 

0.1 3 3 20 0.0448 0.98128 

0.1 6 3 20 0.04107 0.98546 

0.1 12 3 20 0.023 0.95326 

0.1 0.6 1.5 20 0.02147 0.99136 

Fig. 12: First-order kinetics of reactions in different dye concentrations.

process of Acid Light Yellow 2G by Fenton method accords 
with first-order kinetics.

First-order kinetics fitting is performed for the fast re-
action stage. The fast stage of the Fenton oxidation process 
abides by first-order kinetics. Under the optimal reaction 
condition in Fenton oxidation, the correlation coefficient is 
0.98 and the reaction rate Kap is 0.04824 s-1.

Kinetics Study

The Fenton oxidation method uses a catalyst Fe2+ and H2O2 to 
undergo a redox reaction to form a highly active ·OH which 
can decompose the molecular structure of organic dyes. The 
reaction mechanism can be expressed by (Eqs. 6-14) (D 
represents dye molecules) (Gao et al. 2014, Gao et al. 2019b, 
Kušić et al. 2006, Sibel et al. 2012, Sehested et al. 2003).

	

0.1 0.6 2 20 0.03481 0.99652 

0.1 0.6 2.5 20 0.0447 0.99558 

0.1 0.6 3 20 0.04824 0.98836 

0.1 0.6 4 20 0.04468 0.99148 

0.1 0.6 3 10 0.05251 0.96378 

0.1 0.6 3 20 0.03869 0.94459 

0.1 0.6 3 30 0.04116 0.96418 

0.1 0.6 3 40 0.03526 0.96477 
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The Fenton oxidation method uses a catalyst Fe2+ and H2O2 to undergo a redox reaction to form a 

highly active ·OH which can decompose the molecular structure of organic dyes. The reaction 

mechanism can be expressed by (Eqs. 6-14) (D represents dye molecules) (Gao et al. 2014, Gao et 

al. 2019b, Kušić et al. 2006, Sibel et al. 2012, Sehested et al. 2003). 

 𝐹𝐹𝐹𝐹2+ + 𝐻𝐻2𝑂𝑂2 → 𝐹𝐹𝐹𝐹3+ +∙ 𝑂𝑂𝑂𝑂 + 𝑂𝑂𝑂𝑂− …(6) 

 𝑘𝑘1 = 76 𝑀𝑀−1𝑠𝑠−1  

 D +∙ OH → 𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 …(7) 
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 d[∙ OH]
dt = 𝑘𝑘1[𝐹𝐹𝐹𝐹2+][𝐻𝐻2𝑂𝑂2] − 𝑘𝑘2[∙ 𝑂𝑂𝑂𝑂][𝐷𝐷] − 𝑘𝑘3[𝐹𝐹𝐹𝐹2+][∙ 𝑂𝑂𝑂𝑂] − 2𝑘𝑘4[𝐻𝐻2𝑂𝑂2][∙ 𝑂𝑂𝑂𝑂] = 0 

…(16) 

	

0.1 0.6 2 20 0.03481 0.99652 

0.1 0.6 2.5 20 0.0447 0.99558 

0.1 0.6 3 20 0.04824 0.98836 

0.1 0.6 4 20 0.04468 0.99148 

0.1 0.6 3 10 0.05251 0.96378 

0.1 0.6 3 20 0.03869 0.94459 

0.1 0.6 3 30 0.04116 0.96418 

0.1 0.6 3 40 0.03526 0.96477 

 

Kinetics Study 

The Fenton oxidation method uses a catalyst Fe2+ and H2O2 to undergo a redox reaction to form a 

highly active ·OH which can decompose the molecular structure of organic dyes. The reaction 

mechanism can be expressed by (Eqs. 6-14) (D represents dye molecules) (Gao et al. 2014, Gao et 

al. 2019b, Kušić et al. 2006, Sibel et al. 2012, Sehested et al. 2003). 

