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	       ABSTRACT
Nitrogen dioxide (NO2) is one of the pollutants that can cause potential damage to the 
ecosystem. NO2 emitted from vehicles forms the primary precursor for ground-level ozone. In 
this study, an analysis of the daily average of NO2 concentration with meteorology measured 
for two years 2021 and 2022 is being carried out. It is evident from the analysis that NO2 
concentration followed an apparent diurnal pattern with a maximum value in the morning 
hours and a minimum during the afternoon hours. Summer months recorded the highest, 
and North East Monsoon (NEM) recorded the lowest values of NO2. A statistically significant 
positive correlation was found between NO2 and Temperature. An autoregressive model was 
formulated to forecast the daily average values of NO2 concentration. Unit root test was 
performed to check the stationarity of the data points, which is important in determining 
trends and seasonal changes. From the model procedure, the order that best fits the data 
was identified as AR (4), in which the process has the current value based on the previous 
three values. The Akaike Information Criterion (AIC) and Schwartz Criterion (SC), which 
are estimators of prediction error for AR (4), are low. The Jarque confirmed the normal  
distribution-Bera test, which again approves the satisfactoriness of the model.. 

INTRODUCTION

Nitrogen Dioxide (NO2) is a prominent potential pollutant 
and is formed in the atmosphere through the oxidation of 
nitric oxide (NO). NOx is the broader term that comprises 
the other oxides of nitrogen. NO2 is a very reactive and 
significant species in the atmosphere, and vehicle transport 
plays a major role in increasing NO2 concentrations 
(Lawrence et al. 2015). It plays a significant part in the 
formation of tropospheric ozone, as an aerosol-producing 
agent, and in the production of acidic species (Logan 1983, 
Pitts & Pitts 1986).  Nitrogen dioxide (NO2) is mainly 
affected by local emissions and meteorology rather than 
long-range transport (Yin et al. 2022). Ambient sources 
of NOx can be categorized into anthropogenic and natural 
sources, but the major contribution is from anthropogenic 
sources. It is to be noted that the majority of the countries 
consider NO2 concentration as an important indicator of 
air quality (Xue et al. 2020). Estimates of lightning-based 
NOx emissions for North America range from 1.2 to  
1.7 Tg.y-1 of NO2 (Placet et al. 1990).  Crutzen & Schmailz 
(1983) estimated global NOx emissions from stratospheric 
injection to be 0.5 Tg.y-1. Numerous studies are showing a 
steady relationship between NO2 exposure with reduced lung 

activity and increased respiratory symptoms (Ackermann-
Liebrich 1997, Schindler 1998, Smith 2000). NO2 causes 
bronchiolitis obliterans, a serious condition within a couple 
of weeks after exposure to around 150 ppm. NO2 exposure 
of 500 ppm causes terminal illness (Gauderman et al. 2000). 
Chiusolo et al. (2011) found that there is a strong relationship 
between the rise in NO2 and the mortality rate. Gurjar et al. 
(2010) estimated that elevated levels of NO2 and SO2 resulted 
in more number of deaths in Mumbai and Delhi. There exists 
a high correlation between NO2 concentration and other 
pollutants that are formed through some chemical reactions 

(Burnett et al. 2007). NO2 is an efficient absorber of visible 
radiation, and it has been projected as a plausible source of 
additional climatic influences (Wuebbles et al. 1989). Several 
mathematical models have been developed for forecasting 
pollutants in the atmosphere. The effects of elevated levels 
of NOx in China were investigated by Liu et al. (2003) using 
a three-dimensional chemical model. Multilayer Perceptron 
models were used in the prediction of NOx and NO2 levels 
(Gardner & Dorling 1998). Lengyel et al. (2004) proposed a 
principal component analysis for analyzing NO2. Many air-
quality studies use PCA to develop statistically independent 
basic components (Maenhaut et al. 1989). Statheropoulos et 
al. (1998) and Vaidya et al. (2000) examined the pollutant 
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concentration with the use of component analysis. Recently, 
predictions for Fuzzy time series were performed using a 
multivariate heuristic model (Huarang et al. 2007), and a 
new method using Fuzzy relation based on a neural network 
algorithm was suggested for high-dimensional time series 
data (Egrioglu et al. 2009). These models must gratify many 
conditions and constraints (Isufi et al. 2019). This work aims 
to examine the variation of nitrogen dioxide concentration 
and forecast the daily average concentration of NO2 for a 
short term using Autoregressive Integrated Moving Average 
(ARIMA) time series model. 

