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ABSTRACT
Nano-TiO2 was prepared with butyl titanate as a precursor by sol-gel method. The samples were 
analysed by TG-DTA, X-ray diffraction, TEM and so on to assess the effects of different temperatures 
on the crystal structure, grain size, and microstructure of nano-TiO2. Meanwhile, the catalytic effect of 
heat treatment temperature on the degradation performance of TiO2 to methyl orange was investigated. 
The dynamic process of grain growth was preliminarily analysed by Eastman’s particle growth theory. 
The result shows that TiO2 particle size gradually increases with the heat treatment temperature. At 450 
to 550°C, the grain is mainly anatase phase, a mixture of anatase and rutile phase was found at 650°C 
(mass ratio A:R = 9:1), and the degradation rate of nano-TiO2 on methyl orange reaches 97.75%. 
When the calcination temperature exceeds 850°C, TiO2 particles almost entirely are composed of rutile 
phase, and the photocatalytic activity decreases significantly. At 730°C, half of the crystalline TiO2 is 
transformed from anatase to rutile form. The apparent activation energies of the anatase and rutile 
crystals of nano-TiO2 are 18.15 kJ/mol and 42.56 kJ/mol, and the fastest grain growth occurs at 546°C 
and 1280°C respectively.   

INTRODUCTION

Photocatalytic oxidation technology has the prominent 
characteristics of low energy consumption, strong oxidation 
ability, mild reaction conditions, and reduced secondary pol-
lution when removing pollutants (Liu et al. 2013, Chekem et 
al. 2019, Varnagiris et al. 2019). It has the potential for broad 
application in sewage treatment and air purification (Reddy et 
al. 2017, Al-Mamuna et al. 2019, Srikanth et al. 2017), and 
the development of nano-TiO2 has become an active area of 
scientific research (Zhang et al. 2014). The sol-gel method 
can be used to prepare nanometric catalysts with high purity, 
uniform particle size, and high chemical activity at low tem-
perature, and the reaction conditions are easy to control and 
the preparation process is relatively simple (Hu et al. 2010, 
Hakki et al. 2019, Wei et al. 2018). Therefore, the sol-gel 
method has attracted more attention due to its significant ad-
vantages in film formation and doping modification; however, 
to prepare TiO2 with high photocatalytic activity, powders 
with uniform grain size and a low degree of agglomeration 
are required. Among them, the heat treatment process is 
one of the important means to promote the transition from 
amorphous to the crystalline state and adjust the grain size 
(Liao et al. 2011, Tong et al. 2018, Sun et al. 2017). In this 
study, TiO2 particles were synthesised by sol-gel method, 
and the effects of heat treatment on the crystal structure, 
particle size, and crystal morphology of TiO2 particles were 

analysed by XRD and TEM, and the reasons for TiO2 phase 
transition during heat treatment were preliminarily analysed 
from the perspective of reaction kinetics, and the effect of 
heat treatment temperature on the photocatalytic performance 
of TiO2 has also been discussed.

MATERIALS AND METHODS

Material: Butyl titanate (Tianjin Comeo Chemical Reagent 
Co., Ltd), anhydrous ethanol (Tianjin Fuyu Fine Chemical 
Co., Ltd), glacial acetic acid (Xilong Chemical Co., Ltd), 
concentrated nitric acid (Kaifeng Huatong Chemical Co., 
Ltd), polyethylene glycol-4000 (Tianjin Komio Chemical 
Reagent Co., Ltd), and methyl orange (Tianjin Gold Platinum 
Orchid Fine Chemicals Ltd) were of analytical purity.

Sample preparation and characterization: At room 
temperature, 10 mL of butyl titanate was fully mixed with 10 
mL of anhydrous ethanol as Solution A. 4 mL of deionised 
water, 20 mL of glacial acetic acid, 2 mL of concentrated 
nitric acid, and 10 mL of anhydrous ethanol were fully 
mixed Solution B. Under vigorous stirring, Solution B was 
added (drop-wise) into Solution A, then 0.5 g polyethylene 
glycol-4000 was added (drop-wise), the hydrolysis 
temperature was maintained at 40°C, and then stirred for  
2 h to ensure the sufficient chelation. The product was dried 
at a constant temperature 60°C for 24 h and ground into a 
fine powder. After calcination at different temperatures (450 
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to 850°C) for 2 h, TiO2 powder can be obtained by cooling 
in the furnace to room temperature.

