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ABSTRACT
Dumpsites have elevated the contamination and pollution of soils by heavy metals, hence the need 
to study the potential ecological and health risks impact on the soil and humans. Ten soil samples 
collected from the soil around the dumpsites at Awotan Ibadan were analysed using the inductively 
coupled plasma-mass spectrometry (ICP-MS) analytical technique. The data were interpreted using 
contamination indices such as contamination and enrichment factors, geo-accumulation index and 
pollution index to determine the ecological and health risks posed by the heavy metals. The results 
of the spatial distribution of heavy metals across the sampling sites showed the following ranges: 
Cu (43.71-469.64) with a mean of 113.74 mg/kg, Zn (53.50-615.60) with a mean of 130.52 mg/kg, 
Rb (83.14-225.35) with a mean value of 145.37 g/kg and Pb (28.38-209.15) with a mean of 68.01  
mg/kg in descending order: Zn > Cu >Rb> Pb >V. The enrichment factors indicated very high enrichment 
of Cu (25.07), significant enrichment of Pb (18.78) and moderate enrichment of Zn (15.14) and minor 
enrichments of Co, Ni, Rb and Cs. The results of the contamination factor showed that Sc, Co, Zn, Rb, 
Cs have moderate contamination while Cu and Pb indicated high contamination. The results of geo-
accumulation (Igeo) indicated that Cu and Pb are positive in contrast to the other metals suggesting 
some anthropogenic influences of the duo heavy metals in the study area. Cu and Zn indicated low 
ecological risks however, Cu and Pb showed considerable risks (Er 80-160) and moderate risk (Er 
40- 80) respectively in sample site number one. The results of the modified ecological risk index (MRI) 
revealed that about 62.53% of this sample site number one showed a considerable ecological risk of 
the heavy metal Cu and 47.61% of the moderate ecological risk of Pb. The health-risk study indicated 
that hazard quotient HQing, HQderm and hazard index (HI) values were below the acceptable limit of 
1×10–6 and 1×10–4 and therefore showed no obvious non-carcinogenic risk and negligible cancer risk 
from the soils and environment.   

INTRODUCTION

Nigeria like any other developing country of the world 
increases in population on daily basis, and this increases 
infrastructure and waste discharges. Cities such as Ibadan the 
second largest after Lagos in South-West Nigeria produces 
large quantities of solid wastes from domestic, industrial and 
institutional wastes. These wastes exist in semi-solid or solid 
form except for industrial hazardous wastes (USEPA 2012). 
In most cities in Nigeria, the wastes are not sorted out unlike 
in developed countries like the UK where there are separate 
containers for semi and solid wastes collections and these 
are disposed of according to the environmental protection 
guidelines of the country in question. In Nigeria, the wastes 
are dumped in open places called dumpsites or landfills. 
The wastes decompose or broken down by microorganisms 
producing leachates which filtrate into the soils and reposited. 
The plants absorb the leachates through their roots and some 
of the leached constituents enter the water regime to make it 

unusable for a drink. Some major problems faced by the cities 
concerning wastes are improper disposal methods which 
have serious negative effects on human beings, animals 
and the environment. The environment represented by the 
ecosystem via the soil becomes the repository of the heavy 
metals. Heavy metals are one of the important pollutants in 
the environment through natural or anthropogenic activities 
of man. Living organisms require a trace amount of heavy 
metals but excess of it could be deleterious to them. 

Exposures of heavy metals can lead to accumulation in 
human body parts such as the brain, liver, bones, and kidneys 
resulting in serious health hazards (Kamunda et al. 2016). 
Health risk assessment of heavy metals is usually performed 
to estimate the total exposure to heavy metals among the 
residents in a particular area. Risk assessment of contami-
nants in humans is based on the fact that the leachates from 
the heavy metals can contain chemicals that may either be 
carcinogenic or non-carcinogenic (Dorne et al. 2011). In 
the same way, the accumulation of these metals in the body 
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system could result in serious life-threatening illnesses and 
in some cases death.

