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ABSTRACT

Environmental issues, particularly air pollution, are a matter of concern for people all around the world. 
PM2.5 levels that are too high harm people’s physical and mental health. For government air pollution 
control, more accurate PM2.5 concentration predictions are critical. In this paper, we explored the 
relationship between pollutants (PM10, SO2, NO2, O3, CO) and meteorological factors (atmospheric 
pressure, relative humidity, air temperature, wind speed, wind direction, cumulative precipitation) that 
affect the generation and transmission of PM2.5. To better predict the concentration of PM2.5, we 
innovatively combined principal component analysis (PCA) and clustering methods to extract pollutant 
variables and patterns as important PM2.5 concentration predictors of different models such as support 
vector regression (SVR), multivariate nonlinear regression (MNR), and artificial neural network (ANN). 
Compared to MNR and ANN models, SVR presented better prediction accuracy. Moreover, cuckoo 
search (CS), cross-validation (CV), and particle swarm optimization (PSO) algorithms were used to 
further optimize the parameters in the process of SVR. And to evaluate the above PM2.5 concentration 
prediction results, we introduced several evaluating indicators including root mean squared error 
(RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and person correlation 
coefficient (R) between predicted and measured values. The obtained results confirmed that when the 
pollutant data was divided into three patterns, the best prediction accuracy was achieved by the CS-
SVR model.    

INTRODUCTION 

Particulate matter (PM) in the atmosphere has gotten a lot 
of attention in recent decades because it has a big impact 
on human health. PM2.5 is made up of harmful chemicals 
such as heavy metals and carcinogenic organic compounds 
with aerodynamic diameters less than 2.5m. It can easily and 
deeply penetrate the human lungs to cause serious health 
issues (Thomaidis et al. 2003, Yuan et al. 2019, Badaloni 
et al. 2017). High PM2.5 level exposure is correlated to the 
increase in respiratory and cardiovascular diseases (Ostro et 
al. 1999, Biancofiore et al. 2017) and population mortality 
(Di et al. 2017, Liang et al. 2018). It has also been proven that 
prenatal exposure to PM2.5 can decrease corpus callosum 
volume and affect children’s neuropsychological develop-
ment (Mortamais et al. 2019, Suades-González et al. 2015). 

International environmental organizations and countries 
all over the world pay great attention to the negative effects of 
PM2.5. According to the WHO guideline and China’s current 
situation, in 2012 the Ministry of Ecology and Environment 
(MEE) published Chinese ambient air quality standards, in 
which the daily and annual average PM2.5 limits were set as 
75 and 35 μg.m-3 (State Bureau of Environment Protection 

2012). In Beijing, for example, days with air quality surpass-
ing the MEE limit accounted for 43.5% of the total, which is 
higher than days with other pollutants such as O3, PM10, and 
NO2 (Beijing Municipal Ecology and Environment Bureau 
2019, 2018). PM2.5 concentration predictions that are more 
accurate help not only people in planning their daily activities 
but also government regulation.

PM2.5 concentration is influenced by a number of factors, 
the most important of which are pollutant emission factors 
and meteorological conditions. The former takes part in the 
chemical process of PM2.5 formations, and the latter influ-
ences the dissipation of PM2.5 (Liang et al. 2015, Wang et 
al. 2015). With the development of statistical methods, data 
mining, and artificial intelligence technology, researchers 
hope to use more simple and effective methods to predict the 
PM2.5 concentrations. Many efforts have been committed 
to the data algorithm and optimization. Marsha and Larkin 
(2019) used a multiple linear regression scheme to forecast 
daily PM2.5 concentrations using the previous day’s PM2.5 
measurements as well as fire and smoke-related variables 
from satellite observations. Sun et al. (2013) used hidden 
Markov models to forecast daily average PM2.5 concen-
trations for the next 24 hours. Liu and Sun (2019) used the 
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supplementary ensemble empirical modal decomposition 
algorithm, in which the random forest was applied to the 
decomposition sequence, to effectively reflect the trend of 
PM2.5 concentration. 

In recent years, more effective data mining methods 
like artificial neural networks and support vector machines 
have also been successfully implemented in air pollution 
forecasting. Artificial neural networks, principal component 
analysis, and k-means clustering technology were combined 
by Franceschi et al. (2018) to forecast the PM10 and PM2.5 
concentrations in Bogotá, Colombia. A hybrid model based 
on principal component analysis (PCA) and cuckoo search 
algorithm (CS) optimized least square support vector ma-
chine (LSSVM) method was developed by Sun and Sun 
(2016) to predict PM2.5 concentrations. Gan et al. (2018) 
proposed a new method based on the secondary-decompo-
sition-ensemble learning paradigm to forecast hourly PM2.5 
concentration, in which the least square support vector was 
used to model all reconstructed components independently. 
These findings show that the support vector machine method 
is very effective at predicting PM2.5 concentrations. 

In this work, we introduced the PCA-clustering method 
to CS algorithm optimized SVR for the prediction of PM2.5 
concentrations in Beijing. In the beginning, we investigated 
the correlation between pollutant factors, meteorological 
factors, and PM2.5 concentrations, and extracted the pollut-
ant variables and patterns using the PCA-clustering method 
to assist prediction. Then, contrastive studies on parameters 
optimization algorithms for SVR have been carried out, in-
cluding cross-validation (CV), particle swarm optimization 
(PSO), and cuckoo searching (CS) algorithms, to achieve 
better prediction efficiency. Evaluation metrics such as 
RMSE, MAE, MAPE, and R were introduced as part of the 
process. Finally, to further verify the effectiveness of our 

method, other predictive models like multivariate nonlinear 
regression (MNR) and artificial neural network (ANN) were 
also tested. The obtained results indicated that The PCA-
clustering approach with SVR optimized by CS algorithm 
produced the best prediction accuracy.

MATERIALS AND METHODS

Sites and Data

Yizhuang station in Beijing has the most advanced mete-
orological observation equipment in China, enabling it to 
provide the most accurate data. Therefore, we model and 
simulate the PM2.5 predictions with the pollutant data and 
meteorological data from the Yizhuang observation station 
as shown in Fig. 1.

The pollutant factors include PM10, SO2, NO2, O3, CO 
which were collected from Beijing Municipal Environmental 
Monitoring Center, and the meteorological factors include 
atmospheric pressure (P), relative humidity (RH), air tem-
perature (T), wind speed (WS), wind direction (WD), 20-20 
hours’ cumulative precipitation (CP) which were collected 
from the National Meteorological Information Center. The 
details of the original data are shown in Table 1. The 24 h 
average of the pollutant factors was calculated for the purpose 
of PM2.5 concentration prediction. Fig. 2 shows the PM2.5 
concentration and temperature of Yizhuang station from Oc-
tober 14, 2014, to December 31, 2017. When some variables’ 
data was missing for several days in a row, the associated 
dates data was removed, and the sporadic missing data was 
imputed using the EM imputation method. 

As shown in Fig. 2, the trends of PM2.5 concentration and 
temperature are opposite. Low PM2.5 values were observed 
in the warm period from April to September, while high 
PM2.5 values were observed in the cold days from October 
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Fig. 1: The geography of YiZhuang pollutant and meteorological monitoring Station (39.795N, 

116.506 E). 

 

Fig. 1: The geography of YiZhuang pollutant and meteorological monitoring Station (39.795N, 116.506 E).
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to March next year, some of which were even more than 
500μg/m3. Considering that high-level PM2.5 concentration 
has a great impact on people’s lives, we use the atmospheric 
environment data of cold days to establish a prediction model 
for PM2.5 concentration.

Methods 

PCA-clustering method to extract pollutant variables 
and pollutant patterns:   The principal component analysis 
(PCA) algorithm has been widely applied for reducing the 
dimension of the data set on the premise of retaining the 
main variance. A new set of variables can be achieved by 
PCA transforming which are called principal components 
(PCs). To simplify the structure of the dataset, only the first 
few PCs with large variance are usually chosen to reflect the 
information of the original variables in the real research pro-
cess. In most cases, a cumulative variance contribution rate 
of more than 85% for the first several major components is 
appropriate. For the purpose of this study, PCA was combined 
with the correlation coefficient between PM2.5 concentration 
and related covariates to find the primary influencing factors. 
Moreover, k-meaning clustering was further introduced to 
extract pollutant patterns. 

