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       ABSTRACT
The rapid development of industry has led to the generation of a large amount of electroplating 
wastewater. The direct discharge of untreated electroplating wastewater may lead to the 
formation of toxic metal-organic complexes, which is a challenging problem for human health 
and the living environment of organisms. Due to the high solubility of heavy metals in aquatic 
environments and their easy absorption by organisms, effective treatment of electroplating 
wastewater is of great significance. The ultimate goal of electroplating wastewater 
treatment should be to recover metals and water from electroplating wastewater. In indoor 
experiments, pilot tests, and industrial applications of electroplating wastewater treatment, 
membrane treatment technology commonly used in wastewater terminal treatment has 
attracted great attention. Membrane treatment technology seems to be the most promising 
method for removing heavy metals and organic pollutants from electroplating wastewater. 
This article reviews the membrane treatment technologies for electroplating wastewater, 
introduces the advantages and disadvantages of various membranes in the treatment of 
electroplating wastewater, the removal efficiency of pollutant types, and their comparison. 
The focus is on the treatment effects of nano-filtration membrane, ultra-filtration membrane, 
micro-filtration membrane, reverse osmosis membrane, ceramic membrane, biofilm, etc., 
on electroplating wastewater. Compared with a single treatment method, the combination of 
different processes shows higher efficiency in removing various pollutants.

INTRODUCTION

With the rapid development of society and the economy and 
the continuous improvement of urbanization, water pollution 
has become increasingly severe, and water resources are 
in serious shortage (Guven et al. 2022). Strengthening 
sewage treatment and protecting water resources to achieve 
sustainable development is an essential and urgent task 
(Maulin et al. 2022). In recent years, the increasingly mature 
membrane separation technology has been widely used in 
industrial wastewater and domestic sewage purification, 
applied water treatment, seawater desalination, brackish 
water desalination, and other water treatment fields. This is 
due to its numerous advantages, such as excellent separation 
effects, energy-saving, and environmentally friendly nature, 
a simple process, convenient operation, and a small footprint 
(Sm et al. 2022, Ahmed et al. 2022). 

Membrane separation technology uses a selectively 
permeable membrane made of special organic or inorganic 
materials, driven by external energy or a chemical potential 

difference, to separate, grade, purify, and concentrate 
mixtures (Ibrar et al. 2022). As membrane separation 
technology develops, new membrane materials have become 
a focal point and area of significant research interest (Manetti 
& Tomei 2022). The research and development of new 
membrane materials mainly include nano-fiber membrane-
supported polymer composite membranes, organic-inorganic 
hybrid membranes, and inorganic membranes (Rodenburg 
et al. 2022). Membrane separation technology can be 
categorized according to pore size and filtration accuracy into 
the following types: micro-filtration (MF), ultra-filtration 
(UF), nano-filtration (NF), reverse osmosis (RO), and 
electrodialysis (ED) (Malhas et al. 2022).

The research demonstrated that a PET nanofiber 
membrane was prepared using electrostatic spinning. 
This PET nanofiber membrane was then used as a 
substrate and coated with crosslinked chitosan (Mansor 
et al. 2021). Subsequently, interfacial polymerization of 
m-phenylenediamine (MPD) and trimethylene chloride 
(TMC) was carried out to create a nanofibril polyamide 
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composite reverse osmosis membrane (Khan & Boddu 
2021). The membrane’s rejection rate for a 2 g.L-1 sodium 
chloride solution reached 92%, with a corresponding flux 
of 21g/(m2.h), showcasing good interception performance 
that can satisfy the requirements for high-purity water. Other 
studies have indicated that chemical bonding between organic 
and inorganic materials can be achieved through molecular 
design and surface modification of organosilicon materials 
and inorganic nanomaterials. This results in the pervaporation 
of organic compounds with excellent flux, selectivity, solvent 
resistance, and stability. At 50°C, the flux of a 5% ethanol 
aqueous solution is greater than 1000 g/(m2.h), and at 70°C, 
the separation factor for a 1% butanol solution exceeds 70, 
with a flux of more than 1300 g/(m2.h) (Ahin 2021). 

In recent years, besides focusing on membrane materials 
research, some experts and scholars have made progress 
in studying membrane wastewater treatment technology. 
It has been reported that a biofilm reactor is created by 
combining biological treatment and membrane separation 
technology (Salgot & Folch 2018, Biniaz et al. 2019). With 
pore sizes ranging from 0.03 to 0.2 μm, the membrane 
exhibits a high-efficiency interception and separation 
effect. As microorganisms are entirely retained within the 
reactor, pollutants can be efficiently degraded and separated, 
resulting in high-quality water (Biniaz et al. 2019).

The micro-filtration combined technologies of 
coagulation-micro-filtration, adsorption-micro-filtration, 
and precipitation-micro-filtration can effectively play the 

advantages of dissolved salts, adsorbents, precipitators, and 
micro-filtration membranes, strengthen the separation effect 
and effectively reduce membrane pollution (Rahimpour et al. 
2019). The research shows that the integrated technology of 
membrane filtration and adsorption can control the flow rate 
and time of stock solution entering the membrane module, 
adjust the solute concentration of the concentration difference 
polarization layer, and extract and derive the concentrated 
solution of the concentration difference polarization layer in 
time, and solve the two significant problems of concentration 
difference polarization and membrane pollution at the same 
time (Damtie et al. 2018, Leonzio 2017)