However, the accumulation of these metals in the body 
of mammals over time can cause serious illness (Aderinola 
et al. 2009). Another way heavy metals could be deposited in 
the body is through agricultural activities. Crop cultivation, 
happening around dump site could be contaminated since 
some of the heavy metals gets leached deep into the soil and 
crops get their nutrient from the soil. When such food is con-
sumed by man, he unintentionally ingests these metals along 
with the food, poisoning his system and if not checked, over 
time could result in life-threatening issues. Environmental 
contamination by heavy metals has become a worldwide 
problem in recent years since heavy metals unlike some other 
pollutants are not biodegradable (Bazrafshan et al. 2015). 
Soil pollution by heavy metals has serious health implication 
especially with regards to crops/vegetables grown on such 
soils (Steffan et al. 2017, and Nwaogu et al. 2014). Most of 
these heavy metals are necessary for both plants and animal 
growths at uncontaminated levels.

Long-term effect of heavy metal exposure to human 
and higher animals includes mental lapse, kidney failure, 
and central nervous system disorder (Nwaogu et al. 2014). 
Exposure to lead (Pb) may cause anaemia, nephropathy, 
gastrointestinal colic, and central nervous system symptoms 
(Hu et al. 2017). As a result of increasing anthropogenic 
activities, heavy metals pollution of soil, water, and 
atmosphere represents growing environmental problems 
affecting food quality and human health. Heavy metals may 

enter the food chain as a result of their uptake by edible 
plants (Shaapera et al. 2013). Ibadan, like any other city in 
South-Western Nigeria, faces problems of environmental 
sanitation such as improper disposal of refuse near residential 
areas, along the roads and streets, poor refuse collection and 
handling. There are four major dumpsites in Ibadan namely; 
Lapite, Awotan, Ajakanga and Aba Eku and unfortunately 
farmers use them as fertilizers. This, however, leads to the 
accumulation of heavy metals in plants grown around the 
dumpsite soils or on soils fertilized with dumpsite manure 
thus posing potential health risks. 

Dumpsite wastes are commonly burnt and ashes produced 
are richer in metal contents. These ashes are either dissolved 
in rainwater and leached into the soil contaminating the 
underground water, or washed away by runoff into streams 
and rivers, thereby contaminating the environment. It is based 
on these facts that this study is aimed at determining the total 
lethal concentrations or otherwise of Scandium (Sc), Lead 
(Pb), Copper (Cu), Nickel (Ni), Vanadium (V), Rubidium 
(Rb), Molybdenum ( Mo), Cobalt (Co), Cesium ( Sc) and 
Zinc ( Zn) in dumpsite soils in Ibadan area, Nigeria. The 
topography of the sites is gently undulating with isolated 
inselbergs at the Awotan area. Migmatite gneisis and quartz 
schist ridges dominate the terrain. The annual average rainfall 
in the area is 1300 mm (Ileoje 1987). The vegetation is 
the tropical rain forest with thick undergrowth. Dendritic 
drainage pattern characterizes the area with unmodified 
stream channels flowing in the southward and east-west 
directions. The Awotan dumpsite is drained by River Alapata 
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Fig. 1: Geological map of Ibadan showing the study area (Oladunjoye et al. 2013).
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and its tributaries. The area is usually well-drained during 
the rainy season but the tributaries dry up during the dry 
season. The main rock types underlying the dumpsite belong 
to the Migmatite-gneiss-quartzite complex (Rahaman 1976, 
1988) consisting of quartz, schist and migmatite gneiss, while 
pegmatite and quartz occur as veins in the major rocks (Fig. 
1). The quartz schist and the biotite gneiss trend North-South 
direction and are variously jointed. The quartz schist covers 
more than 60% of the area while migmatite gneiss covers the 
remaining 40% area. The migmatite gneiss occurs mainly 
as low-lying outcrops while the quartz schist forms ridges.