 𝐹𝐹𝐹𝐹2+ + 𝐻𝐻2𝑂𝑂2 → 𝐹𝐹𝐹𝐹3+ +∙ 𝑂𝑂𝑂𝑂 + 𝑂𝑂𝑂𝑂− …(6) 

 𝑘𝑘1 = 76 𝑀𝑀−1𝑠𝑠−1  

 D +∙ OH → 𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 …(7) 

 𝐹𝐹𝐹𝐹2+ +∙ 𝑂𝑂𝑂𝑂 → 𝐹𝐹𝐹𝐹3+ + 𝑂𝑂𝑂𝑂− …(8) 

 𝑘𝑘3 = 3.2 × 108  

 𝐻𝐻2𝑂𝑂2 +∙ 𝑂𝑂𝑂𝑂 →∙ 𝑂𝑂𝑂𝑂𝑂𝑂 + 𝐻𝐻2𝑂𝑂 …(9) 

 𝑘𝑘4 = 4.5 × 107  

 ∙ OH +∙ OOH → 𝐻𝐻2𝑂𝑂 + 𝑂𝑂2 …(10) 

 𝑘𝑘5 = 6.6 × 1011  

 𝐹𝐹𝐹𝐹3+ + 𝐻𝐻2𝑂𝑂2 → 𝐹𝐹𝐹𝐹2+ + 𝐻𝐻+ +∙ 𝑂𝑂𝑂𝑂𝑂𝑂 …(11) 

 𝑘𝑘6 = 0.02𝑀𝑀−1𝑠𝑠−1  

The reaction rate of dye can be defined as: 

 
− d[D]

dt = 𝑘𝑘2[∙ 𝑂𝑂𝑂𝑂][𝐷𝐷] 
…(12) 

According to the steady-state assumption, [·OH] can be obtained as follow: 

 d[∙ OH]
dt = 𝑘𝑘1[𝐹𝐹𝐹𝐹2+][𝐻𝐻2𝑂𝑂2] − 𝑘𝑘2[∙ 𝑂𝑂𝑂𝑂][𝐷𝐷] − 𝑘𝑘3[𝐹𝐹𝐹𝐹2+][∙ 𝑂𝑂𝑂𝑂] − 𝑘𝑘4[𝐻𝐻2𝑂𝑂2][∙ 𝑂𝑂𝑂𝑂]

− 𝑘𝑘5[∙ 𝑂𝑂𝑂𝑂][∙ 𝑂𝑂𝑂𝑂𝑂𝑂] = 0 

…(13) 

 
− d[∙ OOH]

dt = 𝑘𝑘4[𝐻𝐻2𝑂𝑂2][∙ 𝑂𝑂𝑂𝑂] − 𝑘𝑘5[∙ 𝑂𝑂𝑂𝑂𝑂𝑂][∙ 𝑂𝑂𝑂𝑂] = 0 
…(14) 

According to Eq. (14), we obtain: 

 𝑘𝑘5[∙ 𝑂𝑂𝑂𝑂][∙ 𝑂𝑂𝑂𝑂𝑂𝑂] = 𝑘𝑘4[𝐻𝐻2𝑂𝑂2][∙ 𝑂𝑂𝑂𝑂] …(15) 

According to Eqs. (13) and (15), we obtain: 

 d[∙ OH]
dt = 𝑘𝑘1[𝐹𝐹𝐹𝐹2+][𝐻𝐻2𝑂𝑂2] − 𝑘𝑘2[∙ 𝑂𝑂𝑂𝑂][𝐷𝐷] − 𝑘𝑘3[𝐹𝐹𝐹𝐹2+][∙ 𝑂𝑂𝑂𝑂] − 2𝑘𝑘4[𝐻𝐻2𝑂𝑂2][∙ 𝑂𝑂𝑂𝑂] = 0 

…(16) 

	 ...(9)
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Table 1: Degradation kinetics data.

FeSO4 (mmol/L) H2O2 (mmol/L) pH Dye concentration（mg/L） First-order kinetics

Kap R2

0.04 3 3 20 0.0239 0.98182

0.06 3 3 20 0.02298 0.95885

0.1 3 3 20 0.04236 0.95748

0.2 3 3 20 0.07708 0.95702

0.4 3 3 20 0.08617 0.96601

0.1 0.18 3 20 0.02634 0.99524

0.1 0.6 3 20 0.04658 0.99384

0.1 3 3 20 0.0448 0.98128

0.1 6 3 20 0.04107 0.98546

0.1 12 3 20 0.023 0.95326

0.1 0.6 1.5 20 0.02147 0.99136

0.1 0.6 2 20 0.03481 0.99652

0.1 0.6 2.5 20 0.0447 0.99558

0.1 0.6 3 20 0.04824 0.98836

0.1 0.6 4 20 0.04468 0.99148

0.1 0.6 3 10 0.05251 0.96378

0.1 0.6 3 20 0.03869 0.94459

0.1 0.6 3 30 0.04116 0.96418

0.1 0.6 3 40 0.03526 0.96477

= 0.97133). According to intercept B, the intrinsic reaction 
rate constant of the dye concentration and ·OH in the aqueous 
solution is obtained (k2 = 0.55 × 109M–1S–1).