MATERIALS AND METHODS

Study Area and Data Collection

Nagercoil (8.1833 N 77.4119 E) is one of the busy traffic-
prone towns of south Tamil Nadu. Also, there are many 
brick kiln industries in and around that emit NOx into the 
atmosphere. To analyze the lifetimes, accumulation, and 
impacts, it is vital to know the interactions among various 
trace gases in the atmosphere. Studies suggest that NO2 in 
traffic or on throughways can be two times as high as levels 
observed in residential areas. Fig.1 shows the study area 
and NO2 monitor.

There are various mathematical models available for 
predicting the pollutants. Generally autoregressive (AR) 
model is a representation to study some time-varying 
processes in the environment. In particular, an ARIMA 
model was formulated for predicting the daily average values 
of NO2 concentration.

Analysis

To carry out the optimization of various variables, including 
the number of parameters, criteria like Akaike’s Information 
Criteria (AIC) and Bayesian Information Criteria (BIC), 
accuracy, and easiness of implementation, an autoregressive 
model was chosen. The estimation of the coefficients was 
carried out using “Eviews” software. In time series analysis, 
Auto Regressive Moving Average (ARMA) or Auto-
Regressive Integrated Moving Average (ARIMA) models are 
generally proposed for better futuristic prediction (Adejumo 
& Momo 2013, Chattha 2021). This approach essentially has 
the following stages.

Stationarity test: In ARIMA modeling, it is noted that 
the data has to be changed to stationary form before 
doing analysis. It is easy to model when the data on a 
time series is stationary. Statistical modeling requires the 
data to be stationary for the effective forecast. If the data 
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shows some trend, removal of the trend is vital. First, 
differencing is suitable for detrending the data points. Unit 
root tests (Dickey-Fuller tests) help to decide whether 
data should be first differenced or regressed. A stationary 
time series is significant in forecasting if the series is  
non-stationary. 

Consider a time series equation, Z (t), such that

	 {Z (t), t=1,……. ∞}.

Suppose the AR term of pth order is written as

	 Zt = a1yt-1+a2yt-2+……. apyt-p + £t	 …(1)

The error term £t   should have constant variance and 
must not be serially uncorrelated. If any one of the roots of 
equation (1) is equal to unity, then it has a unit root. This 
shows the non-stationarity of the series. The successive 
differencing methods reduce the trend effects and give the 
stationary series.

Autocorrelation plots: The autocorrelation function (ACF) 
and partial autocorrelation function (PACF) plots are useful 
for determining the number of values that are statistically 
significant over the different lagged periods. The significant 
spikes of PACF are used for determining the order of the 
autoregressive model and vice versa. The parameters of the 
ARMA model are characterized by the orders of both auto-
regressive and moving average series. The primary step is to 
determine the suitable models using the functions ACF and 
PACF (Sharma et al. 2009). The process of identification is 
the most vital and also the most challenging step (Dobre & 
Alexandru 2008).

Diagnostic Check and Forecast

Diagnostic Check has turned out to be a regular tool for the 
identification of models before predicting the data. This 
check is applied to assess the residuals from the model when 
a model is estimated and also serves as the test of model 
adequacy. In specific, the residuals must not be dependent 
on one another and should be invariant in mean and deviation 
(Adejumo & Momo 2013). Suppose the residuals are not 
correlated, and the histogram follows a Gaussian distribution 
with mean zero and constant variance. In that case, the model 
is considered to be correct, and the data can be forecasted. 
In this work, we have used various kinds of software like 
Microsoft Excel (MS Excel) and Eviews 7 for creating the 
ARIMA model. Fig. 2 shows the various steps involved in 
modeling.

