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	        ABSTRACT
Paraben(s), or p-hydroxybenzoate derivatives, have been extensively used as preservatives 
in catalogs of products for decades. The chemical(s) of the group are well known for their 
water solubility, chemical stability, and low production costs. Additionally, these synthetic 
organics can be used as supplements in cosmetics, packaged foods, pharmaceuticals, and 
many other products requiring prolonged shelf lives. However, recent reports of paraben-
mediated endocrine disruptions, allergic responses, cancer, loss of fertility, and respiratory 
disorders are alarming and are the signs of growing health and environmental hazards. The 
unregulated disposal of packaged products supplemented with parabens and unintended 
uses may increase the environmental burden in the time to come. Recent studies exploring 
the health hazards associated with the use or consumption of compounds have provided 
insight into the underlying mechanisms of action. The paraben(s) are assimilated through 
two routes: oral administration and skin permeation. The ability to detect compounds in 
different environmental habitats with robust and specific techniques is important due to the 
unintended public health burdens of these compounds. This review presents the recent 
findings on the health burden of the compounds, fallacies in detection, and chronological 
advancements in the detection of paraben(s). This review assesses the impact of the 
increasing use of parabens on different cohorts, health hazards, and the need to develop 
more robust and accurate tools for detecting parabens in different environments.

INTRODUCTION

Growing industrialization, globalization, and the intervention of modern techniques 
and technologies have revolutionized the world by meeting the pressing needs 
of humans. However, this has also created an economic imbalance between the 
resources and their negative effects. Chemical additives, pesticides, preservatives, 
taste enhancers, and several other products that have affected human life are an 
intriguing part of daily life and hold a special significance in the existing food 
web. One economically obtruding product range is personal care products (PCPs), 
with diverse compositions, including creams, soaps, shampoos, face washes, 
toothpaste, deodorants, conditioners, and sun protectants. Often, the ingredients 
have been tested for their negative health impacts and bioaccumulation (of 
hazardous chemicals) (Berger et al. 2020). Most of these hazardous chemicals 
were associated with endocrine disruption, mutagenic, carcinogenic, and other 
health burdens towards cohorts (Aeling & Nuss 1974, Harvey 2003, Handa et al. 
2006, Tavares et al. 2009, Ali & Elgoly 2013, Jia et al. 2015, Vitku et al. 2018). 
Paraben(s), the alkyl (and often aryl) esters of p-hydroxybenzoic acid, have been 
exploited as low-cost preservatives due to their excellent preservation activities, 
biodegradability, thermal stabilities, neutral pHs, lack of color, nonvolatile nature, 
imperceptible taste and odor, broad antimicrobial spectra (particularly antifungal), 

Abbreviation: Nat. Env. & Poll. Technol.
Website: www.neptjournal.com

Received: 21-05-2024
Revised:    10-06-2024
Accepted: 19-06-2024

Key Words:
Parabens
Endocrine disruptor   
Environmental epidemiology
Health hazards 

Article ID
B4209

Citation of the Paper:
Upadhyay, P., Gauba, P. and Mathur, 
A., 2025. From preservative to environ-
mental and health hazards: A review on 
diverse applications, health impacts and 
detection methods of paraben(s). Nature 
Environment and Pollution Technology, 
24(2), p. B4209. https://doi.org/10.46488/
NEPT.2025.v24i02.B4209

Note: From year 2025, the journal uses Article ID instead 
of page numbers in citation of the published articles. 

Copyright: © 2025 by the authors
Licensee: Technoscience Publications
This article is an open access article distributed 
under the terms and conditions of the Creative 
Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/).

https://orcid.org/0009-0006-8788-038X
https://orcid.org/0000-0001-7697-7430
https://orcid.org/0000-0002-3858-8271
about:blank
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


2 Pooja Upadhyay et al.

Vol. 24, No. 2, 2025 • Nature Environment and Pollution Technology  

and relatively non-irritating and non-sensitizing properties 
(Michalkiewicz 2013, Calafat et al. 2010). Furthermore, 
the low frequencies of sensitization, adequate solubilities in 
aqueous solutions, and inertness of paraben add to its features 
(Francisco & Fonseca 2016). 