Support vector machine regression model: Support vector 
machine (SVM), originally developed by Vapnik in the 1990s 
(Vapnik 1995, 1998), is one of the most robust and accurate 
data mining algorithms, mainly including support vector 
machine classification (SVC) and support vector machine 
regression (SVR). It is very flexible to solve all kinds of 
nonlinear classification regression problems (Wu & Kumar 
2013). In this paper, SVR has been used to build the PM2.5 
concentration prediction model for satisfying results. 

  In the SVR model, the training data is set as  

{ ( , ) , , ,x y i ni i =1 2 }, where x Ri
nŒ  is the input variable 

and yi is the corresponding dependent variable. To learn a g(x) 
close to y, the SVR linear regression model can be as follows:

	 g x( ) = ◊ +w x bT
i 	 …(1)

where w, b are the pending parameters. To obtain larger inter-
vals and smaller amounts of noise data, relaxation variables 

xi and xi
 are further introduced, and the SVR regression 

problem can be expressed as follows:  
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In Eq. (3), by fixing α, 𝛼𝛼,̂ μ, 𝜇̂𝜇 , calculating derivation of ω, b, ξ, 𝜉𝜉  and setting the 

results as 0, the following Eqs. are obtained: 

𝑤𝑤 = ∑ (𝛼𝛼𝑖̂𝑖 − 𝛼𝛼𝑖𝑖)𝑛𝑛
𝑖𝑖=1 𝑥𝑥𝑖𝑖,                                            …(4) 

0 = ∑ (𝛼𝛼𝑖̂𝑖 − 𝛼𝛼𝑖𝑖)𝑛𝑛
𝑖𝑖=1 , 

𝐶𝐶 = 𝛼𝛼𝑖𝑖 + 𝜇𝜇𝑖𝑖, 

𝐶𝐶 = 𝛼𝛼𝑖̂𝑖 + 𝜇𝜇𝑖̂𝑖. 

	 …(2)

Table 1: Original pollutant and meteorological variables.

Pollutant Variables Frequency Pollutant Variables Frequency

PM2.5 hourly atmospheric pressure (P) 24 h average

PM10 hourly relative humidity (RH) 24 h average

SO2 hourly air temperature (T) 24 h average

NO2 hourly wind speed (WS) Max wind speed

O3 hourly wind speed (WD) Max wind direction

CO hourly cumulative precipitation (CP) 20-20 h

 

 

 

Fig. 2: The PM2.5 concentration and temperature of Yizhuang from October 14, 2014, to 

December 31, 2017. 
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Kuhn-Tucker conditions to the obtained duality problem, Eq. 
(5) is achieved as follows:
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where ∅(𝑥𝑥) is the nonlinear mapping function that maps the data into a linear feature 

space with a higher dimension. The kernel function 𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥)  satisfying Mercer’s 

condition can be used instead of the mapping function to solve the complex dimensions 

and computing problems. In this paper, the radial basis function is used as the kernel 

function (Eq. (7)): 

𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥) = 𝑒𝑒𝑒𝑒𝑒𝑒 (− |𝑥𝑥−𝑥𝑥𝑖𝑖|2
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In the SVR nonlinear prediction model with radial basis function as kernel function, 

the penalty 𝐶𝐶 and the width 𝜎𝜎2 are the parameters. In this paper, the cuckoo search 

(CS) algorithm is introduced to optimize these two parameters to improve the efficiency 

and accuracy of prediction. 
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where ∅(𝑥𝑥) is the nonlinear mapping function that maps the data into a linear feature 

space with a higher dimension. The kernel function 𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥)  satisfying Mercer’s 

condition can be used instead of the mapping function to solve the complex dimensions 

and computing problems. In this paper, the radial basis function is used as the kernel 

function (Eq. (7)): 

𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥) = 𝑒𝑒𝑒𝑒𝑒𝑒 (− |𝑥𝑥−𝑥𝑥𝑖𝑖|2

2𝜎𝜎2 )                                        …(7) 

where 𝜎𝜎2 is the width of the kernel parameter. 

 

SVR optimized by the cuckoo search algorithm 

In the SVR nonlinear prediction model with radial basis function as kernel function, 

the penalty 𝐶𝐶 and the width 𝜎𝜎2 are the parameters. In this paper, the cuckoo search 

(CS) algorithm is introduced to optimize these two parameters to improve the efficiency 

and accuracy of prediction. 

                                    

 

 

Putting the four Eqs. (4) into Eq. (3), and adding Karush-Kuhn-Tucker conditions to 

the obtained duality problem, Eq. (5) is achieved as follows: 

𝑚𝑚𝑚𝑚𝑚𝑚 ∑ 𝑦𝑦𝑖𝑖(𝛼𝛼𝑖̂𝑖 − 𝛼𝛼𝑖𝑖)𝑛𝑛
𝑖𝑖=1 − 𝜀𝜀(𝛼𝛼𝑖̂𝑖 + 𝛼𝛼𝑖𝑖) − 1

2 ∑ ∑ (𝛼𝛼𝑖̂𝑖 − 𝛼𝛼𝑖𝑖)(𝛼𝛼𝑗̂𝑗 − 𝛼𝛼𝑗𝑗)〈𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗〉𝑛𝑛
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1  …(5) 

 s.t   ∑ (𝛼𝛼𝑖̂𝑖 − 𝛼𝛼𝑖𝑖)𝑛𝑛
𝑖𝑖=1 = 0, 

     0 ≤ 𝛼𝛼𝑖𝑖, 𝛼𝛼𝑖̂𝑖 ≤ 𝐶𝐶.                                                 

KKT: 𝛼𝛼𝑖𝑖(g(𝑥𝑥𝑖𝑖) − 𝑦𝑦𝑖𝑖 − 𝜀𝜀 − 𝜉𝜉𝑖𝑖) = 0, 

   𝛼𝛼𝑖̂𝑖(𝑦𝑦𝑖𝑖 − g(𝑥𝑥𝑖𝑖) − 𝜀𝜀 − 𝜉𝜉𝑖̂𝑖) = 0, 

   𝛼𝛼𝑖𝑖𝛼𝛼𝑖̂𝑖 = 0, 𝜉𝜉𝑖𝑖𝜉𝜉𝑖̂𝑖 = 0, 

   (𝐶𝐶 − 𝛼𝛼𝑖𝑖)𝜉𝜉𝑖𝑖 = 0, (𝐶𝐶 − 𝛼𝛼𝑖̂𝑖)𝜉𝜉𝑖̂𝑖 = 0. 

To efficiently solve the above optimization problem, the SMO algorithm is used. After 

determining the optimal Lagrange multiplier, the values of 𝜔𝜔 and 𝑏𝑏 can be obtained. 

Accordingly, the final SVM regression modal can be defined as follows: 

g(x) = ∑ (𝛼𝛼𝑖̂𝑖 − 𝛼𝛼𝑖𝑖)𝑛𝑛
𝑖𝑖=1 〈∅(𝑥𝑥𝑖𝑖), ∅(𝑥𝑥)〉 + 𝑏𝑏 = ∑ (𝛼𝛼𝑖̂𝑖 − 𝛼𝛼𝑖𝑖)𝑛𝑛

𝑖𝑖=1 𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥) + 𝑏𝑏        …(6) 

where ∅(𝑥𝑥) is the nonlinear mapping function that maps the data into a linear feature 

space with a higher dimension. The kernel function 𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥)  satisfying Mercer’s 

condition can be used instead of the mapping function to solve the complex dimensions 

and computing problems. In this paper, the radial basis function is used as the kernel 

function (Eq. (7)): 

𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥) = 𝑒𝑒𝑒𝑒𝑒𝑒 (− |𝑥𝑥−𝑥𝑥𝑖𝑖|2

2𝜎𝜎2 )                                        …(7) 

where 𝜎𝜎2 is the width of the kernel parameter. 

 

SVR optimized by the cuckoo search algorithm 

In the SVR nonlinear prediction model with radial basis function as kernel function, 

the penalty 𝐶𝐶 and the width 𝜎𝜎2 are the parameters. In this paper, the cuckoo search 

(CS) algorithm is introduced to optimize these two parameters to improve the efficiency 

and accuracy of prediction. 