MATERIALS AND METHODS 

Study Area 

The Awotan dumpsite is located between Latitudes 
7°27.59’N and 7°27.73’N and Longitudes 3°50.93’ E and 
3°51.17’ E and found along Awotan-Akufo Road, Apete 
area of Ibadan Metropolis, Southwestern Nigeria (Fig. 
2). The Awotan area has a unique environmental setting 
characterized by a wide range of land-use activities such as 
small scale arable farming, animal husbandry, residential 
and commercial settlements. Leachate emanating from the 
wastes is washed down into the surrounding areas thereby 
impacting the soils within the area.  

Sample Collection

Ten (10) soil samples were collected for this study. Sampling 
was done at regular intervals with the aid of an auger at a 
depth of 0-30 cm. The soil samples were stored in plastic 
bags and labelled according to the location at which they 

were collected. The sampling points are presented in Fig. 3. 
Each sample was immediately placed in a plastic bag and 
tightly sealed to avoid contamination from the environment 
and transportation.

Sample Analysis

The heavy metals were analysed by the inductively coupled 
plasma mass spectrometry (ICP-MS) and X-Ray fluores-
cence spectrometry (XRF) methods. Ten soil samples were 
analysed by Laser ablation microprobe Inductivity Coupled 
Plasma-Mass Spectrometry (La ICP-MS) method (Jackson 
et al. 1992) at the Central laboratory of the Stellenbosch 
University, South Africa. The ICP-MS instrument is Per-
kin-Elma Sciex ELAN 5100 coupled with a UV (266 µm) 
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laser. The laser was operated with 1 mJ/Pulse energy and 
4 Hz frequency for carbonates and silicate glass. The spot 
diameter for these analyses is 30-50 m. NIST 610 glass was 
used as a calibration standard for all the samples with 44Ca 
as an internal standard. The analytical precision is 5% at the 
ppm level. Details of ICP-MS and laser operating conditions 
have been published by Norman et al. (1996) and Norman 
(1998). The results of the compositions of the heavy metals 
are presented in Table 1. 

RESULTS AND DISCUSSION 

The variations in the concentrations of each heavy metal 
across the sampling points showed the following ranges: 
Cu (43.71-469.64) with a mean of 113.74 mg/kg, Zn (53.50-
615.60) with a mean of 130.52 mg/kg, Rb (83.14-225.35) 
with a mean value of 145.37 mg/kg and Pb (28.38-209.15) 
with a mean of 68.01 mg/kg. The concentration of some 
heavy metals in the soil of the dumpsite is presented in 
descending order as Zn > Cu >Rb> Pb >V. 

Methods of Assessment of Contamination in Dumpsite 
Soil

Contamination indices used to assess the heavy metal con-
tamination levels in the soil around the dumpsite include the 
enrichment factor (Ef), contamination factor (Cf), geo-accu-
mulation index (Igeo), pollution load index (PLI), degree of 
contamination (Cd), and ecological risk index. (Er). 

Enrichment Factor

The computation of enrichment factor (EF) has been adopted 
to evaluate the impact of anthropogenic and naturally occur-
ring sources of heavy metals as well as the metal abundance 
in soil. Yongming  (2006) stated that EF has been used to 
determine the degree of modification in the composition of 
heavy metals in the area of atmospheric aerosols, sediments, 
soil and solid wastes. The EF of metals has been defined using 
Scandium (Sc) as a natural element of reference.
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ground) is the concentration of the element in the crust, and 
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the normalization in the crust (Ato et al. 2010, Cevik 2009). 
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Fig. 4 presents the histogram of the average enrichment 
of Cu, Pb and Zn along with the other heavy metals in the 
soil. The very high and significant enrichment of Cu, Pb and 
Zn is an initial indication of an anthropogenic influence of 
the metals in the soil.