PARABEN: AN EMERGING ENVIRONMENTAL 
CONTAMINANT

Paraben(s) use has greatly expanded in daily life products, 
and with limited knowledge of its health impact for different 
cohorts, it is difficult to avoid (Yang et al. 2018, Lincho et 
al. 2021). The urgent need to regulate the use of Paraben(s) 
in different daily need products has already been mentioned 
as a concern by different government agencies throughout 
the world (Vale et al. 2022). Previous studies exploring the 

existence of Paraben in different environment matrices have 
reported half-life time of paraben(s) differing in demogra-
phy, ranging from around 28h in Spain to 36,000 h in China 
(Delgado et al. 2016, Song et al. 2017, Vale et al. 2022)

Concerning the severe health impact paraben(s) can pose, 
and their reported abundance in water bodies and effluents, 
different physical, biological, and chemical approaches 
have been noted for their removal or the removal of their 
transformational products (Ma et al. 2018) (Table 1).

Although the compound has been in use for more than a 
few decades, utilization has increased since the 1990s as a 
preservative in food items, drinks, medications, cosmetics, 
and personal care products (Haman et al. 2015). The alkyl 
derivatives of paraben are often used in catalogs of products 
like methylparaben (MP), ethylparaben (EP), propylparaben 

Table 1: A few techniques for the removal of Paraben(s) (as reported in prior studies). 

Name of Paraben Removal 
Percentage (%)

Source Removal Strategy Amount of 
Paraben present 
initially

References

Methylparaben, 
Propylparaben

100 Wastewater Adsorption by Magnetic waste tire-
activated carbon-chitosan composite

1293 ± 20, 2113 
± 15 ng.L-1

Mashile et al. 
2020

Paraben 99.7 Synthetic 
solution

Ceramic ultrafiltration membrane 
developed natively from CuO/TiO2 
nanoparticles 

500 ppb Bhattacharya et 
al. 2021

Methylparaben, 
Ethylparaben, Butylparaben

77.2, 88.0, 96.3 
(at 90 min)

Water 
Samples

Photodegradation by direct UV 
irradiation

 0.6 × 10−3 
mol.L-1

Álvarez et al. 
2020

Paraben 100 Pure 
Compound

Transition- and lanthanide-metal 
co-doped manganese oxide octahedral 
molecular sieve (Cu-Nd-OMS-2) in 
peroxymonosulfate (PMS)

30 mg.L-1 Wang et al. 
2022

Paraben 100 Pure 
Compound

Photo-Fenton process 5 mg.L-1 Alvarado et al. 
2022

Methylparaben, 
Ethylparaben, 
Propylparaben, 
Butylparaben

91.6, 94.0, 
97.1, 95.3

Wastewater aerobic granular sludge (AGS) system- 
biodegradation and adsorption on 
sludge

205, 245, 235, 
214 μg.L-1

Argenta et al. 
2021

Ethylparaben 92 Pure 
Compound

CoxNi1-xTiO3 nanorods as visible 
light responsive photocatalysts  
(Calcined at 600 °C)

250 mg.L-1 Moschogiannaki 
et al. 2020

Methylparaben 62.16 Wastewater Adsorption onto oxalic acid pretreated 
organo-modified bentonite and direct 
organo-modified bentonite adsorbent

- Abdulsalam et 
al. 2023

Benzylparaben 61.3 Pure 
Compound

S-scheme heterojunction 
photocatalyst, consisting of 
monoclinic bismuth vanadate (BiVO4) 
and graphitic carbon nitride (g-C3N4)

20 mg.L-1 Hu et al. 2022

Methylparaben 100, 34.2 Pure 
Compound

Biodegradation by microalgae 
Phaeodactylum tricornutum and 
Chlorella vulgaris

80 mg.L-1 Chang et al. 
2023

Benzylparaben 85.7 in 150 min Pure 
Compound

Modified g-C3N4 (GCN) and BiVO4 
(BVO) composite under Irradiation 
through visible light by carbon 
quantum dots (CQDs) 

- Tian et al. 2023

Benzylparaben dye 100 Wastewater Zeolitic Imidazolate-67 Modified by 
Fe3O4 Nanoparticles

10 mg.L-1 Pourmohammad 
et al. 2024

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/chlorella-vulgaris
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/quantum-dot