At present, membrane treatment technology is widely 
used in sewage treatment. Despite the many research 
achievements in electroplating wastewater treatment, there 
are fewer instances of membrane treatment technology 
implemented in industrial applications (Cho et al. 2018). 
Electroplating wastewater is characterized by an overly 
complex composition, increasing discharge year by year, 
and progressively high pollutant concentrations, posing a 
significant challenge to adequate environmental protection 
(Silva et al. 2017). Chemical precipitation technology is 
commonly used for treating electroplating wastewater  
(Fig. 1) (Ozokwelu et al. 2017). However, due to the addition 
of numerous chemicals during the treatment process, 
the treated wastewater’s salinity increases significantly, 
severely affecting the biodegradability of wastewater in 
the later stages of the process. At the same time, many 
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heavy metals are lost from the wastewater, and substances 
such as ammonia, nitrogen, and total phosphorus become 
challenging to remove in subsequent processes (Hosseini 
et al. 2017). Moreover, the treatment process generates 
a considerable amount of sludge, which results in a low 
reuse rate of reclaimed water and significantly increased 
reuse costs (Noah et al. 2016, Babilas & Dydo 2018). The 
latest “Emission Standard of Electroplating Pollutants” 
(GB21900-2008), implemented in our country in 2008, sets 
higher requirements for the discharge concentration limits 
of heavy metals and other related indicators in electroplating 
wastewater. Therefore, adopting more environmentally 
friendly production processes and advanced wastewater 
treatment technologies that meet these requirements is 
essential for solving the problem of up-to-standard discharge 
of electroplating wastewater (Hoslett et al. 2018).

Due to its excellent treatment effects and robust 
adaptability, membrane treatment technology has emerged as 
an advanced method for the harmless and efficient treatment 
of electroplating wastewater (Al-Saydeh et al. 2017, Akar 
et al. 2021). The typical membrane filtration process is 
illustrated in Fig. 2, where large particle contaminants 
accumulate on the surface while smaller particles either 
pass through the membrane pores or remain within them. 
Applying membrane treatment technology for electroplating 
wastewater results in a wastewater reduction treatment 
process (Sur & Mukhopadhyay 2018, Wen et al. 2018). In 
this process, the amount of chemicals added is minimal. 
Following pretreatment of the wastewater, it directly enters 
the membrane element for concentration. The final effluent 
meets the requirements for reuse, and the concentrated 
wastewater can be recycled. Consequently, the volume of 
wastewater requiring discharge is significantly reduced, 
along with sludge production, leading to decreased treatment 
costs (Wen et al. 2018).

A large number of practices using membrane separation 
technology to treat industrial electroplating wastewater have 

shown that different membrane properties have different 
requirements for the ability to separate water quality and 
treatment. For example, composite membranes, porous 
membranes, and exchange membranes are mainly treated with 
non-organic ions, bacteria, and inorganic ions. Electroplating 
wastewater is rich in a large amount of heavy metals and 
contains many anions that are harmful to human health. At the 
same time, the acidity and alkalinity of the wastewater are also 
different from normal water quality. Therefore, solving some 
impurities in the wastewater and reusing industrial wastewater 
to obtain useful substances cannot be done without the use of 
membrane separation technology.

This article aims to summarize the application research 
of membrane treatment technology for electroplating 
wastewater and theoretically analyze the treatment effects 
and development prospects of nano-filtration membrane, 
ultra-filtration membrane, micro-filtration membrane, 
reverse osmosis membrane, ceramic membrane, biofilm, etc., 
on electroplating wastewater. At the same time, it considers 
the technical defects and potential problems that membrane 
treatment technology may face in the electroplating 
wastewater treatment process.

CHARACTERISTICS AND HAZARDS OF 
ELECTROPLATING WASTEWATER

Characteristics

Sources of electroplating wastewater: waste electroplating 
solution, washing wastewater during equipment maintenance, 
wastewater from washing workshops, cleaning water for 
electroplating parts, condensed water formed by condensation 
of ventilation equipment, seepage or leaking water from 
aqueducts, and various bath liquids during improper operation 
and drained wastewater (Akar et al. 2021).

Due to the different requirements of each plating piece, 
the relevant technical conditions, such as the electroplating 

5 

electroplating wastewater (Al-Saydeh et al. 2017, Akar et al. 2021). The typical membrane 

filtration process is illustrated in Fig. 2, where large particle contaminants accumulate on the 

surface while smaller particles either pass through the membrane pores or remain within them. 

Applying membrane treatment technology for electroplating wastewater results in a wastewater 

reduction treatment process (Sur & Mukhopadhyay 2018, Wen et al. 2018). In this process, the 

amount of chemicals added is minimal. Following pretreatment of the wastewater, it directly 

enters the membrane element for concentration. The final effluent meets the requirements for 

reuse, and the concentrated wastewater can be recycled. Consequently, the volume of 

wastewater requiring discharge is significantly reduced, along with sludge production, leading 

to decreased treatment costs (Wen et al. 2018). 

 
Fig. 2: The usual membrane filtration process. 

A large number of practices using membrane separation technology to treat industrial 

electroplating wastewater have shown that different membrane properties have different 

requirements for the ability to separate water quality and treatment. For example, composite 

membranes, porous membranes, and exchange membranes are mainly treated with non-organic 

ions, bacteria, and inorganic ions. Electroplating wastewater is rich in a large amount of heavy 

metals and contains many anions that are harmful to human health. At the same time, the acidity 

and alkalinity of the wastewater are also different from normal water quality. Therefore, solving 

some impurities in the wastewater and reusing industrial wastewater to obtain useful substances 

cannot be done without the use of membrane separation technology. 

This article aims to summarize the application research of membrane treatment technology 

for electroplating wastewater and theoretically analyze the treatment effects and development 

Fig. 2: The usual membrane filtration process.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:selfia.bintari@staff.uns.ac.id
mailto:selfia.bintari@staff.uns.ac.id


652 Le Zhang et al.

Vol. 23, No. 2, 2024 • Nature Environment and Pollution Technology  This publication is licensed under a Creative 
Commons Attribution 4.0 International License

This publication is licensed under a Creative 
Commons Attribution 4.0 International License

solution and coating layer selected during electroplating, 
are also different, so the formed electroplating wastewater 
contains a wide variety of pollutants and significant 
differences between components (Albergamo et al. 2019). 
In addition to many heavy metal ions, wastewater contains 
various citric acids, surfactants, cyanide, etc (Akar et al. 
2021, Albergamo et al. 2019).