 

 

Putting the four Eqs. (4) into Eq. (3), and adding Karush-Kuhn-Tucker conditions to 

the obtained duality problem, Eq. (5) is achieved as follows: 

𝑚𝑚𝑚𝑚𝑚𝑚 ∑ 𝑦𝑦𝑖𝑖(𝛼𝛼𝑖̂𝑖 − 𝛼𝛼𝑖𝑖)𝑛𝑛
𝑖𝑖=1 − 𝜀𝜀(𝛼𝛼𝑖̂𝑖 + 𝛼𝛼𝑖𝑖) − 1

2 ∑ ∑ (𝛼𝛼𝑖̂𝑖 − 𝛼𝛼𝑖𝑖)(𝛼𝛼𝑗̂𝑗 − 𝛼𝛼𝑗𝑗)〈𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗〉𝑛𝑛
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1  …(5) 

 s.t   ∑ (𝛼𝛼𝑖̂𝑖 − 𝛼𝛼𝑖𝑖)𝑛𝑛
𝑖𝑖=1 = 0, 

     0 ≤ 𝛼𝛼𝑖𝑖, 𝛼𝛼𝑖̂𝑖 ≤ 𝐶𝐶.                                                 

KKT: 𝛼𝛼𝑖𝑖(g(𝑥𝑥𝑖𝑖) − 𝑦𝑦𝑖𝑖 − 𝜀𝜀 − 𝜉𝜉𝑖𝑖) = 0, 

   𝛼𝛼𝑖̂𝑖(𝑦𝑦𝑖𝑖 − g(𝑥𝑥𝑖𝑖) − 𝜀𝜀 − 𝜉𝜉𝑖̂𝑖) = 0, 

   𝛼𝛼𝑖𝑖𝛼𝛼𝑖̂𝑖 = 0, 𝜉𝜉𝑖𝑖𝜉𝜉𝑖̂𝑖 = 0, 

   (𝐶𝐶 − 𝛼𝛼𝑖𝑖)𝜉𝜉𝑖𝑖 = 0, (𝐶𝐶 − 𝛼𝛼𝑖̂𝑖)𝜉𝜉𝑖̂𝑖 = 0. 

To efficiently solve the above optimization problem, the SMO algorithm is used. After 

determining the optimal Lagrange multiplier, the values of 𝜔𝜔 and 𝑏𝑏 can be obtained. 

Accordingly, the final SVM regression modal can be defined as follows: 

g(x) = ∑ (𝛼𝛼𝑖̂𝑖 − 𝛼𝛼𝑖𝑖)𝑛𝑛
𝑖𝑖=1 〈∅(𝑥𝑥𝑖𝑖), ∅(𝑥𝑥)〉 + 𝑏𝑏 = ∑ (𝛼𝛼𝑖̂𝑖 − 𝛼𝛼𝑖𝑖)𝑛𝑛

𝑖𝑖=1 𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥) + 𝑏𝑏        …(6) 

where ∅(𝑥𝑥) is the nonlinear mapping function that maps the data into a linear feature 

space with a higher dimension. The kernel function 𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥)  satisfying Mercer’s 

condition can be used instead of the mapping function to solve the complex dimensions 

and computing problems. In this paper, the radial basis function is used as the kernel 

function (Eq. (7)): 

𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥) = 𝑒𝑒𝑒𝑒𝑒𝑒 (− |𝑥𝑥−𝑥𝑥𝑖𝑖|2

2𝜎𝜎2 )                                        …(7) 

where 𝜎𝜎2 is the width of the kernel parameter. 

 

SVR optimized by the cuckoo search algorithm 

In the SVR nonlinear prediction model with radial basis function as kernel function, 

the penalty 𝐶𝐶 and the width 𝜎𝜎2 are the parameters. In this paper, the cuckoo search 

(CS) algorithm is introduced to optimize these two parameters to improve the efficiency 

and accuracy of prediction. 
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To efficiently solve the above optimization problem, 
the SMO algorithm is used. After determining the optimal 
Lagrange multiplier, the values of w and b can be obtained. 
Accordingly, the final SVM regression modal can be defined 
as follows:

 

 

Putting the four Eqs. (4) into Eq. (3), and adding Karush-Kuhn-Tucker conditions to 

the obtained duality problem, Eq. (5) is achieved as follows: 

𝑚𝑚𝑚𝑚𝑚𝑚 ∑ 𝑦𝑦𝑖𝑖(𝛼𝛼𝑖̂𝑖 − 𝛼𝛼𝑖𝑖)𝑛𝑛
𝑖𝑖=1 − 𝜀𝜀(𝛼𝛼𝑖̂𝑖 + 𝛼𝛼𝑖𝑖) − 1

2 ∑ ∑ (𝛼𝛼𝑖̂𝑖 − 𝛼𝛼𝑖𝑖)(𝛼𝛼𝑗̂𝑗 − 𝛼𝛼𝑗𝑗)〈𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗〉𝑛𝑛
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1  …(5) 

 s.t   ∑ (𝛼𝛼𝑖̂𝑖 − 𝛼𝛼𝑖𝑖)𝑛𝑛
𝑖𝑖=1 = 0, 

     0 ≤ 𝛼𝛼𝑖𝑖, 𝛼𝛼𝑖̂𝑖 ≤ 𝐶𝐶.                                                 

KKT: 𝛼𝛼𝑖𝑖(g(𝑥𝑥𝑖𝑖) − 𝑦𝑦𝑖𝑖 − 𝜀𝜀 − 𝜉𝜉𝑖𝑖) = 0, 

   𝛼𝛼𝑖̂𝑖(𝑦𝑦𝑖𝑖 − g(𝑥𝑥𝑖𝑖) − 𝜀𝜀 − 𝜉𝜉𝑖̂𝑖) = 0, 

   𝛼𝛼𝑖𝑖𝛼𝛼𝑖̂𝑖 = 0, 𝜉𝜉𝑖𝑖𝜉𝜉𝑖̂𝑖 = 0, 

   (𝐶𝐶 − 𝛼𝛼𝑖𝑖)𝜉𝜉𝑖𝑖 = 0, (𝐶𝐶 − 𝛼𝛼𝑖̂𝑖)𝜉𝜉𝑖̂𝑖 = 0. 

To efficiently solve the above optimization problem, the SMO algorithm is used. After 

determining the optimal Lagrange multiplier, the values of 𝜔𝜔 and 𝑏𝑏 can be obtained. 

Accordingly, the final SVM regression modal can be defined as follows: 

g(x) = ∑ (𝛼𝛼𝑖̂𝑖 − 𝛼𝛼𝑖𝑖)𝑛𝑛
𝑖𝑖=1 〈∅(𝑥𝑥𝑖𝑖), ∅(𝑥𝑥)〉 + 𝑏𝑏 = ∑ (𝛼𝛼𝑖̂𝑖 − 𝛼𝛼𝑖𝑖)𝑛𝑛

𝑖𝑖=1 𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥) + 𝑏𝑏        …(6) 

where ∅(𝑥𝑥) is the nonlinear mapping function that maps the data into a linear feature 

space with a higher dimension. The kernel function 𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥)  satisfying Mercer’s 

condition can be used instead of the mapping function to solve the complex dimensions 

and computing problems. In this paper, the radial basis function is used as the kernel 

function (Eq. (7)): 

𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥) = 𝑒𝑒𝑒𝑒𝑒𝑒 (− |𝑥𝑥−𝑥𝑥𝑖𝑖|2

2𝜎𝜎2 )                                        …(7) 

where 𝜎𝜎2 is the width of the kernel parameter. 

 

SVR optimized by the cuckoo search algorithm 

In the SVR nonlinear prediction model with radial basis function as kernel function, 

the penalty 𝐶𝐶 and the width 𝜎𝜎2 are the parameters. In this paper, the cuckoo search 

(CS) algorithm is introduced to optimize these two parameters to improve the efficiency 

and accuracy of prediction. 