3UNVEILING THE HIDDEN HAZARDS OF PARABENS

Nature Environment and Pollution Technology • Vol. 24, No. 2, 2025

(PP), and butylparaben (BP) (Liao et al. 2013). The 
paraben(s) have been found in various natural resources 
as well, including carrots, mulberries, blueberries, olives, 
vanilla, strawberries, and mangoes, preserving by protecting 
against various microorganisms and pathogens (Sellappan 
et al. 2002, Kang et al. 2008, Kirchhof & de Gannes 2013, 
Li et al. 2016). Prior studies have also noted associations 
between antimicrobial activities and the alkyl chain lengths 
of parabens, coupled with a reduction in water solubility 
(Flasiński et al. 2016). 

In recent years, there have been mounting concerns about 
the health impacts of parabens as the rate of human exposure 
to these compounds has increased. The paraben(s) have been 
used in more than thousands of personal care products at 
concentrations up to 0.4%  to 0.8% (by weight) (Andersen 
et al. 2007). In a recent study by Li et al. 2020, several 
noninvasive biomarkers, such as human fingernails, were used 
to assess paraben contamination. The concentrations reached 
39.9 to 27400 ng.g-1 of methylparaben, propylparaben, or 
ethylparaben in fingernails, indicating their use in cosmetics 
(Li et al. 2020). Most of these studies have reported endocrine 
disruption effects and imbalanced reproductive function 
due to paraben in humans and animals (Koeppe et al. 2013, 
Boberg et al. 2010, Aker et al. 2016, Darbre & Harvey 
2008). The paraben(s) enter the human body mainly through 
absorption or ingestion and are generally detected in blood, 
breast milk, and urine (Popa et al. 2011, Leppert et al. 2020). 
Parabens are excreted through the urinary system as mixtures 
of various paraben metabolites (Ye et al. 2006, Upadhyay 
et al. 2020). Further analyses of the antimicrobial activity 
showed better efficacy against fungi than against bacteria, 
and the impact was greater against gram-positive bacteria 
than against their gram-negative bacteria counterparts (Wang 
et al. 2013). The efficiencies of parabens in combination with 
each other agents have also been explored (Soni et al. 2002). 
Parabens disturb the hypothalamic-pituitary-gonadal axis 
by imitating female hormone actions, thereby hindering or 
destabilizing normal hormonal functions and compromising 
male reproductive abilities. This endocrine disruptor interferes 
with overall hormone activity, synthesis, transport, and 
metabolism. The composites may induce changes in the typical  
operations of the nervous system, thyroid function, immune 
system, glucose levels, and lipid balance. Additionally, 
they can serve as epigenetic regulators, initiating effects 
that span generations (Bledzka et al. 2014, Lincho et al. 
2021). It has been reported that paraben(s) exposure can also  
cause mitochondrial dysfunction (Martins et al. 2020). In 
recent studies, their associations with breast cancer and 
changes in the ovarian and pituitary hormone levels have been 
discovered (Amin et al. 2019, Khanna et al. 2013, Charles et al. 
2013, Hajizadeh et al. 2020). These compounds are responsible 

for the dislocation of [3H]estradiol from the estrogen receptor 
in the MCF7 cell cytosol, increased expression of a stably 
transfected estrogen-responsive reporter gene in MCF7 cells, 
and increased growth of estrogen-dependent human breast 
cancer cells (MCF7 and ZR-75-1). This association connects 
the estrogenic response of breast tumor cells with the presence 
of parabens in human breast tissue, as estrogen plays a role in 
breast cancer development. (Lincho et al. 2021). The health 
impacts of these treatments are not limited to this, but a study 
by Meeker et al. 2011 showed a positive correlation between 
the concentration of urinary butyl paraben (BP) and male 
sperm DNA damage. Due to the widespread use of parabens, 
human exposure to these chemicals is inevitable. Therefore, 
a suitable, specific, cost-effective detection technique is 
necessary to regulate the increasing exposure to these adverse 
effects.

Numerous studies have shown the presence of parabens 
in diverse personal care products and food items at the 
nanomolar level (Table 2).

DETECTION METHODS FOR ALKYL DERIVATIVES 
OF PARABEN

Qualitative and Quantitative Estimates of Paraben 
Concentrations

A permanent tool for primary detection and monitoring of this 
preservative is vital (Alhadrami et al. 2017). Various analytical 

Table 2: Amounts of Paraben present in various products (as reported in 
prior studies).