Hazards

The electroplating industry will produce a large amount of 
electroplating wastewater in production. Such wastewater 
contains heavy metal ions such as chromium, copper, nickel, 
cadmium, zinc, and more toxic compounds such as cyanide 
(Mohagheghian et al. 2018). Once these toxic and refractory 
substances enter the natural environment, they will exist in 
nature for a long time. They can eventually be enriched in 
animals and plants through the food chain in the ecological 
cycle and even eventually in the human body at the top of 
the food chain. It can destroy the cells and tissues of the 
human body (Fig. 3) (Takuma et al. 2018). Symptoms such as 
poisoning, cancer, aberration, and mutation that lead human 
body will bring great harm and impact human beings and the 
social environment (Mohagheghian et al. 2018).

Therefore, before treating electroplating wastewater, 
the source, type, and pollution degree of pollutants in the 
wastewater should be identified first to be recovered and 
treated safely and effectively. All electroplating wastewater 
can be recovered by strictly controlling the discharge content 
of pollutants. Discharge up to the standard to protect the 
environment so that wastewater pollution will not cause 
harm to society and human health (Sur & Mukhopadhyay 
2018, Abdel & Alseroury 2019).

CURRENT SITUATION AND PROBLEMS OF 
TREATMENT OF ELECTROPLATING WASTEWATER

The treatment process of electroplating wastewater mainly 
includes four parts: pretreatment, comprehensive treatment, 

membrane treatment, and evaporation treatment (Kobya et 
al. 2017). The pretreatment stage of wastewater generally 
follows the principles of classified collection and qualitative 
treatment. For example, the pretreatment of wastewater 
containing cyanide adopts the alkaline chlorination method, 
the pretreatment of wastewater containing chromium 
adopts the sulfite reduction method, and the pretreatment 
of wastewater containing nickel, cadmium, and copper. The 
pretreatment of wastewater, such as zinc, adopts the chemical 
precipitation or ion exchange method, and the pretreatment of 
acid-base wastewater adopts the neutralization method (Castel 
& Favre 2018, Hackbarth et al. 2016). After pretreatment, all 
kinds of wastewater will enter the comprehensive treatment 
stage. In the comprehensive treatment stage, technologies 
such as physicochemical and biochemical treatment are 
used to remove different pollutants, such as organic matter, 
ammonia nitrogen, and total nitrogen, so that the effluent 
meets the influent requirements of membrane treatment. In 
the membrane treatment section, the multi-stage and multi-
stage combined membrane process concentrates and reduces 
the amount of wastewater (Hedayati et al. 2017). The high 
salinity membrane system produces water and evaporative 
condensate water, which is recycled back to production to 
achieve zero discharge of electroplating wastewater (John 
et al. 2016).

Due to the complex composition of electroplating 
wastewater, difficult control of composition, significant 
variation in water quality, and intense pollution, the current 
treatment of electroplating wastewater has the following 
problems (Hackbarth et al. 2016).

Unreasonable Classification

Although electroplating wastewater generally follows the 
principles of classified collection and qualitative treatment, 
its classification is unreasonable due to its wide variety. 
With the application of various new technologies, new 
processes, and new materials in the modern electroplating 
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the recycling rate of electroplating wastewater in my country 
is low, especially since the treatment of the organic matter in 
electroplating wastewater could be better. Although modern 
electroplating wastewater treatment and reuse technology 
has made significant progress in the treatment of metal ions, 
the stability of the wastewater treatment and reuse device 
could be better. It is challenging to meet the requirements of 
industrialized sewage standards (Quiton et al. 2022).

Lower Rate of Reuse Up to Standard of Electroplating 
Wastewater Treatment 

With the promulgation and implementation of a series 
of rules and regulations, such as the “Emission Standard 
of Electroplating Pollutants” and “Emission Standard 
of Electroplating Water Pollutants,” the discharge of 
electroplating pollutants has made significant progress 
compared with the original (Zhang et al. 2018). However, 

industry, the pollutants in electroplating wastewater have 
become increasingly complex. Currently, the classification 
of electroplating wastewater in my country needs to be 
clarified and unreasonable. Some areas are divided into 3 to 5 
categories. Some areas even reach more than ten categories, 
which makes the treatment and reuse of electroplating 
wastewater more complex, and the treatment cost rises (John 
et al. 2016, Hackbarth et al. 2016).

Lower Reuse Rate of Electroplating  
Wastewater Treatment

Driven by cleaner production, the recycling rate of 
electroplating wastewater has been dramatically improved, 
especially with new technologies such as membrane 
treatment, nano-filtration, and ion exchange, which have also 
improved the level of electroplating wastewater treatment 
(Scarazzato et al. 2017, Van 2018). However, on the whole, 
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many enterprises’ electroplating wastewater treatment 
processes and equipment still need to be improved to meet the 
standard requirements (Fonseca et al. 2018). For treatment 
and reuse, defining different treatment water qualities based 
on the required water quality for reclaimed water reuse may 
be more meaningful than blindly pursuing sewage standards. 
Therefore, many enterprises and scholars have also begun 
to consider reusing the reclaimed water from electroplating 
wastewater treatment, which may greatly reduce operating 
treatment costs (Zhang et al. 2018, Van 2018).

Membrane Treatment Technology

The membrane treatment technology of electroplating 
wastewater uses a membrane with selective permeability 
to separate the solute and the solute (Fig. 4), the solute and 
the solvent (water) in the solution under the action of a 
particular external driving force, to achieve the purpose of 
purification, concentration, and purification (Fonseca et al. 
2018, Van 2018). When the driving force is concentration 
difference plus chemical reaction, the membrane process 
is liquid membrane separation; when the driving force is 
the potential difference, the membrane separation process 
is electrodialysis; when the driving force is a pressure 
difference, the membrane separation process is micro-
filtration, ultra-filtration, reverse osmosis, nano-filtration 
(Moslehyani et al. 2019, Park et al. 2018).

The characteristics of membrane treatment technology 
include separation effects reaching the nanometer level, low 
process energy consumption, easy maintenance and high 
reliability of equipment, small equipment footprint, and no 
introduction of other chemical substances in the material 
being treated during the process, preventing secondary 
pollution (Bankole et al. 2017, Ahsan & Imteaz 2019).