RESULTS AND DISCUSSION

Diurnal Variation 

The distribution of the daily average of NO2 and 
meteorological parameters is depicted in Fig. 3. The overall 
averaged diurnal variation is represented in Fig. 4. The 
minimum value of averaged diurnal NO2 concentration was 
found to be 1.86 ppb, and the maximum value was 6.49 ppb. 
The diurnal cycle showed two characteristic peaks in a day. 
The appearance of the first peak was at 08:30 H, and the 
next peak was around 23:30 H. The maximum value was 
recorded during nighttime. The gradual increase in NO2 
concentration from early morning to 0830 H was mainly due 
to the increase in vehicular flow. This is also related to the 
features of nighttime boundary layer height (Teixeira et al. 
2009). A minimum value was noticed at noon time, around 
1430 H. Since NO2 gets converted to ozone in the presence of 
sunlight, the drop in NO2 was mainly due to this conversion 
in the selected site. The photochemical reaction stops after 
sunset, and hence, the conversion rate decreases, resulting 
in the build-up of NO2 concentration.

Variation of NO2 with Meteorology

The overall variation of daily average NO2 concentration 
for two years is given in Fig. 5. The daily average recorded 
a minimum of 3.16 ppb and a maximum of 6.88 ppb. The 
matrix plot of NO2 and meteorological parameters such as 
temperature, RH, and wind speed is depicted in Fig. 6. The 
analysis showed a positive correlation of 0.473 (p<0.05) 
between NO2 and temperature, whereas for NO2 and RH was 
significantly negative with a coefficient of -0.237. A weak 
correlation between NO2 and wind speed was noted with a 
coefficient value of 0.192.
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Seasonal Variation

The seasonal division of Nagercoil City is in accordance with 
the meteorological standard of the Indian Meteorological 
Department (IMD). Summer is from March to May, 
and South West Monsoon (SWM) extends from June to 

September. North East Monsoon (NEM) starts in October 
and ends in December. January and February are winter 
months. The seasonal variation of NO2 and meteorological 
parameters is depicted in Fig. 7. For both years, the summer 
season recorded the highest daily average concentration of 
NO2, followed by SWM. This may be because of the high 
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ARIMA (Box-Jenkinson ) Model

Box-Jenkins Analysis discusses an orderly way of 
recognizing, fitting, and testing, uses moving average time 
series models, and is suitable for time series of moderate 
intervals. This work mainly aims to forecast daily averaged 
nitrogen dioxide concentration. The first step is to trace 
out the presence of seasonality in the data set and to 

oxidation rate of Nitric oxide (NO) to NO2 and also due to 
conversion by ozone. Lowest values of NO2 were recorded 
in NEM for both years owing to the pollutant washout due to 
monsoon rain. There is an increase in the daily average NO2 
concentration moving from NEM to winter. The high values 
of NO2 in winter are attributed to relatively low temperatures 
and the accumulation of the pollutant. This is inconsistent 
with the study reported by Wang et al. (2019).
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deseasonalize the data. Unit root analysis was performed with 
the Augmented Dickey-Fuller test for 40 lags to elucidate the 
seasonality. Fig. 8 depicts the raw data with seasonal patterns. 
The data points were deseasonalized after performing the first 
difference, and the probability value became zero, which is 
given in Fig. 9. The test results display that statistics Dickey-
Fuller (-10.86681) is smaller than the threshold values 
(-3.500669, 2.892200, and -2.583192) relating to critical 
thresholds of one percent, five percent, and ten percent, 
respectively. Thus, it is concluded that the series does not 
have a unit root and is stationary. The correlogram of the 
data series after removing seasonality is given in Fig. 10.