Contamination Factor (CF)

Contamination factor is a quantification of the degree of 
contamination relative to either the average crustal compo-
sition of a respective metal or to the measured background 

values from a geologically similar and uncontaminated area 
(Tijani et al. 2004). It is expressed in equation 2 given by 
Hakanson (1980) as:

 CF = Cx/Bm …(2)

Where, Cx and Bm are the concentrations of metal in 
a soil sample and background environments. The back-
ground values of heavy metals were taken from Taylor and 
McLennan (1995). The CF is classified into four groups 
(CF < 1; indicates low metal contamination), (1 ≤ CF < 3; 
indicates moderate contamination), (3 ≤ CF ≤ 6; indicates 
considerable contamination), and (CF > 6 indicates very high 
contamination) (Hakanson 1980). 

The results of the contamination factor (CF) for the heavy 
metals are presented in Table 3. The results show that Cu 
ranges from 0.53 to 23.02 mg/kg with a mean value of 3.90 
mg/kg, Zn varies from 0.38 to 12.37 mg/kg with a mean of 
1.98 while Pb varies between 1.12 and 15.35 mg/kg with a 
mean value of 363.72 mg/kg with a mean of 3.22.  Going 
by the groupings and using the mean values V, Ni and Mo 
have values that are less than one showing low contamination 
(CF< 1). Sc, Co, Zn, Rb, Cs have values that are more than 
1 and less than three (1<CF<3) thus indicating moderate 
contamination. Cu and Pb have values that are more than 3 

Table 2: Average, min and max values of Enrichment Factor. 

V       Co      Ni        Cu      Zn       Rb        Mo      Cs        Pb 

Average 0.65 0.85 0.79 3.63 2.12 0.91 0.76 0.92 3.24

Min 0.57     0.33 0.38 0.49      0.20 0.11 0.50 0.27 0.91

Max 0.82     1.16 1.63 25.07    15.14 1.43 2.05 1.33 18.78

SD  0.07 0.26 0.32 7.59 4.58 0.40 0.47 0.27 5.51
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Table 3: Contamination factors, (CF), PLI and mCd.

Sample no Sc V Co Ni Cu Zn Rb Mo Cs Pb PLI mCd

1 0.82 0.41 0.93 1.33 23.02 12.37 0.94 0.17 0.69 15.35 1.69 5.60

2 0.91 0.37 0.86 0.52 0.53 0.72 0.82 0.05 0.99 1.12 0.55 0.69

3 0.81 0.42 0.83 0.64 2.12 0.99 1.16 0.08 0.77 2.81 0.77 1.06

4 1.21 0.55 1.40 0.91 1.09 0.64 1.11 0.06 1.03 2.24 0.79 1.02

5 1.64 0.97 1.63 1.37 1.59 0.89 1.04 0.12 1.48 1.93 1.06 1.27

6 1.69 0.87 1.19 1.30 1.47 1.05 1.62 0.09 1.65 1.55 1.03 1.25

7 1.12 0.58 0.65 0.81 1.77 1.07 1.60 0.06 1.46 1.32 0.81 1.04

8 1.59 0.71 1.14 1.05 1.24 0.80 1.00 0.09 1.52 1.85 0.90 1.10

9 1.70 0.75 0.56 0.64 0.94 0.38 0.18 0.11 0.45 2.08 0.56 0.78

10 1.36 0.62 1.23 1.06 5.23 0.90 1.22 0.09 1.34 1.99 1.04 1.50

Mean 1.28 0.62 1.04 0.96 3.90 1.98 1.07 0.09 1.14 3.22 0.92 1.53

Max 1.70 0.97 1.63 1.37 23.02 12.37 1.62 0.17 1.65 15.35 1.69 5.98

Min 0.81 0.37 0.56 0.52 0.53 0.38 0.18 0.05 0.45 1.12 0.55 0.50



838 R.A. Obasi and H.Y. Maduekwe

Vol. 20, No. 2, 2021 • Nature Environment and Pollution Technology  

and less than 6 indicating high contamination. Fig. 5 pre-
sents a picture of the contaminating heavy metals. It should 
be noted that sampling site one (1) has high contaminations 
of Cu (23.02), Zn (12.37) and Pb (15.35) respectively. The 
modified degree of contamination (mCd) expressed in Fig. 
6 agrees with the contamination levels at site one (1) with a 
value of 5.60 (Table 3).