In recent years, with the development of electroplating 
wastewater membrane treatment technology and new 
discharge standards, a single membrane treatment technology 
can no longer fulfill the current requirements for electroplating 
wastewater treatment. As a result, more methods or process 
combinations are employed in integrated forms to treat 
electroplating wastewater (Ahsan & Imteaz 2019, Lakhotia et 
al. 2019). The mainstream membrane treatment technologies 
include nano-filtration, ultra-filtration, micro-filtration, 
reverse osmosis, ceramic, and biological membranes. The 
filtration processes of several standard filter membranes are 
illustrated in Fig. 5.

Nano-filtration Membrane

Nano-filtration is a membrane separation technology between 
ultra-filtration and reverse osmosis. The pore size is generally 
10 to 1 nm. It is a functional semipermeable membrane that 
allows solvent molecules or some low molecular weight 
solutes or low valent ions to pass the membrane (Lakhotia 
et al. 2019). The molecular weight of it intercepts organic 
matter is about 150-500, the ability to intercept soluble salt 
is between 2-98%, and the desalination of monovalent anion 
salt solution is lower than that of high-valent anion salt 
solution (Ahmadi et al. 2017, Yan et al. 2018). 

Park et al. (2018) used an integrated membrane treatment 
technology of micro-filtration, nano-filtration, and reverse 
osmosis to treat electroplating wastewater. The results 
show that when the CODcr value range of electroplating 
wastewater inlet is between 100-150 mg.L-1, the CODcr 
of the water sample in the return water storage tank has 
decreased to below 10 mg.L-1 after being treated by the 
integrated membrane system (Yan et al. 2018). Although 
the water quality of the inlet system fluctuates due to the 
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partial interception effect of the integrated membrane on 
CODcr, the CODcr value of the return water storage tank can 
be stabilized below 10 mg.L-1, and the CODcr removal rate can 
reach about 95% (He et al. 2019, Ya et al. 2018). This shows 
that the integrated membrane system has certain advantages 
in CODcr treatment. The average removal rate of SS reached 
97.1%, and the desalination rate reached 98% (Fig. 6), meeting 
the standards for electroplating wastewater reuse.

Gündoğdu et al. (2019) used ultra-filtration, nano-
filtration, and reverse osmosis technology to establish a pilot-
scale platform for electroplating wastewater treatment. The 
experimental results show that this technology can concentrate 
nickel ions in nickel-containing electroplating wastewater 
8-10 times and produce water. Through the subsequent 
supplementary processes such as alkali neutralization and ion 
exchange, the conductivity of the produced water can reach 
below 2 μS.cm-1, the heavy metal indicators are not detected, 
and the TOC is less than 5 mg.L-1 (Ya et al. 2018, Hegoburu 
et al. 2020). Hegoburu et al. (2020) conducted a cross-flow 
filtration experiment on electroplating wastewater with a new 
pH-stabilized nano-filtration membrane. The results showed 
that the new pH-stabilized nano-filtration membrane could 
remove about 75% of heavy metals when treating acidic 
electroplating wastewater.

In summary, it can be seen that under the combined 
process treatment of electroplating wastewater, the heavy 
metal ions in the water can be significantly reduced, the 
removal rate of CODcr in the water can reach 95%, the 
removal rate of SS can reach 97.1%, the desalination rate 
can reach 98%, and the conductivity of the effluent can reach  
2 μS.cm-1, TOC is below 5 mg.L-1, meeting the standards 
for electroplating wastewater reuse.

Ultrafiltration Membrane

Ultra-filtration membrane is a membrane process between 
micro-filtration and nano-filtration, and the membrane pore 
size is between 100 nm and 10 nm (Chew et al. 2018). The 
ultra-filtration membrane sieving process is driven by the 
pressure difference on both sides of the membrane, and the 
ultra-filtration membrane is used as the filter medium. Only 
water and small molecular substances are allowed to pass 
through to become permeate. In contrast, substances in the 
raw solution whose volume is larger than the pore size of 
the membrane surface are trapped on the liquid inlet side of 
the membrane and become the concentrated solution, thus 
realizing the purification, separation, and concentration of 
the raw solution (Totaro et al. 2017, Zhu et al. 2018).

Shen et al. (2019) used the “chemical precipitation-tubular 
ultra-filtration” combined process to treat copper and total 
phosphorus in pyrophosphate copper-plating wastewater. The 
results showed that the dosage of calcium hydroxide was 1.25 
g.L-1, the stirring time was 24 min, and when the stirring speed 
was 150 rpm, the operating pressure was 0.15 MPa (Zhu et al. 
2018). The flow rate on the membrane surface was 2.5 m.s-1, 
the stable flux of the membrane was about 700 L/(m2·h), and 
the mass concentration of copper in the effluent was stable 
between 0.2 and 0.3 mg.L-1, the mass concentration of total 
phosphorus is stable between 0.2 and 0.4 mg.L-1, all of which 
meet the requirements of effluent standards (Fig. 7) (Oden & 
Sari-Erkan 2018, Chen et al. 2018).

Sabeen et al. (2019) used the loading flocculation-ultra-
filtration -reverse osmosis process to treat printed circuit 
board (PCB) wastewater containing high concentrations of 
heavy metal ions. When the dosage is 1.0 mg.L-1, and the 
stirring speed is 250 r.min-1, the experimental results show 
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that the Cu2+ and Ni2+ concentrations in the effluent are 0.025 
mg.L-1 and 0.022 mg.L-1, and the removal rates are 90.7% 
and 90.1%, the highest desalination rate can reach 97.6% 
(Tezcan et al. 2017).

In summary, it can be seen that when using ultrafiltration 
membranes to treat electroplating wastewater, it is generally 
necessary to combine other processes for treatment, such as 
chemical precipitation tube ultrafiltration process, loaded 
flocculation ultrafiltration reverse osmosis process, etc. The 
treatment effect of electroplating wastewater using a single 
ultrafiltration membrane is poor, especially for the removal 
of heavy metals, which is very limited. However, when the 
combined process is used to treat electroplating wastewater, 
when the operating conditions are suitable, the heavy metal 
ions in the water will be greatly removed, and the desalination 
rate is also high. The treated wastewater is easy to reach the 
effluent standard.