Using A12O3 powder as reference material, the com-
posite was subjected to TG-DTA thermal analysis by 
NETZSCH STA 499C integrated thermal analyser at a 
rate of 20°C/min in the air; we then used a JEOL 2100 
transmission electron microscope (Shimazu, Japan) to 
observe the microstructure of the composite. A Bruker 
D8-advance X-ray diffractometer (Germany) was used for 
phase analysis of the samples; and ASAP 2010 specific 
surface area and pore size analyser (Micromeritics Co., 
USA) was employed to determine the specific surface area 
and total pore volume.

Photocatalytic activity test: The prepared 100 mg TiO2 
(calcined sample at different temperatures and P25) was 
added to the 200 mL methyl orange solution with a mass 
concentration of 10 mg/L. After magnetic stirring in the 
dark for 30 min, the adsorption and desorption of methyl 
orange on the surface of TiO2 particles reached equilibrium. 
The specimen was then irradiated with UV light for 2 h (the 
main wavelength is 254 nm, the distance between the light 
source and the liquid surface is 80 mm), taking 10 mL every 
0.5 h. After centrifugation, the supernatant was taken and the 
absorbance measured at the maximum absorption wavelength 
of methyl orange at 464 nm to allow calculation of the rate 
of degradation rate h:
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Where, A0 and A are the absorbances of the reaction solution before and after a certain illumination 
time. 

RESULTS AND DISCUSSION 

DTA-TG Analysis of the Sample 

Fig.1 shows the TG-DTA curve of TiO2 after drying at 105℃ . It can be seen from the DTA curve 
that there is an endothermic peak between about 50°C and 100℃ , and the mass loss on the TG curve 
is about 5%. This peak represents the process of water absorption and drainage within the material. 
There is an exothermic peak between 300°C and 400℃ , and the mass loss on the TG curve is about 
12%. This peak is caused by the exotherm caused by the combustion of organic matter in TiO2 
prepared by the sol-gel method. It has been reported in the literature that the powders prepared from 
titanium alcohols exhibit a strong exothermic peak at 400 to 500℃ , which is the result of the 
transformation from amorphous TiO2 to anatase-type TiO2; however, the TiO2 prepared with butyl 
titanate in this study only shows a weak similar exothermic peak on the DTA curve. There is a mass 
loss of 3% on the TG curve between 750°C and 950°C (while the exothermic peak on the DTA 
curve is not obvious), as attributed to the phase transition of anatase TiO2 to rutile TiO2, indicating 
that the crystalline transition (anatase-rutile phase) is a slow, gradual process.

 
Fig. 1: TG-DTA patterns of TiO2. 
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acteristic diffraction peaks of the samples treated at 850°C 
and 950°C were 2θ = 27.4°, 36.0°, 41.3°, 54.3°, and 69.1° 
corresponding to the (110), (101), (111), (211), and (301) 
planes of the rutile TiO2, respectively, indicating that the 
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can be seen from the figure that the samples treated at 450°C and 550°C have diffraction peaks near 
2θ = 25.3°, 37.7°, 48.0°, 53.8°, 55.1°, and 62.8°, corresponding to the (101), (004), (200), (105), 
(211) and (204) planes of anatase phase, respectively, indicating that the product is mainly composed 
of anatase phase; the diffraction peaks are wider than normal, indicating that the particles are small, 
and the grain development is irregular. Quite sharp diffraction peaks and weak rutile phases appear 
at 650 ℃  (Daniyal et al. 2019, Zarhri et al. 2020). The characteristic diffraction peaks of the samples 
treated at 850°C and 950°C were 2θ = 27.4°, 36.0°, 41.3°, 54.3°, and 69.1° corresponding to the 
(110), (101), (111), (211), and (301) planes of the rutile TiO2, respectively, indicating that the 
products are mainly rutile. The phase change temperature of XRD is the heat treatment temperature 
when half of the anatase changes to rutile. As can be seen from Fig. 2, the phase change temperature 
is about 730°C. 
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Fig. 2: XRD patterns of TiO2 at different sintering temperatures. 

