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ABSTRACT

Evaporation from the soil is an important component of evapotranspiration, and mulching greatly affects 
soil evaporation. We conducted numerical simulations to study the effect of the thickness of sand mulch 
on soil evaporation. We tested nine treatments: mulching with sand thicknesses of 1, 3, 5, 6, 8, 10, 15 
and 20 cm plus an unmulched control (CK). Accumulated evaporation was significantly lower, and the 
resistance to evaporation was significantly higher, for the mulched treatments than CK. The volumetric 
soil water content (SWC) was significantly higher for the mulched treatments than CK, but SWC varied 
little for thicknesses >5 cm. Heating was slower and more uniform for the mulched treatments than for 
CK. With the increase of the thickness of sand, the temperature transmission was slowed down. The 
change of soil temperature was not obvious at thicknesses >15 cm. A thickness of 5 cm was the most 
effective for storing water and preserving heat. Our results provide a theoretical basis and technical 
guidance for the effective use and management of soil water in farmland in arid regions.   

INTRODUCTION

Soil evaporation is the diffusion of soil water into the air in 
the form of vapour and is a special component of the hydro-
logical cycle and also an important component of evapotran-
spiration (Morillas et al. 2013). Soil evaporation represents 
an important loss of soil water on farms in semi-arid regions, 
a key factor restricting agricultural planting (Mellouli et al. 
2000, Danierhan et al. 2013, Lei et al. 2014). Mulching can 
effectively restrain the evaporation of farmland water, thus 
preserving soil water (Li 2003, Yuan et al. 2009). Mulching 
with sand is a common and effective practice with a long 
history for decreasing soil evaporation (Fairbourn et al. 1973, 
Nachtergaele et al. 1998, Zhao et al. 2017a). Studying soil 
evaporation under sand mulching is therefore important for 
the management of farmland water. 

Many studies have reported that adding sand mulching 
to the soil surface can effectively restrict the evaporation 
of soil water. Yamanaka et al. (2004) found that resistance 
to the flow of water vapour increased exponentially with 
the thickness of a layer of gravel mulch on the soil surface. 
Gravel-sand mulches are more effective than bare soil in con-
serving soil water, and the water content increases with mulch 
thickness (Ma et al. 2011). Kaseke et al. (2012) reported that 
net and total evaporation were 2.03 and 3.42-fold higher 
from bare soil than from soil mulched with gravel. Gravel 
mulch substantially increases resistance to evaporation, and 

mulched soils have much lower accumulated evaporation 
(Diaz et al. 2005, Qiu et al. 2014). 

A numerical simulation is an efficient approach for 
studying changes to soil water and temperature during soil 
evaporation (Assouline et al. 2014, An et al. 2018, Balugani 
et al. 2018). The variables can be effectively controlled to 
ensure the accuracy of the test. Simulations can also address 
more complex problems than experimentation. VADOSE/W 
is finite-element software based on a soil-atmosphere model 
that mainly models infiltration, soil evaporation, temperature 
and water balance. It has been used with increasing popular-
ity during the last decade for predicting the infiltration and 
evaporation of soil water (Weeks et al. 2006). Li et al. (2016) 
found that VADOSE/W could simulate the behaviour of the 
flow of water in unsaturated loessial soil, and Zhang et al. 
(2016) found that VADOSE/W could accurately simulate 
and predict unsaturated flow associated with capillary barrier 
covers. Zhao et al. (2017b) reported that VADOSE/W could 
reliably simulate soil evaporation under sand mulching and 
sand inclusion. 

At present, sand mulching only depends on experience 
and lacks corresponding theoretical guidance in actual 
production. It is necessary to determine the effect of cover 
thickness on soil evaporation and temperature to optimize 
the thickness of the sand layer. The objectives of this study 
were to determine (i) the effect of sand thickness on soil-wa-
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ter content (SWC) and soil temperature during evaporation, 
and (ii) the optimum mulch thickness. This study provides 
a theoretical reference for the rational use of land and the 
transfer of soil water and heat for agricultural production in 
sand-mulched fields.