        

     

 

 

Putting the four Eqs. (4) into Eq. (3), and adding Karush-Kuhn-Tucker conditions to 

the obtained duality problem, Eq. (5) is achieved as follows: 

𝑚𝑚𝑚𝑚𝑚𝑚 ∑ 𝑦𝑦𝑖𝑖(𝛼𝛼𝑖̂𝑖 − 𝛼𝛼𝑖𝑖)𝑛𝑛
𝑖𝑖=1 − 𝜀𝜀(𝛼𝛼𝑖̂𝑖 + 𝛼𝛼𝑖𝑖) − 1

2 ∑ ∑ (𝛼𝛼𝑖̂𝑖 − 𝛼𝛼𝑖𝑖)(𝛼𝛼𝑗̂𝑗 − 𝛼𝛼𝑗𝑗)〈𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗〉𝑛𝑛
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1  …(5) 

 s.t   ∑ (𝛼𝛼𝑖̂𝑖 − 𝛼𝛼𝑖𝑖)𝑛𝑛
𝑖𝑖=1 = 0, 

     0 ≤ 𝛼𝛼𝑖𝑖, 𝛼𝛼𝑖̂𝑖 ≤ 𝐶𝐶.                                                 

KKT: 𝛼𝛼𝑖𝑖(g(𝑥𝑥𝑖𝑖) − 𝑦𝑦𝑖𝑖 − 𝜀𝜀 − 𝜉𝜉𝑖𝑖) = 0, 

   𝛼𝛼𝑖̂𝑖(𝑦𝑦𝑖𝑖 − g(𝑥𝑥𝑖𝑖) − 𝜀𝜀 − 𝜉𝜉𝑖̂𝑖) = 0, 

   𝛼𝛼𝑖𝑖𝛼𝛼𝑖̂𝑖 = 0, 𝜉𝜉𝑖𝑖𝜉𝜉𝑖̂𝑖 = 0, 

   (𝐶𝐶 − 𝛼𝛼𝑖𝑖)𝜉𝜉𝑖𝑖 = 0, (𝐶𝐶 − 𝛼𝛼𝑖̂𝑖)𝜉𝜉𝑖̂𝑖 = 0. 

To efficiently solve the above optimization problem, the SMO algorithm is used. After 

determining the optimal Lagrange multiplier, the values of 𝜔𝜔 and 𝑏𝑏 can be obtained. 

Accordingly, the final SVM regression modal can be defined as follows: 

g(x) = ∑ (𝛼𝛼𝑖̂𝑖 − 𝛼𝛼𝑖𝑖)𝑛𝑛
𝑖𝑖=1 〈∅(𝑥𝑥𝑖𝑖), ∅(𝑥𝑥)〉 + 𝑏𝑏 = ∑ (𝛼𝛼𝑖̂𝑖 − 𝛼𝛼𝑖𝑖)𝑛𝑛

𝑖𝑖=1 𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥) + 𝑏𝑏        …(6) 

where ∅(𝑥𝑥) is the nonlinear mapping function that maps the data into a linear feature 

space with a higher dimension. The kernel function 𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥)  satisfying Mercer’s 

condition can be used instead of the mapping function to solve the complex dimensions 

and computing problems. In this paper, the radial basis function is used as the kernel 

function (Eq. (7)): 

𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥) = 𝑒𝑒𝑒𝑒𝑒𝑒 (− |𝑥𝑥−𝑥𝑥𝑖𝑖|2

2𝜎𝜎2 )                                        …(7) 

where 𝜎𝜎2 is the width of the kernel parameter. 

 

SVR optimized by the cuckoo search algorithm 

In the SVR nonlinear prediction model with radial basis function as kernel function, 

the penalty 𝐶𝐶 and the width 𝜎𝜎2 are the parameters. In this paper, the cuckoo search 

(CS) algorithm is introduced to optimize these two parameters to improve the efficiency 

and accuracy of prediction. 
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Putting the four Eqs. (4) into Eq. (3), and adding Karush-Kuhn-Tucker conditions to 

the obtained duality problem, Eq. (5) is achieved as follows: 

𝑚𝑚𝑚𝑚𝑚𝑚 ∑ 𝑦𝑦𝑖𝑖(𝛼𝛼𝑖̂𝑖 − 𝛼𝛼𝑖𝑖)𝑛𝑛
𝑖𝑖=1 − 𝜀𝜀(𝛼𝛼𝑖̂𝑖 + 𝛼𝛼𝑖𝑖) − 1

2 ∑ ∑ (𝛼𝛼𝑖̂𝑖 − 𝛼𝛼𝑖𝑖)(𝛼𝛼𝑗̂𝑗 − 𝛼𝛼𝑗𝑗)〈𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗〉𝑛𝑛
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1  …(5) 

 s.t   ∑ (𝛼𝛼𝑖̂𝑖 − 𝛼𝛼𝑖𝑖)𝑛𝑛
𝑖𝑖=1 = 0, 

     0 ≤ 𝛼𝛼𝑖𝑖, 𝛼𝛼𝑖̂𝑖 ≤ 𝐶𝐶.                                                 

KKT: 𝛼𝛼𝑖𝑖(g(𝑥𝑥𝑖𝑖) − 𝑦𝑦𝑖𝑖 − 𝜀𝜀 − 𝜉𝜉𝑖𝑖) = 0, 

   𝛼𝛼𝑖̂𝑖(𝑦𝑦𝑖𝑖 − g(𝑥𝑥𝑖𝑖) − 𝜀𝜀 − 𝜉𝜉𝑖̂𝑖) = 0, 

   𝛼𝛼𝑖𝑖𝛼𝛼𝑖̂𝑖 = 0, 𝜉𝜉𝑖𝑖𝜉𝜉𝑖̂𝑖 = 0, 

   (𝐶𝐶 − 𝛼𝛼𝑖𝑖)𝜉𝜉𝑖𝑖 = 0, (𝐶𝐶 − 𝛼𝛼𝑖̂𝑖)𝜉𝜉𝑖̂𝑖 = 0. 

To efficiently solve the above optimization problem, the SMO algorithm is used. After 

determining the optimal Lagrange multiplier, the values of 𝜔𝜔 and 𝑏𝑏 can be obtained. 

Accordingly, the final SVM regression modal can be defined as follows: 

g(x) = ∑ (𝛼𝛼𝑖̂𝑖 − 𝛼𝛼𝑖𝑖)𝑛𝑛
𝑖𝑖=1 〈∅(𝑥𝑥𝑖𝑖), ∅(𝑥𝑥)〉 + 𝑏𝑏 = ∑ (𝛼𝛼𝑖̂𝑖 − 𝛼𝛼𝑖𝑖)𝑛𝑛

𝑖𝑖=1 𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥) + 𝑏𝑏        …(6) 

where ∅(𝑥𝑥) is the nonlinear mapping function that maps the data into a linear feature 

space with a higher dimension. The kernel function 𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥)  satisfying Mercer’s 

condition can be used instead of the mapping function to solve the complex dimensions 

and computing problems. In this paper, the radial basis function is used as the kernel 

function (Eq. (7)): 

𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥) = 𝑒𝑒𝑒𝑒𝑒𝑒 (− |𝑥𝑥−𝑥𝑥𝑖𝑖|2
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where 𝜎𝜎2 is the width of the kernel parameter. 
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where s2 is the width of the kernel parameter.
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algorithm combines global search and local search which 
are controlled by discovery probability (Pa). This makes 
it possible to explore the search space more efficiently in 
the global scope, achieving global optimum with a higher 
probability. Although the PSO algorithm may converge 
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In combined Eq. (8) and Eq. (9), S is the random step 
size obeying Levy distribution.
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where a is the scaling factor of step size, which is to 0.01, 
and b is set to 1.5. 

ii) the host uses random walk to rebuild its nest after finding 
the alien egg with the probability of Pa  (Eq. (12)).

X X Heaviside P X Xt t a i j+ = + ƒ -( )ƒ -( )1 g   	 …(12)

where Pa = 0.25 is recommended. g, Î are random numbers 
subject to a uniform distribution. Heaviside(Pa – 
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  The flow chart of SVR prediction optimized by the CS 
algorithm (CS-SVR) is shown in Fig. 3.
Evaluation index for prediction results: To investigate 
the accuracy of different PM2.5 concentration prediction 
models, four evaluation indexes are applied, including person 
correlation coefficient (R), root mean squared error (RMSE), 
mean absolute error (MAE), and mean absolute percentage 

CALCULATE THE FITNESS VALUE OF EACH NEST AFTER RANDOM WALK



397PM2.5 PREDICTION BASED ON POLLUTANT PATTERN RECOGNITION 

Nature Environment and Pollution Technology • Vol. 21, No. 1, 2022

Levy tb m bb( ) ~ = £ £- , 1 3 .                                  …(9)

In combined Eq. (8) and Eq. (9), S is the random step 
size obeying Levy distribution.
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where a is the scaling factor of step size, which is to 0.01, 
and b is set to 1.5. 

ii) the host uses random walk to rebuild its nest after finding 
the alien egg with the probability of Pa  (Eq. (12)).
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where Pa = 0.25 is recommended. g, Î are random numbers 
subject to a uniform distribution. Heaviside(Pa – 

 

 

Yang & Deb (2009) presented the Cuckoo search natural heuristic method, which 

mimics cuckoo brood parasitism behavior. The algorithm can be enhanced by Levy 

flight rather than a simple isotropic random walk. The CS algorithm combines global 

search and local search which are controlled by discovery probability (𝑃𝑃𝑎𝑎). This makes 

it possible to explore the search space more efficiently in the global scope, achieving 

global optimum with a higher probability. Although the PSO algorithm may converge 

to local optimization prematurely, it is not necessarily the global optimal solution. 