S. No Sample Product Concentration of 
Methylparaben 

Reference

1. Iced tea 97 ng.g-1 (Liao et al. 2013)

2. Pudding 51 ng.g-1 

3. Muffins 83 ng.g-1

4. Turkey Roast 44 ng.g-1

5. Hair conditioner 21.6 ± 0.79 nM (Baytak et al. 
2017)6. Baby wipes 24.0 ± 0.67 nM

7. Shaving lotion 31.8 ± 0.95 nM

8. Hair gel 34.7 ± 0.88 nM

9. Syrup 13.1 ± 0.39 nM

10. Eye drop 15.8 ± 0.40 nM

11. Mouthwash 21.0 ± 0.67 nM

12. Deodorant 2.89 x10-3 mol/L (Mendonca et al. 
2017) 

13. Cyprodien Syrup 1.57 mM (Dhahir & 
Hussein 2013)14. Ketofen Syrup 4.21 mM

15. Conditioner 20 nM (Gholivand et al. 
2014)
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techniques with different principles and methodologies have 
been used for the detection of these pollutants in ecosystems. 
However, the selectivities and sensitivities differed. 
Furthermore, with the increasing need for early detection 
of carcinogens, mutagenic agents, and various other toxic 
materials, there is also a need for bioassays that monitor and 
report bio-availabilities and their impacts on humans. All 
optimized and tested techniques are thought to be highly 
accurate with a low detection limit, although they are laborious 
and expensive (Gurban et al. 2011).

	 a)	 Spectrophotometric analysis: Spectrophotometric 
methods determine the presence of paraben in pure and 
combined forms, as reported by Dhahir and Hussein 
(2013). The process is based on the diazotization of the 
compound with sodium nitrite, which is subsequently 
coupled with ortho-aminobenzoic acid to produce an 
orange-colored product. The method requires an acidic 
medium and a low temperature to reach a concentration 
range of 1–9 μg.mL-1 for detection at 442 nm (in 
accordance with Beer’s law). The detection limit of 
this procedure was 0.0065 μg.mL-1, and the limit 
of quantitation was 0.02 μg/mL. Different variables 
were studied to optimize the reaction, including the 
concentrations of the reagents, reaction time, mole 
ratio, and color stability period. The analytical results 
were statistically validated with recovery studies. These 
methods successfully determined the concentrations of 
methylparaben in some oral solutions (Dhahir & Hussein 
2013). Even though the method is simple, repetition of 
the method with promising results exhibited limitations 
(Wasito & Phechkrajung 2015).

	b)	 Chromatographic analysis: Many analytical techniques 
have been designed for quantitative determinations of 
parabens. These include microbiological assays, which 
are less accurate than HPLC and insensitive to low 
concentrations of parabens, while colorimetric and 
spectrophotometric methods are tedious and nonspecific 
(Abuirjeie et al. 1990). Gas chromatography, although 
specific and sensitive, is not commonly used with 
pharmaceuticals because prior derivatization is needed. 
Thin-layer chromatography is suitable for qualitative 
determinations of parabens in preservative mixtures, and 
more recently, thin-layer HPLC densitometry has been 
employed for quantitative determinations (Tománková 

& Pinkasová 1990). Esters of p-hydroxybenzoic acids 
undergo hydrolysis to the parent acid and subsequent 
degradation to phenol via decarboxylation. The process 
is faster at pH>5 (Lachman 1968, Dhaliwal & Theobald 
1995). Chromatography is undoubtedly an accurate 
method, but it has various limitations related to the 
costly instruments used, locations, skilled labor, and 
method of operation (Wasito & Phechkrajung 2015).

	 c)	 Sensor-based analysis: The prevailing need for field 
monitoring has spurred the advancement of sensors into 
analytical tools that offer swift, cost-efficient, precise, 
and highly sensitive analysis. Other analytical methods 
cannot be applied at the location or site of analysis. 
Therefore, alternative robust analytical methods with 
high accuracies, selectivities, and sensitivities for the 
detection of many such analytes need to be developed 
and explored. Additionally, sensors often provide 
versatile solutions for on-site monitoring. A sensor is 
an instrument that responds to changes in environmental 
variables such as pressure, heat, movement, humidity, 
etc. These changes alter the chemical, physical, or 
electromagnetic properties of the sensor, which are 
converted into more usable and comprehensible 
forms (Fig. 1). The signal produced by the equipment 
corresponds to the quantity to be determined. Sensors 
measure a particular characteristic of any object, 
compound, or disease.