NUMERICAL MODEL THEORY

Soil-Atmosphere Boundary Conditions

The key to numerical simulation is to determine reasonable 
boundary conditions for the model. We chose the flux bound-
ary for the soil surface and the flow-boundary conditions 
for quantifying surface infiltration and actual evaporation. 
Wilson et al. (1994) considered atmospheric humidity, wind 
speed, solar radiation and other conditions at the soil surface 
and derived an equation for calculating soil-surface evap-
oration under the conditions of soil-atmosphere coupling:
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Where, Ts is the temperature of the soil surface (°C) and Ta is the temperature of the air above 
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Where, ρc is the volumetric specific heat (J/(m3∙°C), ktx is thermal conductivity in the x-direction 

(W/(m∙°C)), kty is thermal conductivity in the y-direction and is assumed equal to ktx (W/(m∙°C)), Vx 

is the Darcy water velocity in the x-direction (m/s), Vy is the Darcy water velocity in the y-direction 

(m/s), Qt is the applied thermal-boundary flux (J/s) and Lv is the latent heat of vaporization (J/kg). 
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Examination of the equations governing the transfer of heat and mass identified three unknown 

parameters: pressure (P), temperature (T) and vapour pressure (Pv). The third relationship between 

these parameters was necessary to solve the equations. This relationship can be described using the 
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Examination of the equations governing the transfer of heat 
and mass identified three unknown parameters: pressure 
(P), temperature (T) and vapour pressure (Pv). The third 
relationship between these parameters was necessary to solve 
the equations. This relationship can be described using the 
widely accepted thermodynamic relationship proposed by 
Edlefsen & Anderson (1943):

	

Partial Differential Equations for Water and Heat Flow 
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Where, P is pressure (kPa), Pv is the vapour pressure of soil water (kPa), kx is hydraulic 

conductivity in the x-direction (m/s), ky is hydraulic conductivity in the y-direction (m/s), Q is the 

applied boundary flux (m/s), Dv is a coefficient for the diffusion of water vapour through soil (kg 

m/(kN∙s)), y is the elevation head (m), ρ is the density of water (kg/m3), g is the gravitational 

acceleration (m/s2) and t is time (s). 
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Where, ρc is the volumetric specific heat (J/(m3∙°C), ktx is thermal conductivity in the x-direction 

(W/(m∙°C)), kty is thermal conductivity in the y-direction and is assumed equal to ktx (W/(m∙°C)), Vx 

is the Darcy water velocity in the x-direction (m/s), Vy is the Darcy water velocity in the y-direction 

(m/s), Qt is the applied thermal-boundary flux (J/s) and Lv is the latent heat of vaporization (J/kg). 

Coupling Heat and Mass Equations 

Examination of the equations governing the transfer of heat and mass identified three unknown 

parameters: pressure (P), temperature (T) and vapour pressure (Pv). The third relationship between 

these parameters was necessary to solve the equations. This relationship can be described using the 

widely accepted thermodynamic relationship proposed by Edlefsen & Anderson (1943): 
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Where, Pvs is the saturation vapour pressure (kPa) of soil water at temperature T, hr is 

atmospheric relative humidity, Ψ is the total potential of the liquid-water phase expressed as an 

equivalent matric potential (m), Wv is the molecular weight of water (0.018 kg/mol), R is the universal 

gas constant (8.314 J/(mol∙K)) and T is the temperature (K). 

MODEL FORMULATION 

Geometric Model  

	 …(6)

Where, Pvs is the saturation vapour pressure (kPa) of soil 
water at temperature T, hr is atmospheric relative humidity, Ψ 
is the total potential of the liquid-water phase expressed as an 
equivalent matric potential (m), Wv is the molecular weight of 
water (0.018 kg/mol), R is the universal gas constant (8.314 
J/(mol∙K)) and T is the temperature (K).

MODEL FORMULATION

Geometric Model 

The experiment simulating evaporation used an indoor test 
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soil column with bare soil as the control group (CK) and 
columns with the soil surface mulched with sand 1.0, 3.0, 
5.0, 6.0, 8.0, 10.0, 15.0 and 20.0 cm thick, simplified as a 
two-dimensional numerical model (Fig. 1). The diameter of 
the soil column was 10 cm, the height of the bare soil was 
35.0 cm. The heights of the sand-mulched treatments were 
thus 36.0, 38.0, 40.0, 41.0, 43.0, 45.0, 50.0 and 55.0 cm. 
VADOSE/W was used to model the soil columns.

Model Parameters

Clay loam and sand were used in the experiments. The initial 
state of the soil column and the physical properties of the 

soil and sand are presented in Table 1. 