CONCLUSION

In this study, the degradation of the azo dye Acid Light 
Yellow 2G by Fenton method and its influence factors (initial 
dye concentration, initial solution Fe2+ concentration, initial 
H2O2 concentration, and initial pH value) were studied. The 
following conclusions can be made.

 
[∙ 𝑂𝑂𝑂𝑂] = 𝑘𝑘1[𝐹𝐹𝐹𝐹2+][𝐻𝐻2𝑂𝑂2]

𝑘𝑘2[𝐷𝐷] + 𝑘𝑘3[𝐹𝐹𝐹𝐹2+] + 2𝑘𝑘4[𝐻𝐻2𝑂𝑂2]
 

…(17) 

Combined Eqs. (12) with (17), we obtained: 

 
−d[D]

dt = 𝑘𝑘1𝑘𝑘2[𝐹𝐹𝐹𝐹2+][𝐻𝐻2𝑂𝑂2][𝐷𝐷]
𝑘𝑘2[𝐷𝐷] + 𝑘𝑘3[𝐹𝐹𝐹𝐹2+] + 2𝑘𝑘4[𝐻𝐻2𝑂𝑂2]

 
…(18) 

Thus, Eq. (18) deduces to 

 [𝐻𝐻2𝑂𝑂2][𝐷𝐷]

−𝑑𝑑[𝐷𝐷]
𝑑𝑑𝑑𝑑

= [𝐷𝐷]
𝑘𝑘1[𝐹𝐹𝐹𝐹2+]

+ 𝑘𝑘3
𝑘𝑘1𝑘𝑘2

+ 2𝑘𝑘4[𝐻𝐻2𝑂𝑂2]
𝑘𝑘2𝑘𝑘1[𝐹𝐹𝐹𝐹2+]

 …(19) 

By fitting the first-order kinetics to the oxidation reaction process in the last stage, the results 

show that the correlation coefficients are all above 0.95. It can be seen that the fast stage meets the 

first-order kinetics, so that: 

 
−d[D]

dt = 𝐾𝐾𝐾𝐾𝐾𝐾[𝐷𝐷] 
…(20) 

Combined Eqs. (19) with (20), we obtained: 

 [𝐻𝐻2𝑂𝑂2]
𝐾𝐾𝐾𝐾𝐾𝐾 = k[𝐷𝐷]0 + 𝐵𝐵 

…(21) 

 
B = 𝑘𝑘3

𝑘𝑘2𝑘𝑘1
+ 2𝑘𝑘4[𝐻𝐻2𝑂𝑂2]0
𝑘𝑘2𝑘𝑘1[𝐹𝐹𝐹𝐹2+]0

 
…(22) 

The experimental results are shown in Fig. 13. [H2O2]/Kap has a good linear relationship with 

the dye concentration (R2=0.97133). According to intercept B, the intrinsic reaction rate constant of 

the dye concentration and ·OH in the aqueous solution is obtained (𝑘𝑘2 = 0.55 × 109𝑀𝑀−1𝑆𝑆−1). 

 

Fig. 13: Relationship between [H2O2]/Kap and [D]0. 

 

CONCLUSION 

In this study, the degradation of the azo dye Acid Light Yellow 2G by Fenton method and its 

influence factors (initial dye concentration, initial solution Fe2+ concentration, initial H2O2 

concentration, and initial pH value) were studied. The following conclusions can be made. 

Fig. 13: Relationship between [H2O2]/Kap and [D]0.

	 1.	 The online spectrophotometric method was used to mon-
itor the absorbance of dye Acid Light Yellow 2G with 
Fenton oxidation. This technique is accurate, feasible 
and fast. The Fenton oxidation process can be divided 
into two stages: a rapid degradation stage (t < 30s) and 
a slow degradation phase (t >30s). 

	 2.	 The best experimental conditions for degradation of dyes 
are that FeSO4 is 0.1 mmol/L, H2O2 is 0.6 mmol/L, ini-
tial pH is 3, and when the dye concentration is 20 mg/L, 
the colour removal rate is 94.66%. Fenton oxidation 
process conforms to first-order reaction kinetics in the 
first stage. According to the formula Kap = ln (C0/Ct), 
the first-order rate constant is the linear fitting slope. 
The reaction rate constant Kap is 0.04824 s-1 under the 
best experimental conditions.

	 3.	 During the Fenton oxidation process, the intrinsic 
reaction rate constant of the ALY 2G dye and ·OH in 
aqueous solution was (k2 = 0.55 × 109M–1S–1).
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