Micro-filtration Membrane

The micro-filtration membrane can retain particles between 
10 and 0.1μm, allowing macromolecules and dissolved solids 
(inorganic salts) to pass through while retaining suspended 
solids, bacteria, and large molecular weight colloids (Chen 
et al. 2018).

Chowdhury et al. (2018) employed an electrochemically 
assisted carbon membrane for removing organic matter in 
electroplating wastewater. The process flow is illustrated in 
Fig. 8 (Bhateria & Dhaka 2017, Thamaraiselvan et al. 2018). 
Experimental results demonstrated that the effluent’s COD 
content was 54 mg.L-1, and the effluent’s Zn2+ concentration 
and COD index met the standard for electroplating pollutant 
discharge.

Li et al. (2023) conducted an industrial treatment test on 
electroplating wastewater using a combination of acid-base 
neutralization precipitation, membrane separation, facultative 
membrane bioreactor, and reverse osmosis processes. The 
results demonstrate that the process is feasible and stable, with 

effective treatment outcomes (Thamaraiselvan et al. 2018, 
Aslam et al. 2018). The treatment effects of each process 
section are presented in Table 1 (Kim et al. 2018). Without 
adding coagulants and flocculants, the effluent consistently 
meets the electroplating pollutant discharge standards 
requirements. Simultaneously, heavy metal resources, such 
as Cu and Ni in the sludge, can be recovered, significantly 
reducing the costs of chemicals and sludge disposal. The 
treatment cost per ton of wastewater is approximately 19.1 
Yuan, offering economic and environmental benefits (Aslam 
et al. 2018).

At present, the dual membrane method MF+RO is 
the most mainstream method for treating electroplating 
wastewater using membrane separation. The ion retention 
rate of RO membrane is generally higher than 96% under 
normal working conditions, which electroplating enterprises 
highly favor. However, due to the susceptibility of RO 
membranes to various pollution factors and their high 
requirements for influent water, direct passage through RO 
membranes can easily cause membrane blockage, which 
limits the efficiency and service life of the entire membrane 
system in treating and reusing electroplating wastewater. 
So, in the front end of the RO membrane system, an MF 
membrane system is used to pre-treat the influent water of 
the reverse osmosis membrane so that the wastewater meets 
the influent requirements of the reverse osmosis membrane. 
After that, it is pressurized to remove heavy metal ions 
through the reverse osmosis membrane system, which can 
better achieve the expected treatment and reuse effect.

Reverse Osmosis Membrane

Reverse osmosis, also referred to as hyperfiltration, features 
a membrane structure with a thin, dense layer (0.1-1.0 μm) 
on the surface and a porous support layer (100-200 μm) 
beneath the surface layer (Badruzzaman et al. 2019). This 
membrane separation operation uses pressure difference as 
the driving force to separate the solvent from the solution. 
Pressure is applied to the feed liquid on one side of the 
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membrane; when the pressure surpasses its osmotic pressure, 
the solvent will permeate against the natural flow direction. 
Reverse osmosis occurs on the membrane’s low-pressure 
side, while concentration occurs on the high-pressure side 
(Qin et al. 2019, Senusi et al. 2018).

Sanmartino et al. (2017) designed a chemical pretreatment 
reverse osmosis membrane and evaporative crystallization 
process to treat electroplating wastewater based on the 
water quality and quantity characteristics. Following 
the project’s stable operation, the mass concentration of 

Cr6+ in the pretreatment system effluent can be as low as  
0.13 mg.L-1, producing approximately 225 tons of recycled 
water daily with a conductivity of 424 μs.cm-1 (Table 2) 
(Senusi et al. 2018, Rathna et al. 2019). The treatment cost 
per ton of wastewater is about 9.7 Yuan, offering good 
economic benefits, stable system operation, and a high 
degree of automation, ultimately achieving zero discharge 
of electroplating wastewater (Rathna et al. 2019, Abdel-
Fatah 2018).

Fujioka et al. (2018) analyzed the source and content 

Table 1: Treatment effect of each process section.

Process unit Influent concentration [mg.L-1] Effluent concentration [mg.L-1] Removal rate (%)

CODCr Total
Cyanide
(CN-)

Total
nickel

Total
copper

Total
Silver

CODCr Total
Cyanide
(CN-)

Total
nickel

Total
copper

Total
Silver

Nickel-containing 
wastewater
pre-separation system

40 - 25 - - 39 - 5 - - 2.5(COD)
80(Total nickel)

Nickel-containing 
wastewater membrane 
separation system

39 - 5 - - 38 - 0.5 - - 2.6(COD)
90(Total nickel)

Acid copper wastewater 
pre-separation system

15 - - 100 - 14 - - 5 - 6.7(COD)
95(Total copper)

Acid copper wastewater 
membrane separation 
system

14 - - 5 - 13 - - 0.5 - 7.1(COD)
90(Total copper)

Silver-containing 
wastewater membrane 
separation system

250 25 - - 40 240 0.3 - - 3 4(COD),98.8(CN-)
92.5(Total silver)

Silver-containing 
wastewater ion exchange 
system

240 0.3 - - 3 236 0.3 - - 0.01 1.7(COD),0(CN-)
99.7(Total silver)

Cyanide-containing 
wastewater pre-
separation system

250 25 - 60 - 240 2 - 4 - 4(COD),92(CN-)
93.3(Total copper)

Cyanide-containing 
wastewater membrane 
separation system

240 2 - 4 - 236 0.3 - 0.5 - 1.7(COD),85(CN-)
87.5(Total copper)

Biochemical treatment 
system

208 0.06 0.07 0.1 0.0005 40 0.06 0.07 0.1 0.0005 80.8(COD),0(CN-),
0(Total nickel),0(Total 
copper), 0(Total silver)