The next step is to identify the relevant ARMA (p, q) 
process. This is done by examining the ACF and PACF 
of the data for selecting the most favorable autoregressive 
and moving average terms of the model to be selected. 
From the plot, it can be noted that the simple function of 
autocorrelation exhibits a minor peak at shift 1, whereas 
the partial autocorrelation function has peaks up to shift 4. 
Therefore, it is reasonable to suspect that a moving average 
of the first order and autoregressive term of the fourth order 
would be a suitable estimate. Thus, the models AR (1), 
MA (1), AR (1 2 3 4), and ARMA (4 1) are identified. The 
performance of the identified models was verified based on 
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Akaike Information Criterion (AIC), Schwartz Criterion 
(SC), Histogram Normality test, and residuals check. The 
output obtained after estimating the equation for the AR (4) 
model is given in Fig. 11. From the table, it is evident that 
the probability values tend to be zero, and the AIC and SC 
values are getting lowered. In statistics, the Schwarz criterion 
is a condition for model selection among a limited set of 
models. The model with the least BIC is preferred. 

Two criteria normally used are the Akaike Information 
Criterion (AIC) and the Schwarz Criterion (SC; also known 
as the Bayesian information criterion or BIC).

Table 1 gives the estimated output of the various 
identified models. From the table, it is confirmed that the 
model AR (1 2 3 4) has the least value for AIC and SC. The 
right model can be chosen for that which reduces the Akaike 
Information Criterion (AIC) and the Schwarz Criterion (SC) 
values. To confirm the adequacy of the selected model, it is 
important to test residuals. The analysis involves checking 
whether the residuals are inside the upper limit. Hence, the 
sample ACF and PACF of the residuals were tested to check 

whether they do not follow any pattern and are strongly 
significant. The correlogram of the residuals is shown in 
the Fig. 12.

The histogram–normality distribution of the selected 
model is given in Fig. 13. The Jarque-Bera test allows us 
to assess the residual normality. The null hypothesis is 
that the residuals follow the Gaussian distribution. From 
Fig. 13, the normal distribution of the data is evident.  If 
the Jarque-Bera value is higher than the chi-square critical 
value with two degrees of freedom, the alternate hypothesis 
must be accepted. The Jarque-Bera test statistic of 1.219970 
is less than the chi-square critical value of 5.99 at the five 
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Table 1: Comparison of AIC & SC for identified models.

Identified models AIC SC P-value

AR(1) 2.6360 2.659 0.000

MA(1) 2.3302 2.3535 0.000

ARMA(4 1) 2.2768 2.4200 0.889

AR( 4) 2.2380 2.3724 0.000
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percentage level of significance. Thus, the null hypothesis is 
accepted as that the residuals follow a normal distribution. 
The mean value is also very close to zero. Hence, the 
identified AR (4) model is very much suitable for forecast.

Forecast

NO2 concentration has been increasing day by day because 

of increased vehicular activities. Hence, it is vital to measure 
the concentration of pollutants in order to mitigate them. 
Forecasting plays an outstanding role in developing strategies 
and policies to reduce the amount of primary and secondary 
pollutants. In this study, we have carried out a short-term 
static forecast to test the capability of the model. Table 2 
displays the results of the forecast.
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CONCLUSION

An autoregressive model was employed to predict a short-
term variation of the daily average NO2 concentration 
measured at Nagercoil, India. Out of various models 
identified from the correlogram plots, the AR (4) model 
was chosen because of minimum AIC and SC values.NO2 
concentration showed a clear diurnal pattern with two peaks 
and a minimum value during afternoon hours. The residuals 
were within the critical limit and were white noise. The 
Jarque-Bera test followed a normal distribution, and the 
mean value was very close to zero (2.0e12). Prior to the 
results obtained from the tests, the AR (4) model was used 
to forecast the NO2 concentration. The residuals between 
forecasted with measured values are very small, and they are 
within ±1.8 deviations. Also, the average forecast error is 
nearer to zero, which again confirms that the selected model 
is very suitable for this study. 
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From Table 2, it is evident that the residuals are very 
small, and they are within ±1.8 deviations. The average 
forecast error is nearer to zero, which again confirms that 
the model is satisfactory. The Annual variation of NO2 
concentration shows an increasing trend from the year 2021 
to 2022 and is depicted in Fig. 14.
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