Simulated Experimental Conditions

The soil-atmosphere boundary was the upper boundary of 
the model, which can be used for the exchange of water 
and heat, and the lower boundary was impermeable. The 
recharge of groundwater was not included in the model. The 
relative humidity was 10% during soil-column evaporation, 
the wind speed was 0 m/s and potential evaporation was 10 
mm/d. Each mulching treatment was also tested with two 
temperature treatments, an endothermic process (ENP) and 
an exothermic process (EXP), for studying the evaporation 

The experiment simulating evaporation used an indoor test soil column with bare soil as the 

control group (CK) and columns with the soil surface mulched with sand 1.0, 3.0, 5.0, 6.0, 8.0, 10.0, 

15.0 and 20.0 cm thick, simplified as a two-dimensional numerical model (Fig. 1). The diameter of 

the soil column was 10 cm, the height of the bare soil was 35.0 cm. The heights of the sand-mulched 

treatments were thus 36.0, 38.0, 40.0, 41.0, 43.0, 45.0, 50.0 and 55.0 cm. VADOSE/W was used to 

model the soil columns. 

             
  (a) Bare soil geometry model                  (b) Sand mulching geometry model 

Fig. 1: Geometry model. 

Model Parameters 

Clay loam and sand were used in the experiments. The initial state of the soil column and the 

physical properties of the soil and sand are presented in Table 1. 

Table 1: Physical properties of the soil and sand in the experiment. 

Soil 

texture 

Particle size distribution（%） Initial volume 

water content 

(m3/m3) 

Residual volume 

water content 

(m3/m3) 

Hydraulic 

conductivity 

(m/d) 

Reference 2.0~1.0 

mm 

1.0~0.5 

mm 

0.5~0.2 

mm 

0.2~0.02 

mm 

0.02~0.002 

mm 

<0.002 

mm 

Clay 

loam 
0.07 0.38 2.54 36.99 39.16 20.86 0.3636 0.028 0.040 Song et al. 

(2012) 
Sand 10.17 16.58 73.25 — — — 0.1532 0.017 17.856 

Simulated Experimental Conditions 

The soil-atmosphere boundary was the upper boundary of the model, which can be used for the 

exchange of water and heat, and the lower boundary was impermeable. The recharge of groundwater 

was not included in the model. The relative humidity was 10% during soil-column evaporation, the 

wind speed was 0 m/s and potential evaporation was 10 mm/d. Each mulching treatment was also 

tested with two temperature treatments, an endothermic process (ENP) and an exothermic process 

(EXP), for studying the evaporation of sand-mulched soil at different temperatures. ENP had sand 

surface temperatures of 30°C and soil internal temperature of 15°C, and EXP had sand surface 

temperatures of 15°C and soil internal temperature of 30°C (Table 2). 

 

			   (a) Bare soil geometry model               		     (b) Sand mulching geometry model

Fig. 1: Geometry model.

Table 1: Physical properties of the soil and sand in the experiment.

Soil 
texture

Particle size distribution（%） Initial volume 
water content 
(m3/m3)

Residual 
volume water 
content (m3/m3)

Hydraulic 
conductiv-
ity (m/d)

Reference

2.0~1.0 
mm

1.0~0.5 
mm

0.5~0.2 
mm

0.2~0.02 
mm

0.02~0.002 
mm

<0.002 
mm

Clay 
loam

0.07 0.38 2.54 36.99 39.16 20.86 0.3636 0.028 0.040 Song  
et al. 
(2012)Sand 10.17 16.58 73.25 — — — 0.1532 0.017 17.856

Table 2: The endothermic and exothermic treatment number in the simulation experiment.

Endothermic 
number

Sand  
mulching (cm)

Internal  
temperature (°C)

Surface  
temperature (°C)

Exothermic 
number

Sand  
mulching (cm)

Internal  
temperature (°C)

Surface  
temperature (°C)

ENP0 CK 15 30 EXP0 CK 30 15

ENP1 1.0 EXP1 1.0

ENP3 3.0 EXP3 3.0

ENP5 5.0 EXP5 5.0

ENP6 6.0 EXP6 6.0

ENP8 8.0 EXP8 8.0

ENP10 10.0 EXP10 10.0

ENP15 15.0 EXP15 15.0

ENP20 20.0 EXP20 20.0

Notes: ENPi and EXPi (i = 0,1,3,5,6,8,10,15,20) represent the endothermic process and exothermic process of CK and the soil of sand thickness with 
1,3,5,6,8,10,15,20 cm, respectively.
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of sand-mulched soil at different temperatures. ENP had sand 
surface temperatures of 30°C and soil internal temperature 
of 15°C, and EXP had sand surface temperatures of 15°C 
and soil internal temperature of 30°C (Table 2).