Sensors have been used in many fields, such as the 
food industry and the marine and medical sectors, and they 
exhibit better stabilities and sensitivities than traditional 
methods (Mehrotra 2016). The types of sensors used 
depend on the reaction, analyte, and element involved and 
include physical sensors, chemical sensors, and biosensors 
(Naresh & Lee 2021). Food contaminants, environmental 
pollutants, and medical applications require the same limits 
of detection, sensitivities, and stabilities. However, various 
parameters, such as the sample volume, matrix density, and 
continuous on-site monitoring, complicate the development 
of these sensors. The sensor must be stable in a normal 
storage environment. In the case of in vivo monitoring, 
the sensor should be sterile, biocompatible, and non-toxic. 
Additionally, the sensor should be small, portable, easy to 
use, and inexpensive, and the various parameters on which 
the performance of a sensor depends are listed in Table 3.
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Fig. 1: Principal operation of electrochemical (bio)sensors (Alhadrami et al. 2017).
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have been used for the detection of various parabens  
(Tables 4-7).

The diverse development of paraben sensors with different 
electrodes, receptor systems, and immobilization methods 
makes every sensor unique and shows the growing scientific 
interest in harnessing sensor technology for the detection 
of paraben(s). The limits of detection are also affected by 
changes in the transducer and receptor used. It is evident 
that the unique reactions between receptor(s) and parabens, 
along with signal transduction with electrochemical methods, 
play pivotal roles in the development of paraben sensors with 
dynamic accuracies and limits of detection. These studies 
may be extended further to explore the potential roles of 
biomolecules, including enzymes, as alternative receptors. 
However, exploratory studies on potential enzyme sources are 
limited by major bottlenecks (such as enzyme stability and cost 
of production), which may be specific to paraben detection.

The typical sensor structure can be segregated into 
three major parts: recognition components, interfaces 
(immobilization techniques), and transducing elements 
(Fig. 2).

Different Sensor Design/Immobilization Techniques 
for the Detection of Paraben

Parabens are found in various environmental niches and 
exert both acute and chronic effects on living beings. 
Recently, numerous sensors and biosensors have been 
deployed for the determination of paraben concentrations 
based on the techniques and methods used. Significant 
achievements in sensing have been attained by the integration 
of biomolecules into devices. Various studies have shown 
the use of different techniques for sensing parabens, 
ranging from the use of nanomaterials to hemoglobin, 
glassy carbon electrodes, and screen-printed electrodes 

Table 3: Parameters that affect the analytical capabilities of the sensors (Slaughter 2018).

Parameters of Biosensor Description

Sensitivity The slope of the calibration curve (ratio of the change in the output signal for a given change in the analyte 
concentration)

Selectivity The ratio of the change in the output signal for a given change in the concentrations of analyte and interfering 
species

Specificity The biocatalyst used for detection is highly specific and displays adequate stability over many assays (>>100)

Signal-to-noise ratio Measure of the statistical instability in a blank signal (ratio of the suitable analytical signal to the background noise)

Limit of detection (LOD) Certain concentrations obtained from the smallest detectable output signal

Reproducibility Precision of the output signal when engaged over a long time interval/performed in different locations

Repeatability Precision in the output signal over a brief time

Response time The time required for the output signal to reach 90% steady-state value.
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Table 5: Advances in propylparaben sensors.

Receptor used Recognition method Transducer Reaction Mechanism Range Limit of 
Detection

References

Molecularly 
imprinted 
polymers (MIPs)

Tripropylene 
glycol diacrylate 
cross-linking 
the functional 
monomer (i.e., 
Methacrylic acid) 
on Molecularly 
Imprinted Polymer 
film.

GCE Analyte Specific 
recognition sites 
by formation of a 
vacant shape, same 
as the analyte,
Cross-linking 
(functional groups 
rebind target 
using the same 
noncovalent bonds)

For the dual 
templates sensor,  
Methylparaben 
and Propylparaben 
were imprinted on 
the surface of the 
sensor.