While CS can usually converge to global optimization. 

  In the D dimensional space, the population of the nest is n, X𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =

[𝑋𝑋1, 𝑋𝑋2, ⋯ , 𝑋𝑋𝑛𝑛]𝑇𝑇, and each nest is the solution to the problem. In each nest, there is a D 

dimension vector {𝑋𝑋𝑖𝑖 = [𝑋𝑋𝑖𝑖1, 𝑋𝑋𝑖𝑖2, ⋯ , 𝑋𝑋𝑖𝑖𝑖𝑖]𝑇𝑇|𝑖𝑖 = 1, 2, ⋯ , 𝑛𝑛}.  

  After the nest population is formed randomly, CS updates the individual through two 

paths:  

ⅰ) the cuckoo uses Levy flight-based Eq (8) to find the nest and lay an egg. 

𝑋𝑋𝑡𝑡+1 = 𝑋𝑋𝑡𝑡 + 𝛼𝛼𝛼𝛼 = 𝑋𝑋𝑡𝑡 + 𝛼𝛼⨂𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝛽𝛽)                                …(8) 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝛽𝛽) ∼ 𝜇𝜇 = 𝑡𝑡−𝛽𝛽, 1 ≤ 𝛽𝛽 ≤ 3.                                  …(9) 

In combined Eq. (8) and Eq. (9), 𝑆𝑆 is the random step size obeying Levy distribution. 

𝑆𝑆 = 𝑈𝑈

|𝑉𝑉|
1
𝛽𝛽
, (𝑈𝑈 ∼ 𝑁𝑁(0, 𝜎𝜎2), 𝑉𝑉 ∼ 𝑁𝑁(0, 1))                               …(10) 

𝜎𝜎 = {Γ(1+𝛽𝛽)∗sin (𝜋𝜋𝜋𝜋
2 )

𝛽𝛽∗Γ(1+𝛽𝛽
2 )∗2

𝛽𝛽−1
2

}

1
𝛽𝛽

                                            …(11) 

where 𝛼𝛼 is the scaling factor of step size, which is to 0.01, and 𝛽𝛽 is set to 1.5.  

ⅱ) the host uses random walk to rebuild its nest after finding the alien egg with the 

probability of 𝑃𝑃𝑎𝑎 (Eq. (12)). 

𝑋𝑋𝑡𝑡+1 = 𝑋𝑋𝑡𝑡 + 𝛾𝛾⨂𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑃𝑃𝑎𝑎 − 𝜖𝜖)⨂(𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑗𝑗)                      …(12) 

where 𝑃𝑃𝑎𝑎 = 0.25 is recommended. 𝛾𝛾, 𝜖𝜖  are random numbers subject to a uniform 

distribution. 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑃𝑃𝑎𝑎 − 𝜖𝜖)  is the Heaviside step function. When 𝑃𝑃𝑎𝑎 > 𝜖𝜖 , 

)  is the 
Heaviside step function. When Pa > Î, Heaviside(Pa – 

 

 

Yang & Deb (2009) presented the Cuckoo search natural heuristic method, which 

mimics cuckoo brood parasitism behavior. The algorithm can be enhanced by Levy 

flight rather than a simple isotropic random walk. The CS algorithm combines global 

search and local search which are controlled by discovery probability (𝑃𝑃𝑎𝑎). This makes 

it possible to explore the search space more efficiently in the global scope, achieving 

global optimum with a higher probability. Although the PSO algorithm may converge 

to local optimization prematurely, it is not necessarily the global optimal solution. 

While CS can usually converge to global optimization. 

  In the D dimensional space, the population of the nest is n, X𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =

[𝑋𝑋1, 𝑋𝑋2, ⋯ , 𝑋𝑋𝑛𝑛]𝑇𝑇, and each nest is the solution to the problem. In each nest, there is a D 

dimension vector {𝑋𝑋𝑖𝑖 = [𝑋𝑋𝑖𝑖1, 𝑋𝑋𝑖𝑖2, ⋯ , 𝑋𝑋𝑖𝑖𝑖𝑖]𝑇𝑇|𝑖𝑖 = 1, 2, ⋯ , 𝑛𝑛}.  

  After the nest population is formed randomly, CS updates the individual through two 

paths:  

ⅰ) the cuckoo uses Levy flight-based Eq (8) to find the nest and lay an egg. 

𝑋𝑋𝑡𝑡+1 = 𝑋𝑋𝑡𝑡 + 𝛼𝛼𝛼𝛼 = 𝑋𝑋𝑡𝑡 + 𝛼𝛼⨂𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝛽𝛽)                                …(8) 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝛽𝛽) ∼ 𝜇𝜇 = 𝑡𝑡−𝛽𝛽, 1 ≤ 𝛽𝛽 ≤ 3.                                  …(9) 

In combined Eq. (8) and Eq. (9), 𝑆𝑆 is the random step size obeying Levy distribution. 

𝑆𝑆 = 𝑈𝑈

|𝑉𝑉|
1
𝛽𝛽
, (𝑈𝑈 ∼ 𝑁𝑁(0, 𝜎𝜎2), 𝑉𝑉 ∼ 𝑁𝑁(0, 1))                               …(10) 

𝜎𝜎 = {Γ(1+𝛽𝛽)∗sin (𝜋𝜋𝜋𝜋
2 )

𝛽𝛽∗Γ(1+𝛽𝛽
2 )∗2

𝛽𝛽−1
2

}

1
𝛽𝛽

                                            …(11) 

where 𝛼𝛼 is the scaling factor of step size, which is to 0.01, and 𝛽𝛽 is set to 1.5.  

ⅱ) the host uses random walk to rebuild its nest after finding the alien egg with the 

probability of 𝑃𝑃𝑎𝑎 (Eq. (12)). 

𝑋𝑋𝑡𝑡+1 = 𝑋𝑋𝑡𝑡 + 𝛾𝛾⨂𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑃𝑃𝑎𝑎 − 𝜖𝜖)⨂(𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑗𝑗)                      …(12) 

where 𝑃𝑃𝑎𝑎 = 0.25 is recommended. 𝛾𝛾, 𝜖𝜖  are random numbers subject to a uniform 

distribution. 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑃𝑃𝑎𝑎 − 𝜖𝜖)  is the Heaviside step function. When 𝑃𝑃𝑎𝑎 > 𝜖𝜖 , 

) = 
1, when Pa < 

 

 

Yang & Deb (2009) presented the Cuckoo search natural heuristic method, which 

mimics cuckoo brood parasitism behavior. The algorithm can be enhanced by Levy 

flight rather than a simple isotropic random walk. The CS algorithm combines global 

search and local search which are controlled by discovery probability (𝑃𝑃𝑎𝑎). This makes 

it possible to explore the search space more efficiently in the global scope, achieving 

global optimum with a higher probability. Although the PSO algorithm may converge 

to local optimization prematurely, it is not necessarily the global optimal solution. 

While CS can usually converge to global optimization. 

  In the D dimensional space, the population of the nest is n, X𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =

[𝑋𝑋1, 𝑋𝑋2, ⋯ , 𝑋𝑋𝑛𝑛]𝑇𝑇, and each nest is the solution to the problem. In each nest, there is a D 

dimension vector {𝑋𝑋𝑖𝑖 = [𝑋𝑋𝑖𝑖1, 𝑋𝑋𝑖𝑖2, ⋯ , 𝑋𝑋𝑖𝑖𝑖𝑖]𝑇𝑇|𝑖𝑖 = 1, 2, ⋯ , 𝑛𝑛}.  

  After the nest population is formed randomly, CS updates the individual through two 

paths:  

ⅰ) the cuckoo uses Levy flight-based Eq (8) to find the nest and lay an egg. 

𝑋𝑋𝑡𝑡+1 = 𝑋𝑋𝑡𝑡 + 𝛼𝛼𝛼𝛼 = 𝑋𝑋𝑡𝑡 + 𝛼𝛼⨂𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝛽𝛽)                                …(8) 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝛽𝛽) ∼ 𝜇𝜇 = 𝑡𝑡−𝛽𝛽, 1 ≤ 𝛽𝛽 ≤ 3.                                  …(9) 

In combined Eq. (8) and Eq. (9), 𝑆𝑆 is the random step size obeying Levy distribution. 