For this TiO2 the average particle size was estimated using the X-ray width method and the 
Scherrer formula. The mass percentage XA of anatase phase in the samples was calculated thus 
(Zhang et al. 2017, Li et al. 2018): XA = IA/(IA + 1.265IR) × 100%, where, IA is the diffraction intensity 
of the strongest characteristic peak of the anatase phase on the crystal plane (101), and IR is the 
diffraction intensity of the strongest characteristic peak of the rutile phase on the crystal plane (110). 
Table 1 gives the anatase and TiO2 contents at different heat treatment temperatures and the 
respective grain sizes: with the increase of the heat treatment temperature, in nano-TiO2, the anatase 
phase gradually changes to rutile phase. In the temperature range from 450 to 650°C, due to the 
random grain orientation, there are more grain boundary defects and greater activity, structural 
relaxation was first produced in the grain boundary during the heating process, and the atomic 
rearrangement occurred, thus making the structure tend to become more orderly thus reducing the 
free energy of the grain boundary. Therefore, the apparent grain growth is slow within this 
temperature range; however, when the temperature rises to 650°C, the structural relaxation process 
ends, the grain boundary migration process begins, and the grain size increases rapidly after entering 
the phase of grain growth and merger of large grains with small grains. 
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anatase changes to rutile. As can be seen from Fig. 2, the 
phase change temperature is about 730°C.

For this TiO2 the average particle size was estimated 
using the X-ray width method and the Scherrer formula. 
The mass percentage XA of anatase phase in the samples was 
calculated thus (Zhang et al. 2017, Li et al. 2018): XA = IA/
(IA + 1.265IR) × 100%, where, IA is the diffraction intensity 
of the strongest characteristic peak of the anatase phase on 
the crystal plane (101), and IR is the diffraction intensity of 
the strongest characteristic peak of the rutile phase on the 
crystal plane (110).

Table 1 gives the anatase and TiO2 contents at different 
heat treatment temperatures and the respective grain sizes: 
with the increase of the heat treatment temperature, in 
nano-TiO2, the anatase phase gradually changes to rutile 
phase. In the temperature range from 450 to 650°C, due to 
the random grain orientation, there are more grain boundary 
defects and greater activity, structural relaxation was first 
produced in the grain boundary during the heating process, 
and the atomic rearrangement occurred, thus making the 
structure tend to become more orderly thus reducing the 
free energy of the grain boundary. Therefore, the apparent 
grain growth is slow within this temperature range; how-
ever, when the temperature rises to 650°C, the structural 
relaxation process ends, the grain boundary migration 

process begins, and the grain size increases rapidly after 
entering the phase of grain growth and merger of large 
grains with small grains.

TEM Analysis of Samples

Fig. 3 shows the micro-morphology of nano-TiO2 at different 
calcining temperatures. The sample size at 450°C is small 
(about 10 nm) and the particle boundaries are fuzzy, indi-
cating that TiO2 has not yet formed complete grains at this 
calcination temperature, and most of the particles are in an 
amorphous state. The sample particles at 650°C are intact, 
the boundary is clear, and the particle size is about 20 nm. 
The sample particle size at 950°C is coarse (at about 80 nm), 
the boundary is clear, and the shape is not very regular. The 
test results are consistent with the analytical results of TiO2 
grain size at different heat treatment temperatures.