RESULTS AND DISCUSSION

Effect of Sand Thickness on Cumulative Evaporation

The effect of sand thickness on cumulative evaporation for 
ENP and EXP are shown in Fig. 2. Cumulative evaporation 
for ENP and EXP was significantly higher in CK than the 
mulched treatments, regardless of sand thickness. This result 
was consistent with the findings of Wesemael et al. (1996), 
who also noted that sand mulching reduced evaporation. 
The reduction of cumulative evaporation decreased as sand 
thickness increased for all thickness treatments. The reduc-
tion was lowest for a thickness of 1 cm, but this thickness 
still considerably reduced evaporation compared to bare soil, 
because soil evaporation depends mainly on the capillary 
water movement (Xing et al. 2019). Mulching with sand can 
prevent capillary action in soil, so water can only diffuse as 
vapour, which greatly weakens the evaporation of soil water 
(Yamanaka et al. 2004).

Cumulative evaporation for CK and mulching with 1, 3, 
and 5 cm of sand were higher for ENP than EXP by 5.89, 
2.1, 0.38 and 0.19 mm, respectively. Cumulative evaporation, 
however, was similar for ENP and EXP for sand thicknesses 
>5 cm. Cumulative evaporation decreased as sand thickness 
increased, consistent with the findings of Diaz et al. (2005), 
but did not vary significantly in our study for thicknesses 
>5 cm. 

Yamanaka et al. (2004) and Zhao et al. (2017b) also 
reported that resistance to evaporation did not increase with 
mulch thicknesses >5 cm. Wang et al. (2014), however, re-
ported that evaporation was low when mulch thickness was 
>7 cm. The difference between these two conclusions may 
be due to different soil textures, particle-size distributions 
and study methods.

Effect of Sand Thickness on SWC

The effect of sand thickness on SWC for ENP and EXP is 
shown in Fig. 3. Mean SWC for ENP and EXP was lower in 
the surface layer (0-6 cm) than in other layers, especially for 
CK. Mean SWC for CK after evaporation was 0.13 m3/m3 
lower in the 0-6 cm than the 18-36 cm layer, and mean SWC 
in the sand-mulched treatments was lower in the 0-6 cm than 
the other layers, but the difference was small. Mean SWC 
was similar among the layers for sand thicknesses >5 cm. 

Mean SWC at the end of evaporation was 35.5% lower 
than initial SWC for CK and 16.5, 4.9 and 2.2% lower for 
sand thicknesses of 1, 5 and 15 cm, respectively. Mean SWC 
for each layer was higher for the sand-mulched treatments 
than CK and was lower for ENP than EXP, especially for CK. 
These results indicate that sand mulching resists the transfer 
of water during evaporation, and the thicker the sand, the 
more the resistance, consistent with the conclusions by Li 
(2003) and Wang et al. (2004). 

Govers et al. (2010) and Modaihsh et al. (1985) also 
found that the degree of inhibition of evaporation and thus the 
reduction of water loss depended on the thickness of gravel 
mulch, with the most effective thicknesses of 5 cm (Govers 
et al. 2010) and 6 cm (Modaihsh et al. 1985), although 
Modaihsh et al. (1985) did not test a thickness of 5 cm. 

Effect of Sand Thickness on Soil Temperature

The effect of sand thickness on soil temperature for ENP and 
EXP is shown in Fig. 4. Soil temperature for the treatments 
gradually increased with evaporation for ENP. Temperature 
after 15 days was highest for mulches 1 and 3 cm thick and 
then remained unchanged, while the other groups did not 
reach the highest temperature after evaporation. Heating 
was slower and more uniform for the mulched treatments 
than for CK. With the increase of the thickness of sand, the 
temperature transmission was slowed down. The change of 
soil temperature was not obvious at thicknesses >15 cm. 
Mean temperature after evaporation for ENP was higher 
for mulches 1, 3 and 5 cm thick than for CK. EXP and ENP 
were symmetrical, indicating that sand mulching preserved 
heat, consistent with the conclusions by Xie et al. (2010) 
and Lü et al. (2013).
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Fig. 2: Cumulative evaporation in ENP and EXP with different treatments. 