𝑆𝑆 = 𝑈𝑈

|𝑉𝑉|
1
𝛽𝛽
, (𝑈𝑈 ∼ 𝑁𝑁(0, 𝜎𝜎2), 𝑉𝑉 ∼ 𝑁𝑁(0, 1))                               …(10) 

𝜎𝜎 = {Γ(1+𝛽𝛽)∗sin (𝜋𝜋𝜋𝜋
2 )

𝛽𝛽∗Γ(1+𝛽𝛽
2 )∗2

𝛽𝛽−1
2

}

1
𝛽𝛽

                                            …(11) 

where 𝛼𝛼 is the scaling factor of step size, which is to 0.01, and 𝛽𝛽 is set to 1.5.  

ⅱ) the host uses random walk to rebuild its nest after finding the alien egg with the 

probability of 𝑃𝑃𝑎𝑎 (Eq. (12)). 

𝑋𝑋𝑡𝑡+1 = 𝑋𝑋𝑡𝑡 + 𝛾𝛾⨂𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑃𝑃𝑎𝑎 − 𝜖𝜖)⨂(𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑗𝑗)                      …(12) 

where 𝑃𝑃𝑎𝑎 = 0.25 is recommended. 𝛾𝛾, 𝜖𝜖  are random numbers subject to a uniform 

distribution. 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑃𝑃𝑎𝑎 − 𝜖𝜖)  is the Heaviside step function. When 𝑃𝑃𝑎𝑎 > 𝜖𝜖 , 

 Heaviside(Pa – 

 

 

Yang & Deb (2009) presented the Cuckoo search natural heuristic method, which 

mimics cuckoo brood parasitism behavior. The algorithm can be enhanced by Levy 

flight rather than a simple isotropic random walk. The CS algorithm combines global 

search and local search which are controlled by discovery probability (𝑃𝑃𝑎𝑎). This makes 

it possible to explore the search space more efficiently in the global scope, achieving 

global optimum with a higher probability. Although the PSO algorithm may converge 

to local optimization prematurely, it is not necessarily the global optimal solution. 

While CS can usually converge to global optimization. 

  In the D dimensional space, the population of the nest is n, X𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =

[𝑋𝑋1, 𝑋𝑋2, ⋯ , 𝑋𝑋𝑛𝑛]𝑇𝑇, and each nest is the solution to the problem. In each nest, there is a D 

dimension vector {𝑋𝑋𝑖𝑖 = [𝑋𝑋𝑖𝑖1, 𝑋𝑋𝑖𝑖2, ⋯ , 𝑋𝑋𝑖𝑖𝑖𝑖]𝑇𝑇|𝑖𝑖 = 1, 2, ⋯ , 𝑛𝑛}.  

  After the nest population is formed randomly, CS updates the individual through two 

paths:  

ⅰ) the cuckoo uses Levy flight-based Eq (8) to find the nest and lay an egg. 

𝑋𝑋𝑡𝑡+1 = 𝑋𝑋𝑡𝑡 + 𝛼𝛼𝛼𝛼 = 𝑋𝑋𝑡𝑡 + 𝛼𝛼⨂𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝛽𝛽)                                …(8) 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝛽𝛽) ∼ 𝜇𝜇 = 𝑡𝑡−𝛽𝛽, 1 ≤ 𝛽𝛽 ≤ 3.                                  …(9) 

In combined Eq. (8) and Eq. (9), 𝑆𝑆 is the random step size obeying Levy distribution. 

𝑆𝑆 = 𝑈𝑈

|𝑉𝑉|
1
𝛽𝛽
, (𝑈𝑈 ∼ 𝑁𝑁(0, 𝜎𝜎2), 𝑉𝑉 ∼ 𝑁𝑁(0, 1))                               …(10) 

𝜎𝜎 = {Γ(1+𝛽𝛽)∗sin (𝜋𝜋𝜋𝜋
2 )

𝛽𝛽∗Γ(1+𝛽𝛽
2 )∗2

𝛽𝛽−1
2

}

1
𝛽𝛽

                                            …(11) 

where 𝛼𝛼 is the scaling factor of step size, which is to 0.01, and 𝛽𝛽 is set to 1.5.  

ⅱ) the host uses random walk to rebuild its nest after finding the alien egg with the 

probability of 𝑃𝑃𝑎𝑎 (Eq. (12)). 

𝑋𝑋𝑡𝑡+1 = 𝑋𝑋𝑡𝑡 + 𝛾𝛾⨂𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑃𝑃𝑎𝑎 − 𝜖𝜖)⨂(𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑗𝑗)                      …(12) 

where 𝑃𝑃𝑎𝑎 = 0.25 is recommended. 𝛾𝛾, 𝜖𝜖  are random numbers subject to a uniform 

distribution. 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑃𝑃𝑎𝑎 − 𝜖𝜖)  is the Heaviside step function. When 𝑃𝑃𝑎𝑎 > 𝜖𝜖 , 

) = 0, when Pa = 

 

 

Yang & Deb (2009) presented the Cuckoo search natural heuristic method, which 

mimics cuckoo brood parasitism behavior. The algorithm can be enhanced by Levy 

flight rather than a simple isotropic random walk. The CS algorithm combines global 

search and local search which are controlled by discovery probability (𝑃𝑃𝑎𝑎). This makes 

it possible to explore the search space more efficiently in the global scope, achieving 

global optimum with a higher probability. Although the PSO algorithm may converge 

to local optimization prematurely, it is not necessarily the global optimal solution. 

While CS can usually converge to global optimization. 

  In the D dimensional space, the population of the nest is n, X𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =

[𝑋𝑋1, 𝑋𝑋2, ⋯ , 𝑋𝑋𝑛𝑛]𝑇𝑇, and each nest is the solution to the problem. In each nest, there is a D 

dimension vector {𝑋𝑋𝑖𝑖 = [𝑋𝑋𝑖𝑖1, 𝑋𝑋𝑖𝑖2, ⋯ , 𝑋𝑋𝑖𝑖𝑖𝑖]𝑇𝑇|𝑖𝑖 = 1, 2, ⋯ , 𝑛𝑛}.  

  After the nest population is formed randomly, CS updates the individual through two 

paths:  

ⅰ) the cuckoo uses Levy flight-based Eq (8) to find the nest and lay an egg. 

𝑋𝑋𝑡𝑡+1 = 𝑋𝑋𝑡𝑡 + 𝛼𝛼𝛼𝛼 = 𝑋𝑋𝑡𝑡 + 𝛼𝛼⨂𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝛽𝛽)                                …(8) 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝛽𝛽) ∼ 𝜇𝜇 = 𝑡𝑡−𝛽𝛽, 1 ≤ 𝛽𝛽 ≤ 3.                                  …(9) 

In combined Eq. (8) and Eq. (9), 𝑆𝑆 is the random step size obeying Levy distribution. 

𝑆𝑆 = 𝑈𝑈

|𝑉𝑉|
1
𝛽𝛽
, (𝑈𝑈 ∼ 𝑁𝑁(0, 𝜎𝜎2), 𝑉𝑉 ∼ 𝑁𝑁(0, 1))                               …(10) 

𝜎𝜎 = {Γ(1+𝛽𝛽)∗sin (𝜋𝜋𝜋𝜋
2 )

𝛽𝛽∗Γ(1+𝛽𝛽
2 )∗2

𝛽𝛽−1
2

}

1
𝛽𝛽

                                            …(11) 

where 𝛼𝛼 is the scaling factor of step size, which is to 0.01, and 𝛽𝛽 is set to 1.5.  

ⅱ) the host uses random walk to rebuild its nest after finding the alien egg with the 

probability of 𝑃𝑃𝑎𝑎 (Eq. (12)). 

𝑋𝑋𝑡𝑡+1 = 𝑋𝑋𝑡𝑡 + 𝛾𝛾⨂𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑃𝑃𝑎𝑎 − 𝜖𝜖)⨂(𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑗𝑗)                      …(12) 

where 𝑃𝑃𝑎𝑎 = 0.25 is recommended. 𝛾𝛾, 𝜖𝜖  are random numbers subject to a uniform 

distribution. 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑃𝑃𝑎𝑎 − 𝜖𝜖)  is the Heaviside step function. When 𝑃𝑃𝑎𝑎 > 𝜖𝜖 , 

  Heavi-
side(Pa – 

 

 

Yang & Deb (2009) presented the Cuckoo search natural heuristic method, which 

mimics cuckoo brood parasitism behavior. The algorithm can be enhanced by Levy 

flight rather than a simple isotropic random walk. The CS algorithm combines global 

search and local search which are controlled by discovery probability (𝑃𝑃𝑎𝑎). This makes 

it possible to explore the search space more efficiently in the global scope, achieving 

global optimum with a higher probability. Although the PSO algorithm may converge 

to local optimization prematurely, it is not necessarily the global optimal solution. 