BET Analysis of Samples

Table 2 provides the specific surface area and pore structure 
of the samples at different heat treatment temperatures. As 
seen from Table 2, the specific surface area and pore volume 
of the samples prepared at different calcination temperatures 
decreases with increasing calcination temperature because 
the increased calcination temperature leads to the gradual 
growth and refinement of TiO2 grains and the gradual 

Table 1: Crystallite size and anatase content of samples at different heat treatment temperatures.

Sintering temperature/°C 450 550 650 850 950

Mass content/% 95.42 96.86 89.81 0.61 0.16

Diameter/nm 10.21 14.3 21.8 63.58 78.6
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Fig. 3: TEM images of samples at different sintering temperatures. 
 
BET Analysis of Samples 
Table 2 provides the specific surface area and pore structure of the samples at different heat 
treatment temperatures. As seen from Table 2, the specific surface area and pore volume of the 
samples prepared at different calcination temperatures decreases with increasing calcination 
temperature because the increased calcination temperature leads to the gradual growth and 
refinement of TiO2 grains and the gradual increase in grain size. When treated at 450°C, nano-TiO2 
had its maximum specific surface area and pore volume and, at thereat, the nano-TiO2 had not yet 
formed crystals, remaining in an amorphous state with small particles and uniform pores. In the 
heat-treatment temperature range from 550°C to 850℃ , the specific surface area and pore volume 
of TiO2 samples gradually decreased with the increase of temperature after roasting. This is because 
the increase in heat treatment temperature resulted in obvious growth of TiO2 grains. At the same 
time, because the small pores were subjected to greater pressure than the large pores during heat 
treatment, the pores formed by the accumulation of the original TiO2 particles collapsed or 
disappeared, gradually forming larger holes. When the temperature reached 950°C, TiO2 particles 
grew to 78.6 nm, the small particles merged to form larger particles, and the pore structure decreased 
in volume, so the specific surface area of the sample reached 3.4 m2 g-1 with a pore volume of 0.03 
cm3.g-1. 
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Table 2: BET surface area and pore structure of samples at different heat treatment temperatures.

Sintering temperature/°C 450 550 650 850 950

SBET/(m2 g-1) 223.5 167.8 83.1 35.7 3.4

Vpore/(cm3 g-1) 0.21 0.18 0.16 0.09 0.03
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increase in grain size. When treated at 450°C, nano-TiO2 had 
its maximum specific surface area and pore volume and, at 
thereat, the nano-TiO2 had not yet formed crystals, remaining 
in an amorphous state with small particles and uniform 
pores. In the heat-treatment temperature range from 550°C 
to 850°C, the specific surface area and pore volume of TiO2 
samples gradually decreased with the increase of temperature 
after roasting. This is because the increase in heat treatment 
temperature resulted in obvious growth of TiO2 grains. At 
the same time, because the small pores were subjected to 
greater pressure than the large pores during heat treatment, 
the pores formed by the accumulation of the original TiO2 
particles collapsed or disappeared, gradually forming larger 
holes. When the temperature reached 950°C, TiO2 particles 
grew to 78.6 nm, the small particles merged to form larger 
particles, and the pore structure decreased in volume, so the 
specific surface area of the sample reached 3.4 m2 g-1 with 
a pore volume of 0.03 cm3.g-1.

Phase Change Kinetic Analysis

According to Eastman particle growth theory:

 Dt
2_D0

2 = ktnexp(- E/RT)               …(2)

Where, Dt is the particle size of the grain at time t (nm); 
D0 is the grain size at the initial time (nm); k is constant; n is 
the reaction index; E represents the apparent activation ener-
gy (J/mol); R is the ideal gas constant, and T is the reaction 
temperature (K); because the grain size of the initial stage 
of the preparation is very small, D0 ≈ 0, and tn can also be 
treated as a constant when the heat treatment time is fixed. 
Let K = ktn, then formula (2) can be transformed into:

 Dt
2
 = ktnexp (-E/RT) = Kexp (-E/RT)       …(3)  

 2ln Dt = – E/RT + lnK                   …(4)