RO system concentrate 40 0.06 0.07 0.1 0.0005 66.7 0.1 0.12 0.17 0.0008 -

Emission limit [mg.L-1] - - - - - 80 0.3 0.5 0.5 0.3 -

Table 2: Pretreated effluent.

pH 7.5 8.0 7.0 7.5 7.5

Pretreatment system effluent Cr6+[mg.L-1] 0.19 0.15 0.16 0.16 0.13

CN-[mg.L-1] 0.21 0.17 0.19 0.15 0.14

Reuse system effluent Water production [m3.h-1] 25.5 24.7 25.0 25.3 25.5

Conductivity [μS.cm-1] 562 643 424 513 438

TDS[mg.L-1] 525 589 467 534 307
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of wastewater from enterprises, applied chemical methods 
to treat various types of wastewater containing chromium, 
nickel, and cyanide, and used reverse osmosis membrane 
separation technology to reuse backwater (Rajoria et al. 
2021). The controller controls the wastewater treatment 
center system of automatic dosing of each treatment unit. 
The operation process is stable and controllable, and the 
real-time operation data can be directly transmitted to the 
environmental protection management department, which 
meets the requirements of clean production and realizes 
the purpose of energy saving and emission reduction of the 
enterprise (Mokhtar et al. 2018, Giwa et al. 2019).

In summary, due to the mature development of reverse 
osmosis membrane equipment and technology, the treatment 
effect of electroplating wastewater by reverse osmosis 
membrane is good, especially for the removal rate of 
heavy metals and TDS in water. The TDS removal rate is 
stable at over 94%, and the cost of wastewater treatment 
is also low. This indicates that reverse osmosis is a key 
step in removing heavy metals and TDS in electroplating 
wastewater. However, during normal operation of reverse 
osmosis cleaning conditions, the membrane inside the reverse 
osmosis component may be contaminated by inorganic salt 
scale, microorganisms, colloidal particles, and insoluble 
organic substances. These pollutants deposit on the surface 
of the membrane, resulting in a decrease or simultaneous 
deterioration of the standardized production water flow rate 
and system desalination rate. Timely cleaning is necessary.

Ceramic Membrane

The ceramic membrane separation process is a “cross-flow 

filtration” form of fluid separation process: the raw material 
liquid flows at high speed inside the membrane tube, and 
under pressure driving, the clarified permeate containing 
small molecular components penetrates the membrane 
vertically outward. The turbid concentrated solution 
containing large molecular components is intercepted by 
the membrane, thereby achieving the purpose of separation, 
concentration, and purification of the fluid (Giwa et al. 2019, 
Abdel-Fatah 2018).

Samaei et al. (2018) treated electroplating wastewater 
with electro-flocculation and ceramic membrane in 
small and pilot-scale experiments. The results of electro-
flocculation and ceramic membrane experiments in pilot-
scale experiments are shown in Fig. 9 (Tao et al. 2022, 
Zsirai et al. 2018, Davoodbeygi et al. 2023). The test results 
show that the optimum pH value of the ceramic membrane 
for treating electroplating wastewater is 10-10.5, and the 
optimum operating pressure is 3 MPa. This method has a 
good removal effect on chromium, nickel, copper, and zinc 
(Zsirai et al. 2018). The removal rate has reached more than 
95%, and the final effluent complies with the discharge 
standard in “Emission Standard of Electroplating Pollutants.”

Davoodbeygi et al. (2023) constructed a Fenton oxidation-
activated carbon adsorption-ceramic membrane filtration 
coupling process. The results showed that this technology’s 
removal rate of COD and TOC was stable at about 29.6% 
and 18.0%, and the removal rate of turbidity reached more 
than 84.3% (Dharupaneedi et al. 2019). After treatment, the 
concentrations of COD and TOC in the effluent are less than 
52.1 mg.L-1 and 18.0 mg.L-1, and the turbidity of the effluent 
is far less than 0.5 NTU (Fig. 10) (Zhang et al. 2018).
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Wang (2018) used ceramic membrane, reverse osmosis, 
and multi-effect evaporation technology to reduce the content 
of hexavalent chromium in the effluent to 0.01 mg.L-1, the 
content of nickel to 0.11 mg.L-1, and the content of iron 
to 0.28 mg.L-1, the manganese content was reduced to  
0.08 mg.L-1, the COD and TDS in the effluent were reduced 
to 8.5 mg.L-1 and 136 mg.L-1, the turbidity of the effluent was 
reduced to 0.3 NTU (Table 3) (Nidhi et al. 2019, Bai et al. 
2019, Bhateria & Dhaka 2017). It complies with the cooling 
water reuse standard in the “Design Specification for Urban 
Sewage Reuse,” The reverse osmosis concentrated water is 
evaporated by a high-efficiency evaporator, realizing zero 
discharge of electroplating wastewater treatment (Bhateria 
& Dhaka 2017).

Bukhari et al. (2017) used silicon carbide flat membranes 
to treat electroplating wastewater. The results show that 
silicon carbide flat membrane has good acid and alkali, 
oil, and corrosion resistance and can effectively reduce 
suspended solids and some organic matter in electroplating 
wastewater (Pronk et al. 2019). The removal rate of 
suspended solids and turbidity is as high as 99%, and the 
flat membrane effectively removes COD while reducing 
operating costs (Zhao et al. 2019).

In summary, it can be seen that when using ceramic 
membranes to treat electroplating wastewater, it is generally 

necessary to combine other processes for treatment, such as 
electrocoagulation and ceramic membrane processes, Fenton 
oxidation activated carbon adsorption ceramic membrane 
filtration coupling process, ceramic membrane reverse 
osmosis multi-effect evaporation process, silicon carbide flat 
membrane, etc. When a single ceramic membrane is used to 
treat electroplating wastewater, the effluent quality is greatly 
affected by the reaction pH value, and its treatment effect is 
very limited. However, when combined processes are used 
to treat electroplating wastewater, most of the heavy metals 
such as hexavalent chromium, nickel, iron, and manganese 
in the effluent are removed, and the COD and turbidity in 
the effluent are also greatly reduced.