While CS can usually converge to global optimization. 

  In the D dimensional space, the population of the nest is n, X𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =

[𝑋𝑋1, 𝑋𝑋2, ⋯ , 𝑋𝑋𝑛𝑛]𝑇𝑇, and each nest is the solution to the problem. In each nest, there is a D 

dimension vector {𝑋𝑋𝑖𝑖 = [𝑋𝑋𝑖𝑖1, 𝑋𝑋𝑖𝑖2, ⋯ , 𝑋𝑋𝑖𝑖𝑖𝑖]𝑇𝑇|𝑖𝑖 = 1, 2, ⋯ , 𝑛𝑛}.  

  After the nest population is formed randomly, CS updates the individual through two 

paths:  

ⅰ) the cuckoo uses Levy flight-based Eq (8) to find the nest and lay an egg. 

𝑋𝑋𝑡𝑡+1 = 𝑋𝑋𝑡𝑡 + 𝛼𝛼𝛼𝛼 = 𝑋𝑋𝑡𝑡 + 𝛼𝛼⨂𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝛽𝛽)                                …(8) 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝛽𝛽) ∼ 𝜇𝜇 = 𝑡𝑡−𝛽𝛽, 1 ≤ 𝛽𝛽 ≤ 3.                                  …(9) 

In combined Eq. (8) and Eq. (9), 𝑆𝑆 is the random step size obeying Levy distribution. 

𝑆𝑆 = 𝑈𝑈

|𝑉𝑉|
1
𝛽𝛽
, (𝑈𝑈 ∼ 𝑁𝑁(0, 𝜎𝜎2), 𝑉𝑉 ∼ 𝑁𝑁(0, 1))                               …(10) 

𝜎𝜎 = {Γ(1+𝛽𝛽)∗sin (𝜋𝜋𝜋𝜋
2 )

𝛽𝛽∗Γ(1+𝛽𝛽
2 )∗2

𝛽𝛽−1
2

}

1
𝛽𝛽

                                            …(11) 

where 𝛼𝛼 is the scaling factor of step size, which is to 0.01, and 𝛽𝛽 is set to 1.5.  

ⅱ) the host uses random walk to rebuild its nest after finding the alien egg with the 

probability of 𝑃𝑃𝑎𝑎 (Eq. (12)). 

𝑋𝑋𝑡𝑡+1 = 𝑋𝑋𝑡𝑡 + 𝛾𝛾⨂𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑃𝑃𝑎𝑎 − 𝜖𝜖)⨂(𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑗𝑗)                      …(12) 

where 𝑃𝑃𝑎𝑎 = 0.25 is recommended. 𝛾𝛾, 𝜖𝜖  are random numbers subject to a uniform 

distribution. 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑃𝑃𝑎𝑎 − 𝜖𝜖)  is the Heaviside step function. When 𝑃𝑃𝑎𝑎 > 𝜖𝜖 , 

) = 0.5 Xi, Xj are any other nests. 

  The flow chart of SVR prediction optimized by the CS 
algorithm (CS-SVR) is shown in Fig. 3.
Evaluation index for prediction results: To investigate 
the accuracy of different PM2.5 concentration prediction 
models, four evaluation indexes are applied, including person 
correlation coefficient (R), root mean squared error (RMSE), 
mean absolute error (MAE), and mean absolute percentage 

CALCULATE THE FITNESS VALUE OF EACH NEST AFTER RANDOM WALK

error (MAPE). R can release the relevance between the 
observed value and the predicted value (Eq. (12)). Mean 
squared error (MSE) is the expected value of the square of 
the difference between the predicted value and the observed 
value. Correspondingly, RMSE is the square root of MSE 
which is more intuitive in order of magnitude (Eq. (13)). And 
the smaller the RMSE value, the better the accuracy of the 
prediction model. MAE represents the mean of the absolute 
error between the predicted value and the observed value, 
which can better reflect the actual predicted error (Eq. (14)). 
MAPE is used to better evaluate different models with the 
same set of data (Eq. (15)).
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RESULTS AND DISCUSSION

The Results of Extracting Pollutant Variables for 
Pattern Calculation

The atmospheric environment affecting PM2.5 concentration 
consists of pollutant factors and meteorological factors. We 

Table 2: Correlation coefficient (R) between the PM2.5 concentration and 6 pollutant variables, 5 meteorological variables.

PM2.5 PM10 SO2 NO2 O3 CO P RH T WS WD CP

PM2.5 1 - - - - - - - - - - -

PM10 .913** 1 - - - - - - - - - -

SO2 .575** .541** 1 - - - - - - - - -

NO2 .785** .745** .574** 1 - - - - - - - -

O3 -.296** -.245** -.373** -.523** 1 - - - - - - -

CO .832** .755** .574** .782** -.434** 1 - - - - - -

P .086** .040 .324** .226** -.671** .233** 1 - - - - -

RH .406** .279** -.126** .262** -.049 .374** -.271** 1 - - - -

T -.245** -.202** -.486** -.351** .758** -.381** -.880** .269** 1 - - -

WS -.362** -.300** -.251** -.515** .286** -.376** -.049 -.379** .057 1 - -

WD .275** .241** .159** .275** -.038 .276** -.081** .353** .077** -.264** 1 -

CP .009 .004 -.072* -.004 .070* .021 -.125** .128** .136** .006 .067* 1

Note: **p-value£0.01, *p-value£0.05
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examined their relationship with PM2.5 concentrations. 
The correlation coefficient (R) between the 11 variables 
(from 14th October 2014 to 31st December 2017) and PM2.5 
concentrations is shown in Table 2. The R values between 
pollutant factors and PM2.5 concentrations are mostly higher 
than 0.5, but the R values in the meteorological parts are 
between 0.1 and 0.4. These results indicate that pollutant 
factors have a greater impact on the PM2.5 concentrations. 
Therefore, we decided to extract pollutant patterns to improve 
the prediction accuracy. The PCA-clustering method was 
employed for extracting needed variables.

In the beginning, all the 12 atmospheric environment 
variables including 6 pollutant components (PM2.5, PM10, 
SO2, NO2, O3, CO) and 6 meteorology factors (P, RH, T, WS, 
WD, CP) were examined by PCA methods, and the results 
are shown in Tables 3 and 4. In our previous work, we have 
confirmed that relative humidity (RH), temperature (T), 
and wind speed (WS) have a more significant impact on the 
concentration level of PM2.5 (Liu et al. 2019). As a result, 

the PCA method was used to construct an examination using 
nine variables (PM2.5, PM10, SO2, NO2, O3, CO, RH, T, and 
WS) (Tables 5 and 6). As shown in Table 3 and Fig. 4, the 
first three principal components can explain the degree of 
data variation as 70.57%, with the first one accounting for 
40.39%. However, for the 9 variables calculation, the first 
three principal components can explain 82.017%, and the first 
one accounts for 51.321% (Table 5 and Fig. 4). Therefore, 3 
meteorological variables (RH, T, WS) will be introduced for 
predicting PM2.5 concentrations in the next part. 

The rotated component matrix in Table 4 shows the in-
terpretive competency of pollutant variables to each primary 
component in the 12 variables (6 pollutant and 6 meteorology 
variables) computation. PM2.5, PM10, SO2, NO2, and CO all 
strongly explain the first principal component, however, O3 is 
shifted to the second principal component. The same pattern 
may be seen in the findings of the 9 variable calculation (6 
pollutant and 3 meteorology variables) and the results as 
shown in Table 6. PM10, SO2, NO2, and CO are used in the 

Table 3: The total variance explained of 6 pollutant variables and 6 meteorological variables.

Component Initial Eigenvalues Extraction Sums of Squared Loadings

Total % of Variance Cumulative % Total % of Variance Cumulative %

1 4.847 40.388 40.388 4.847 40.388 40.388

2 2.517 20.975 61.362 2.517 20.975 61.362

3 1.105 9.212 70.574 1.105 9.212 70.574

Table 4: The rotated component matrix of pollutant variables of the 12 variables calculation, indicating their interpretive competence to each principal 
component.

pollutant variables and meteorological variables                                                   Component

1 2 3

PM2.5 0.929 -0.050 0.223

PM10 0.928 0.015 0.116

SO2 0.728 -0.321 -0.189

NO2 0.799 -0.304 0.291

O3 -0.232 0.863 -0.159

CO 0.831 -0.249 0.265

Table 5: The total variance explained of 6 pollutant variables and 3 meteorological variables.