For (3) formula dDt/dT 

 dDt/dT = K1/2exp (-E/2RT) 
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Plotting 2lnD v. 1/T gives the straight line shown in Fig. 4, 2lnD and 1/T do not obey a single 
linear relationship because the TiO2 crystal type changes from anatase to rutile at around 730 ℃ , 
and Section AB of the curve is dominated by the anatase phase, while Section BC is dominated by 
the rutile phase. The lines of best-fit are y = -4.3669x + 10.7697 (R2 = 0.9252), and y = -10.2403x + 
17.2735 (R2 = 0.9667), respectively. From this, the apparent activation energies Ea and Er of anatase 
and rutile grain growth can be calculated (Table 3). The apparent activation energy of rutile TiO2 
grain growth is larger than that of anatase-type growth. On the one hand, due to the early-stage 
growth, the TiO2 particle size is small, lattice defects are large, the particle growth is almost 
spontaneous, and the energy required is very small. Increased heat treatment temperature, fewer 
lattice defects (lattice development tends to be complete), and TiO2 grain growth difficulties, all 
cause the activation energy to increase; on the other hand, as the heat treatment temperature 
increases further, more of the smaller anatase TiO2 grains are transformed into rutile phase grains, 
and some fully-grown grains even undergo a phase transition. Fewer small grains are available for 
the continuous growth of anatase grains in the samples, so the activation energy of grain growth is 
greatly increased (Amora et al. 2019, Jithin et al. 2017). 
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and some fully-grown grains even undergo a phase transition. Fewer small grains are available for 
the continuous growth of anatase grains in the samples, so the activation energy of grain growth is 
greatly increased (Amora et al. 2019, Jithin et al. 2017). 
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Plotting 2lnD v. 1/T gives the straight line shown in Fig. 
4, 2lnD and 1/T do not obey a single linear relationship 

because the TiO2 crystal type changes from anatase to rutile 
at around 730°C, and Section AB of the curve is dominated 
by the anatase phase, while Section BC is dominated by the 
rutile phase. The lines of best-fit are y = -4.3669x + 10.7697 
(R2 = 0.9252), and y = -10.2403x + 17.2735 (R2 = 0.9667), 
respectively. From this, the apparent activation energies Ea 
and Er of anatase and rutile grain growth can be calculated 
(Table 3). The apparent activation energy of rutile TiO2 grain 
growth is larger than that of anatase-type growth. On the 
one hand, due to the early-stage growth, the TiO2 particle 
size is small, lattice defects are large, the particle growth 
is almost spontaneous, and the energy required is very 
small. Increased heat treatment temperature, fewer lattice 
defects (lattice development tends to be complete), and TiO2 
grain growth difficulties, all cause the activation energy to 
increase; on the other hand, as the heat treatment temperature 
increases further, more of the smaller anatase TiO2 grains are 
transformed into rutile phase grains, and some fully-grown 
grains even undergo a phase transition. Fewer small grains are 
available for the continuous growth of anatase grains in the 
samples, so the activation energy of grain growth is greatly 
increased (Amora et al. 2019, Jithin et al. 2017).

Effect of Heat Treatment Temperature on 
Photocatalytic Performance of Samples

Fig. 5 demonstrates the heat treatment temperature and its 
effect on photocatalytic activity: when the heat treatment 
temperature is between 450 and 650°C, a pairing effect 
occurs. When the heat treatment temperature is higher than 
650°C, the photocatalytic activity of nano-TiO2 decreases 
significantly. When the heat treatment temperature reaches 
950°C, the removal rate of TiO2 to the methyl orange aqueous 
solution is almost zero. This is because, when the calcination 
temperature is low, the degree of crystallisation degree of 
anatase is low and the particle size of TiO2 is small, and the 
shorter the time required for the photogenic carrier to diffuse 
from the grain to the surface, the better the photogenic charge 
separation, and the lower the recombination probability of 
the electron and hole. On the other hand, the particle size of 
nano-TiO2 is smaller, the proportion of surface atoms increas-
es and the light absorption efficiency is higher. In addition, 
due to the large specific surface area of the nanoparticles and 
the large contact area upon which the reaction can occur, it 
is also beneficial to the adsorption of the reactants, which 
leads to its high photocatalytic activity (Cheng et al. 2016, 

Table 3: Apparent activation energies, temperature of fastest grain growth, and crystalline phase transformation of samples.