Biofilm Membrane

Biofilm treatment technology is a method of organic  
sewage treatment using microorganisms (i.e., biofilms) 
attached to the surface of particular solid objects (Desmond 
et al. 2018).

Rahman et al. (2021) used the micro-electrolysis-DMBR 
process to treat electroplating wastewater. The removal 
rates of hexavalent chromium and nickel were 99.34% and 
99.14%, the removal rates of COD and ammonia nitrogen 
were 94.75% and 90.22% (Fig. 11), and the effluent 
reached “Emission Standards for Electroplating Pollutants” 
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(GB21900-2008) (Guan et al. 2017).

Xiong et al. (2023) used a green emulsion liquid film to 
recover zinc from electroplating water. The experimental 
conditions were that the pH value of the environment was 
3.8, the volume content of surfactant was 4%, the equivalent 
concentration of the internal phase was 1.61 N, and the 
concentration of zinc was 3.8 (Noah et al. 2018, Bratovcic 
et al. 2022). When the concentration is 742 mg.L-1, the 
emulsion volume ratio of the external phase is 0.94, and 
the carrier concentration is 8.9%, the maximum recovery 
rate of zinc can reach 97.4%. Z Rujia (2020) added a 
sedimentation tank at the MBR tank’s front end during the 
electroplating wastewater treatment system transformation, 
which alleviated the problem of membrane blockage. The 
system can maintain stable operation for at least 24 h after 
online backwashing. After three weeks of operation, the 
comprehensive wastewater MBR The daily average fluxes 
of MBR and mixed wastewater are 12.56 L/(m2.h) and 10.49 
L/(m2.h), respectively, and the average daily running time of 
21 h can meet the requirements of treated water volume and 
discharge water quality (Goswami et al. 2019, Sari Erkan 
et al. 2018).

Li-Kun et al. (2018) used the suspended carrier 
composite MBR process (HMBR) to run in parallel with 
the normal MBR process, represented by heavy metal ions 
Cu2+, Ni2+, and Cr (VI). They focused on the electroplating 
synthesis of the two processes under the impact of different 
concentrations of heavy metals (Tan et al. 2019, Bortoluzzi et 
al. 2017). The effect of wastewater efficiency and microbial 
activity, as well as the control effect of carrier intervention 
on membrane fouling and the impact on the diversity of 
microbial populations, the experimental results show that 

under the impact of Cu2+, Ni2+, Cr(VI) concentrations of 
5-30 mg.L-1, HMBR the removal rate of COD and NH3-N 
by the process is over 60% and 40%, while the removal rate 
of COD and NH3-N by the standard MBR process is over 
30% and 15% (Fig. 12) (Wang & Wang 2019). Rajasimman 
et al. (2021) applied biological methods to treat zinc-nickel 
alloy electroplating wastewater. The COD removal rate 
could reach 91.45%.

In summary, the treatment of electroplating wastewater 
by biofilm mainly relies on artificially cultivated composite 
functional bacteria, which have electrostatic adsorption, 
enzyme catalytic conversion, complexation, flocculation, 
co-precipitation, and pH buffering effects. The outer shell 
of microbial functional bacteria carries a certain negative 
charge and is easy to absorb metal ions with positive charges. 
The bacterial micelles themselves have strong biological 
flocculation, which can adsorb and chelate heavy metals 
on their surface. Functional bacteria first reduce C6+ in 
wastewater to Cr3+, and then Cr3+, zinc, nickel, copper, and 
lead plasma are adsorbed and synthesized into clusters by 
the bacteria. After solid-liquid separation, the wastewater 
is discharged or reused to meet the standards, while heavy 
metal ions precipitate into sludge.

In summary, membrane treatment technology for 
electroplating wastewater has been extensively employed in 
laboratory experiments, pilot tests, and industrial applications. 
The most widely used membrane treatments include nano-
filtration membranes, ultra-filtration membranes, micro-
filtration membranes, reverse osmosis membranes, ceramic 
membranes, and biological membranes. For treating 
electroplating wastewater, nano-filtration membranes can 
achieve an average removal rate of 97.1% for suspended 
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Xiong et al. (2023) used a green emulsion liquid film to recover zinc from 

electroplating water. The experimental conditions were that the pH value of the 

environment was 3.8, the volume content of surfactant was 4%, the equivalent 

concentration of the internal phase was 1.61 N, and the concentration of zinc was 3.8 

(Noah et al. 2018, Bratovcic et al. 2022). When the concentration is 742 mg.L-1, the 

emulsion volume ratio of the external phase is 0.94, and the carrier concentration is 

8.9%, the maximum recovery rate of zinc can reach 97.4%. Z Rujia (2020) added a 

sedimentation tank at the MBR tank's front end during the electroplating wastewater 

treatment system transformation, which alleviated the problem of membrane blockage. 

The system can maintain stable operation for at least 24 h after online backwashing. 

After three weeks of operation, the comprehensive wastewater MBR The daily average 

fluxes of MBR and mixed wastewater are 12.56 L/(m2.h) and 10.49 L/(m2.h), 

respectively, and the average daily running time of 21 h can meet the requirements of 

treated water volume and discharge water quality (Goswami et al. 2019, Sari Erkan et 

al. 2018). 