Component Initial Eigenvalues Extraction Sums of Squared Loadings

Total % of Variance Cumulative % total % of Variance Cumulative %

1 4.619 51.321 51.321 4.619 51.321 51.321

2 1.749 19.429 70.750 1.749 19.429 70.750

3 1.014 11.267 82.017 1.014 11.267 82.017
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Fig. 3: The flow chart of CS algorithm optimized SVR prediction (CS-SVR).

extraction of pollutant patterns, which will be generated using 
the clustering approach and used as a key input factor for 
the subsequent prediction model, based on the study above.

The Results of PM2.5 Concentration Prediction by CS-
SVR Model

All cold day data from October to the following March 
2014-2017 was used as a training set, while the data from 
November and December 2017 was used as a testing set for 
PM2.5 concentration prediction. The population of the nest 

is set to 20 in the CS optimization procedure. The discov-
ery probability Pa = 0.25 is recommended. Penalty C and 
the width s2 as parameters to be optimized are set to [0.01, 
100]. In the optimization process, 100 iterations have been 
carried out.

First, three prediction models including CS-SVR, mul-
tivariate nonlinear regression (MNR), and artificial neural 
network (ANN) have been studied using 11 variables. As 
shown in Fig. 5, the absolute value of relative errors of 
CS-SVR is much better than those of MNR and ANN. The 
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prediction accuracy of different models was further compared 
using four evaluation indexes such as R, MAE, RMSE, and 
MAPE (Table 7). The R values between the predicted and 
observed PM2.5 concentration by CS-SVR (0.9430) are 
higher than ANN (0.9342) and MNR (0.9326). Meanwhile, 
the MAE, RMSE, and MAPE indicators of CS-SVR de-
creased by 30.10%, 10.22%, 70.87% than MNR, and by 
13.88%, 3.4451%, 51.48% than ANN, respectively. All of 
these findings indicate that the CS-SVR model outperforms 

the MNR and ANN models in predicting PM2.5 concentra-
tions. In addition, different optimization methods for SVR 
were also investigated (Table 7). All the four indexes (R, 
MAE, RMSE, and MAPE) of CS-SVR are better than those 
of CV-SVR and POS-SVR.

In addition, eight factors were used in the CS-SVR pre-
diction model. CS-SVR still outperforms ANN and MNR in 
terms of prediction performance, as demonstrated in Fig. 6 
and Table 8, despite the greater R-value and smaller MAE, 

Table 6: The rotated component matrix of pollutant variables of the 9 variables calculation, indicating their interpretive competence to each principal 
component.

pollutant variables and meteorological variables Component

1 2 3

PM2.5 0.924 -0.067 0.271

PM10 0.927 -0.016 0.157

SO2 0.710 -0.407 -0.195

NO2 0.758 -0.363 0.342

O3 -0.166 0.896 -0.228

CO 0.817 -0.262 0.303

 

 

 

Fig. 4: The scree plots of 11 variables (gray) vs. 9 variables (black). 
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Fig. 4: The scree plots of 11 variables (gray) vs. 9 variables (black).

Table 7: The evaluation index results of CS-SVR, CV-SVR, POS-SVR, ANN, and MNR models using 11 pollutant and meteorological variables.

Index

Models R MAE RMSE MAPE

CS-SVR 0.9430 11.5785 18.2506 0.3141

CV-SVR 0.9341 13.2025 19.6715 0.5225

POS-SVR 0.9423 11.6407 18.7494 0.3158

ANN 0.9342 13.4451 18.9453 0.6480

MNR 0.9326 16.5625 20.3276 1.0794
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RMSE, and MAPE indicators. Therefore, from the above two 
groups of comparative experiments, the prediction accuracy 
of the CS-SVR model is better than the other two models in 
terms of each index.

Interestingly, although using fewer variables, the 8 vari-
ables CS-SVR prediction shows acceptable prediction accu-
racy. However, the R-value of the 8 variables CS-SVR pre-
diction is a little bit lower than the 11 variables one (0.9388 
vs 0.9430). To further improve the prediction accuracy of 
the 8 variables CS-SVR model, we used the PCA-cluster-
ing method to extract the pollutant pattern as an additional 
variable for PM2.5 concentration prediction. The obtained 

prediction results taking into account the pollutant pattern 
variable are shown in Table 9. It is quite clear that when the 
pollutant pattern variable is involved in the calculation, the 
prediction accuracy of all models improved. Especially, for 
the CS-SVR model, when the pollutant data was divided 
into three patterns (k = 3) by k-meaning clustering, the best 
prediction accuracy was achieved. The R-value increased 
to 0.9455, while the MAE, RMSE, and MAPE values de-
creased to 11.2523, 16.7114, and 0.3006, respectively, the 
lowest values of all models. As a result, the PCA-clustering 
extracted pollutant pattern-based CS-SVR model predicts 
PM2.5 concentrations the best. 

 

 

Fig. 6: The absolute value of the relative error of different prediction models using 8 pollutant and 

meteorological variables (PM10, SO2, NO2, O3, CO and RH, T, WS). 
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CONCLUSION

In this work, we applied principal component analysis 
(PCA)-clustering-based pollutant pattern recognition and 
CS algorithm optimized SVR for the PM2.5 concentrati�-
on prediction. In comparison to a prediction based on all 

meteorological factors, relative humidity, air temperature, 
and wind speed could be chosen to provide an acceptable 
prediction accuracy. To further improve the prediction re-
sults, a new variable (k) of pollutant pattern was extracted 
by the PCA-clustering method and added to the calculation. 
Support vector regression outperforms multivariate nonlinear 

Table 9: The evaluation index results of CS-SVR, CV-SVR, PSO-SVR, ANN, and MNR models using 5 pollutant variables, 3 meteorological variables, 
and 1 pollutant pattern variable.

Index

Models k R MAE RMSE MAPE

CS-SVR 1 0.9388 11.4269 18.6665 0.3008

2 0.9378 12.0629 18.9555 0.3207

3 0.9455 11.2523 16.7114 0.3006

4 0.9453 11.6977 16.9446 0.422

5 0.9392 11.6424 18.6715 0.316

CV-SVR 1 0.91158 13.6238 20.8764 0.6888

2 0.9253 12.0441 19.0600 0.4241

3 0.9292 11.8964 18.3937 0.5254

4 0.9366 11.9500 17.6161 0.5364

5 0.9295 12.5774 19.1370 0.5066

PSO-SVR 1 0.9338 11.7656 18.9985 0.3722

2 0.9345 11.7015 18.8554 0.3350

3 0.9424 11.7059 18.8421 0.3119

4 0.9464 11.7066 18.4610 0.3328

5 0.9377 11.9483 19.0073 0.3990

ANN 1 0.9316 12.7832 19.2167 0.4021

2 0.9298 13.3388 20.0169 0.3789

3 0.9455 11.6921 17.1260 0.3241

4 0.9480 12.5176 17.7708 0.4623

5 0.9397 11.97 18.0200 0.5673

MNR 1 0.9367 15.7408 19.8749 0.9721

2 0.9388 15.2120 19.3763 0.8988

3 0.9478 14.9337 18.8504 0.8527

4 0.9471 15.0780 18.6994 0.8325

5 0.9383 15.7837 19.8648 0.9405

k is the number of pollutant patterns

Table 8: The evaluation index results of CS-SVR, ANN, and MNR models using 8 pollutant and meteorological variables.

Index

Models R MAE RMSE MAPE

CS-SVR 0.9388 11.4269 18.6665 0.3008

ANN 0.9316 12.7832 19.2167 0.4021

MNR 0.9367 15.7408 19.8749 0.9721
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regression and artificial neural network models, as seen by 
indices like RMSE, MAE, MAPE, and R. Furthermore, the 
cuckoo search was used to further optimize the parameters 
in the SVR process, which resulted in a better prediction 
of PM2.5 concentration than cross-validation and particle 
swarm optimization algorithms. According to these com-
parative studies, the best PM2.5 concentration prediction 
accuracy could be obtained by the CS-SVR model with three 
pollutant patterns (k = 3). Pollutant and meteorological data 
from more observation stations will be introduced in the 
future to further prove the reliability of our prediction model 
and acquire higher prediction accuracy.
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