5.0×10−6 
–1.0×10−4 
M

2.0×10−7 

M
(Wang et al. 
2010)

Poly(methacrylic 
acid) (PMAA)

Poly(methacrylic 
acid) and 
functionalized  
carbon nanotubes  
nanocomposite

GCE synergetic effect of 
f-CNTs and PMAA

synergetic effect 
of f-CNTs and 
PMAA

5×10-6 to 
1×10-4 M

2×10-7 M (Xin et al. 
2023)

Table 6: Advances in sensors for ethylparaben.

Receptor used Immobilization 
technique used

Transducer Mechanism Modification of 
Electrode

Range Limit of 
Detection

Advantages Reference

poly-(2-
hydroxyethyl
methacrylate-N-
meth acryloyl-L-
phenylalanine) 
(PHEMA-MAPA) 
nanofilm

Polymerization 
of paraben 
imprinted 
polymeric film 

SPE Unavailable N-methacryloyl-
(L)-cysteine (MAC) 
Coating

1 to 30 
mΜ

μM Highly 
selective

(Yücebaş et 
al. 2020)

Fullerene 
nanorods (f-NR)

C60NRs were 
immobilized
at the  surface of 
GCE–Ph–NH2 
by N–H addition 
over a p-bond of 
fullerene

GCE Electrooxidation 
of ethyl 
paraben at the 
ERC60NRs–
NH–Ph–GCE 
sensor

ERC60NRs–NH–
Ph–GCE sensor

0.01–
0.52 mM

3.8 nM High 
electrocatalytic 
detection 
activity 

(Rather et 
al. 2016)

Poly(methacrylic 
acid)

Crosslinking GCE synergetic 
effect of 
f-CNTs and 
PMAA

Poly(methacrylic 
acid) and 
functionalized 
carbon nanotubes 
nanocomposite

2×10-5 to 
10×10-5 

M

4×10-7 M Sensitive 
detection

(Xin et al. 
2023)

Table 7: Advances in sensors for butylparaben.

Receptor 
used

Immobilization 
technique used

Transducer Reaction Modification of 
Electrode

Range Limit of 
Detection

Advantages References

ds DNA electrochemically 
entrapped on 
CPE

Silver 
nanopa-
rticles

Not mentioned Not mentioned 0.362 to 
100 µg.L-1

0.109 
µg.L-1

Electrochemically 
large active 
surface area, good 
selectivity,  excellent 
reproducibility and 
sensitivity.

(Karastogianni 
et al. 2017)

Poly 
(methacrylic 
acid)

Crosslinking GCE synergetic 
effect of 
f-CNTs and 
PMAA

Poly(methacrylic 
acid) and 
functionalized  
carbon nanotubes
nanocomposite

5×10-6 to 
8×10-5 M

2×10-7 M Sensitive detection (Xin et al. 2023)

In2O3 nano 
bricks

Not mentioned GCE OH 
Benzoquinone
(Single electron 
oxidation)

Indium Oxide 
(In2O3) Nano 
brick on GCE

Not 
mentioned

0.08 μM Increased 
conductivity and 
surface area

(Qurashi et al. 
2015)

https://www.sciencedirect.com/topics/chemistry/carbon-nanotube
https://www.sciencedirect.com/topics/chemistry/carbon-nanotube
https://www.sciencedirect.com/topics/chemistry/carbon-nanotube
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CONCLUSIONS

The presence of paraben alkyl derivatives to meet the daily 
needs of humans is of paramount importance, and the 
possibility that these compounds may be present in ecological 
niches cannot be ruled out. The irreplaceable property of 
paraben is that it is a preferred choice for society. Previous 
studies have highlighted the advantages of sensor technology 
as a suitable, highly sensitive approach to supersede the 
conventional technique. Growing health-related concerns 
associated with different alkyl derivatives of parabens may 
impose a negative burden on the health of society at large. 
Early detection via the design of POC (point of care) devices 
would aid in the detection of parabens through more accurate 
analyses and with lower limits of quantification. These 
techniques could be extended by exploring a more diverse 
range of analytes to improve their accuracy and make them 
economically viable and sustainable solutions for society 
at large.
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