Samples Ttrans/°C Tfast/°C Ea/kJ. mol-1 Er/kJ. mol-1

XRD DYN Ta Tr

TiO2 730 546 1280 18.15 42.57
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Sofianea & Bilel 2016). When calcined at 650°C, the anatase 
crystal type developed completely, while anatase-type TiO2 
was mixed with a small amount of rutile-type TiO2, and the 
removal of methyl orange by photocatalytic degradation 
reached 97.75% (the photocatalytic activity of the sample 
prepared in this study, under the same conditions, had a P25 
value for methyl orange removal of up to 98.63%).

XRD analysis shows that P25 also contained two crystal 
types (with 650°C calcined TiO2 being similar therewith). 
This kind of mixed crystal TiO2 is not a simple combination 
of anatase and rutile, but a thin rutile crystal layer grows on 
the surface of anatase crystal, forming the so-called “mixed 
crystal effect”, which not only does not hinder the absorption 
of light by the “nucleus”, but also because of the rutile TiO2 
having a narrow bandgap (Eg = 3.0 eV), it is easily excited 
by lower-energy light (which has a longer wavelength and is 
closer to ultraviolet light), owing to the difference in the rutile 
and anatase band gaps, the hole migrates from the valence 
band of anatase to the surface rutile valence band, and the 
photogenerated electron migrates from the rutile conduction 
band of the surface to the anatase phase, which effectively 
promotes the separation of photogenerated electron-hole 
separation in anatase and rutile crystals and reduces the 
recombination of electron-hole pairs, thus improving the 
photocatalytic activity of the catalyst (Kuang et al. 2020, 
Arbuj et al. 2010, Yu et al. 2003).

As the temperature continues to rise, the amount of 
rutile phase continues to increase, TiO2 particles grow rap-
idly, and the specific surface area decreases. Furthermore, 
rutile-anatase high-temperature transition occurs, treatment 
factors caused by the difference in the surface state of the 
material arise, surface-active group reduction occurs (on the 
anatase-type TiO2 surface with catalytically active groups 
OH- and Ti3+), the TiO2 surface undergoes a dehydrogenation 
reaction and the surface hydroxyl groups are lost, whereas hy-
droxyl groups can capture the photogenerated holes to form 

highly-oxidised hydroxyl radicals (·OH). In addition, rutile 
TiO2 has poor adsorption capacity for O2, a lower specific 
surface area, and photogenic electrons and holes are easily 
compounded. Moreover, the rutile type material has a low 
ability to adsorb oxygen, and photo-generated electrons are 
difficult to remove therefrom, which significantly reduces its 
photocatalytic performance (Xiao et al. 2010).

CONCLUSIONS

TiO2 was prepared by sol-gel method, and the effects of heat 
treatment temperature on TiO2 crystal structure, particle 
size, and photocatalytic performance were investigated. In 
addition, the phase transition of grains was analysed from the 
perspective of reaction kinetics. The results show that, with 
increasing calcination temperature, TiO2 crystallisation was 
gradually completed, the grains gradually grew in size, and 
at 450 to 550°C, a thermally stable region was reached, the 
energy was mainly used for atomic rearrangement, reducing 
both the number and size of grain boundary defects and 
reducing the grain boundary free energy, so the particle size 
increase was small; beyond 650°C, the energy was used for 
grain boundary migration, and the grains grew rapidly: some 
grains in the sample were transformed from an anatase phase 
to a rutile phase. The rate of degradation of methyl orange 
solution reached a maximum when calcined at 650°C for 
2 h. At this time, TiO2 contained mixed anatase and rutile 
phases; this indicated that the mixed crystal effect of TiO2 can 
effectively inhibit photogenic electron-hole recombination 
and that the sample has a better photocatalytic performance 
than single anatase-TiO2.
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