Cumulative evaporation for CK and mulching with 1, 3, and 5 cm of sand were higher for ENP 

than EXP by 5.89, 2.1, 0.38 and 0.19 mm, respectively. Cumulative evaporation, however, was 

similar for ENP and EXP for sand thicknesses >5 cm. Cumulative evaporation decreased as sand 

thickness increased, consistent with the findings of Diaz et al. (2005), but did not vary significantly 

in our study for thicknesses >5 cm.  

Yamanaka et al. (2004) and Zhao et al. (2017b) also reported that resistance to evaporation did 

not increase with mulch thicknesses >5 cm. Wang et al. (2014), however, reported that evaporation 

was low when mulch thickness was >7 cm. The difference between these two conclusions may be 

due to different soil textures, particle-size distributions and study methods. 

Effect of Sand Thickness on SWC 

The effect of sand thickness on SWC for ENP and EXP is shown in Fig. 3. Mean SWC for ENP 

and EXP was lower in the surface layer (0-6 cm) than in other layers, especially for CK. Mean SWC 

for CK after evaporation was 0.13 m3/m3 lower in the 0-6 cm than the 18-36 cm layer, and mean 

SWC in the sand-mulched treatments was lower in the 0-6 cm than the other layers, but the difference 

was small. Mean SWC was similar among the layers for sand thicknesses >5 cm.  
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Fig. 2: Cumulative evaporation in ENP and EXP with  
different treatments.
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Fig. 3: Mean SWC of different layers in ENP and EXP.  

Mean SWC at the end of evaporation was 35.5% lower than initial SWC for CK and 16.5, 4.9 

and 2.2% lower for sand thicknesses of 1, 5 and 15 cm, respectively. Mean SWC for each layer was 

higher for the sand-mulched treatments than CK and was lower for ENP than EXP, especially for 

CK. These results indicate that sand mulching resists the transfer of water during evaporation, and 

the thicker the sand, the more the resistance, consistent with the conclusions by Li (2003) and Wang 

et al. (2004).  

Govers et al. (2010) and Modaihsh et al. (1985) also found that the degree of inhibition of 

evaporation and thus the reduction of water loss depended on the thickness of gravel mulch, with the 

most effective thicknesses of 5 cm (Govers et al. 2010) and 6 cm (Modaihsh et al. 1985), although 

Modaihsh et al. (1985) did not test a thickness of 5 cm.  

Effect of Sand Thickness on Soil Temperature 

 

Fig. 3: Mean SWC of different layers in ENP and EXP. 

Sand mulching could slow down the temperature transfer 
of ENP and EXP. Wang et al. (2014) also suggested that the 
thermal conduction effect of the mulch would lessen when 
the thickness of mulch is increased beyond a certain limit, 
which was 15 cm in our study.

CONCLUSION

Numerical simulation is to study the effects of sand thick-
ness on cumulative evaporation, SWC and soil temperature 

under endothermic and exothermic soil conditions during 
evaporation. 

	(i)	 Sand mulching inhibited the movement of soil water 
during evaporation; the thicker the sand, the stronger 
the resistance. Cumulative evaporation was lower, and 
mean SWC was higher, for the mulched treatments than 
CK. Cumulative evaporation did not vary significantly 
for sand thicknesses >5 cm, and mean SWC for each 
layer varied little for ENP and EXP.
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Fig. 4: The soil temperature of different times in ENP and EXP. 

The effect of sand thickness on soil temperature for ENP and EXP is shown in Fig. 4. Soil 

temperature for the treatments gradually increased with evaporation for ENP. Temperature after 15 

days was highest for mulches 1 and 3 cm thick and then remained unchanged, while the other groups 

Fig. 4: The soil temperature of different times in ENP and EXP.

	(ii)	 Sand mulching could slow down the temperature trans-
fer. The changes in soil temperature for both ENP and 
EXP were slower and more uniform with sand mulching 
than for CK. The change of soil temperature was not 
obvious at thicknesses >15 cm. A sand thickness of 5 
cm could thus be more effective for storing water and 
preserving heat.
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