Li-Kun et al. (2018) used the suspended carrier composite MBR process (HMBR) 

to run in parallel with the normal MBR process, represented by heavy metal ions Cu2+, 

Ni2+, and Cr (VI). They focused on the electroplating synthesis of the two processes 

under the impact of different concentrations of heavy metals (Tan et al. 2019, 
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solids, a desalination rate of 98%, reduce effluent turbidity 
to below 0.1 NTU, attain a conductivity of below 2 
μS.cm-1 for the produced water, achieve a TOC of less than  
5 mg.L-1, and remove approximately 75% of heavy metals 
in wastewater. When ultra-filtration membranes treat 
electroplating wastewater, the total phosphorus concentration 
in the effluent remains stable between 0.2 and 0.4 mg.L-1. 
The Cu2+ and Ni2+ concentrations in the effluent can be 
reduced to 0.025 mg.L-1 and 0.022 mg.L-1, respectively, with 
removal rates reaching 90.7% and 90.1%, and the highest 
desalination rate of effluent can reach 97.6%. When micro-
filtration membranes treat electroplating wastewater, the 
COD content of the effluent can be reduced to 54 mg.L-1. 
The effluent’s Zn2+ concentration and COD index meet the 
emission standards, and the water treatment cost per ton is 
approximately 19.1 Yuan. When reverse osmosis membranes 
treat electroplating wastewater, the mass concentration of 
Cr6+ in the effluent can be as low as 0.13 mg.L-1, producing 
about 225 tons of recycled water daily with a conductivity of 
424 μS.cm-1, and the water treatment cost per ton is around 
9.7 Yuan. When ceramic membranes treat electroplating 
wastewater, hexavalent chromium, nickel, iron, and 
manganese in the effluent are reduced to 0.01 mg.L-1, 0.11 
mg.L-1, 0.28 mg.L-1, and 0.08 mg.L-1, respectively. The 
COD and TDS in the effluent are reduced to 8.5 mg.L-1 and  
136 mg.L-1, the effluent turbidity is reduced to 0.3 NTU, and 
the removal rate of suspended solids and turbidity reaches as 
high as 99%. When biofilm treats electroplating wastewater, 
hexavalent chromium and nickel removal rates reach 99.34% 
and 99.14%. COD and ammonia nitrogen removal rates 
reach 94.75% and 90.22%, and the effluent meets discharge 
requirements. Simultaneously, the maximum zinc recovery 
rate can reach 97.4%.

When using membrane treatment technology to treat 
electroplating wastewater, the effluent quality is better than 

traditional processes, with strong impact resistance, and 
can significantly reduce the concentration of pollutants. 
However, it also has certain drawbacks, such as high 
membrane cost, easy occurrence of membrane pollution, 
and high energy consumption. Therefore, the future 
development of membrane treatment technology in the 
field of electroplating wastewater treatment must focus 
on the research and development of membrane materials 
while formulating a series of feasible laws and regulations 
and treated standards, standardizing the management of the 
electroplating wastewater treatment industry, and deepening 
research and innovation of technology.

CONCLUSIONS AND FUTURE PERSPECTIVES

Membrane treatment technology is currently the 
predominant approach in electroplating wastewater treatment 
and plays a crucial role in the overall process. This paper 
outlines four prospects for the advancement of membrane 
treatment technology for electroplating wastewater:

 (1) As the electroplating industry continues to develop, 
the complexity of electroplating wastewater increases. 
Developing more scientific, safe, and reasonable 
classification and treatment methods is essential. 
Electroplating wastewater should be divided into 
categories based on specific physical or chemical 
properties, and appropriate treatment processes should 
be designed accordingly. Combining various membrane 
processes for different treatment methods can enhance 
the overall efficiency of wastewater treatment.

 (2) The high salt content of electroplating wastewater 
poses a challenge, as it can lead to membrane fouling 
during treatment. Although physicochemical methods 
are employed in the pretreatment stage to reduce salt 
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on artificially cultivated composite functional bacteria, which have electrostatic 

adsorption, enzyme catalytic conversion, complexation, flocculation, co-precipitation, 

and pH buffering effects. The outer shell of microbial functional bacteria carries a 

certain negative charge and is easy to absorb metal ions with positive charges. The 

bacterial micelles themselves have strong biological flocculation, which can adsorb and 

chelate heavy metals on their surface. Functional bacteria first reduce C6+ in wastewater 

to Cr3+, and then Cr3+, zinc, nickel, copper, and lead plasma are adsorbed and 

synthesized into clusters by the bacteria. After solid-liquid separation, the wastewater 

is discharged or reused to meet the standards, while heavy metal ions precipitate into 
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In summary, membrane treatment technology for electroplating wastewater has 
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content, finding rapid, safe, and environmentally 
friendly solutions to prevent membrane clogging 
remains a significant challenge.

 (3) Different types of electroplating wastewater should 
be treated with various membranes according to their 
primary components and characteristics. Establishing a 
relationship between wastewater types and membrane 
selection can lead to more effective and reasonable 
treatment approaches.

 (4) At present, the membrane treatment technology for 
electroplating wastewater mainly focuses on the 
direct removal of heavy metals, thereby transferring 
pollutants and waste resources. However, there is little 
research on the classification and recovery of heavy 
metals in wastewater after membrane technology 
treatment. Membrane treatment technology should be 
used to concentrate and collect heavy metals and other 
pollutants in electroplating wastewater and then further 
classify and recover heavy metals from the concentrated 
wastewater, thereby promoting resource recovery and 
sustainable development.

 (5) The development direction of membrane separation 
technology will be more green and environmentally 
friendly. In the process of treating electroplating 
wastewater, physical methods are mainly used to collect 
and concentrate heavy metal ions in the wastewater, 
which can increase the recovery rate of metal ions. 
Whether it is aerospace research, land construction, 
or domestic exploration, membrane separation 
technology is indispensable. In today’s society, various 
countries are striving to improve their membrane 
separation technology capabilities. From biofilms to 
polymer membranes and liquid membranes, membrane 
separation technology research has become a high-tech 
research type.

 (6) Membrane technology in the field of electroplating 
wastewater treatment will soon become a cutting-
edge topic of key development at home and abroad. 
Therefore, higher requirements have been put 
forward for membrane materials, especially to 
manufacture membrane materials that are suitable 
for the environmental protection industry with high 
strength, long lifespan, pollution resistance, and high 
throughput. The research on membrane separation 
technology is also advancing day by day. With the 
increasing improvement of regulations and standards, 
the continuous maturity of membrane technology, and 
the continuous reduction of costs, membrane technology 
will appear to be more advanced in technology and more 
widely used in applications.
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Ultra-filtration UF
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Reverse osmosis RO
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Trimethylene chloride TMC

Polyacrylamide PAM

Polyaluminum chloride PAC
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Chemical oxygen demand COD
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