Geo-accumulation Index (Igeo)

The geo-accumulation index of  (Igeo) is widely used to 
measure the level of pollution caused by heavy metals in the 
soil. The Igeo values were calculated using equation 3 first 
proposed by Muller (1969) as:
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Where, Cx represents the measured concentration of the 
elements studied and Bn is the geochemical background 
value of the element or average shale (Taylor & McLennan 
1985). The constant 1.5 takes care of changes in the con-
centration of the heavy metals in the environment (Wei & 
Yang 2010, Loska 2004) grouped Igeo as Igeo ≤ 0 = no 
pollution; Igeo (0-1), moderate pollution; Igeo (1-2), strong 
pollution; Igeo (2-3), high pollution; Igeo (3-4), very high 

pollution; Igeo (4-5) severe pollution and Igeo (> 5) extreme 
pollution. The results of Igeo indicated that Cu and Pb are 
positive (Fig.7) in contrast to the other metals suggesting 
some anthropogenic influences of these heavy metals in the 
study area. The Cu (3.77), Zn (3.04), and Pb (3.35) at site one 
(1) have values that are more than 3, Igeo (3-4), indicating 
very high pollution in the soil and tandem with (Fig.6) mCd. 
Similarly, Cu alone at site ten (10) has a value of 1.63, Igeo 
(1-2), thereby showing strong pollution.

Ecological Risk Assessment (RI).

The ecological risk index (RI) evaluates the potential ecolog-
ical risk of heavy metals in the sediment /soil as suggested 
by Hakanson (1980) in Equation  4.

 RI = CFn  TR …(4)

Where, CFn and TR are CF and the toxicological response 
factor of individual heavy namely Cu (5), Zn (1) Ni (5) and 
Pb (5) (Hakanson 1980, Kumar et al. 2018). In a way to 
know the ecological risks of anthropogenic and lithogenic 
influences, the CFn in the RI is replaced by computation with 
EF. The ecological RI worked out from EF is the modified 
potential ecological index MPI (Kumar et al. (2018) written 
as in Equation 5.

 MPI = EFn  Tr …(5)

Where, EFn and Tr are the EF and the toxicological re-
sponse factor of individual heavy metals respectively. The 
classes used for risk assessment are as follows: 

 Er < 40 (low risk); 40- 80 (moderate risk); 80 -160 
(considerable risk); 160-320 (high risk) and  > 320 (very 
high risk). In the case of risk index, (equation 5) RI < 95 
indicates a low potential ecological risk; 95-190 moderate 
risk; 190-380 considerable risk while RI > 380 very high risk. 

The ecological risks of Ni, Cu, Zn and Pb were assessed 
using the potential ecological risk index RI (Fig. 8) and the 
modified potential ecological risk index MRI (Fig. 9). 
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The results of the contamination factor (CF) for the heavy metals are presented in Table 3. The results show 
that Cu ranges from 0.53 to 23.02 mg/kg with a mean value of 3.90 mg/kg, Zn varies from 0.38 to 12.37 
mg/kg with a mean of 1.98 while Pb varies between 1.12 and 15.35 mg/kg with a mean value of 363.72 
mg/kg with a mean of 3.22.  Going by the groupings and using the mean values V, Ni and Mo have values 
that are less than one showing low contamination (CF< 1). Sc, Co, Zn, Rb, Cs have values that are more 
than 1 and less than three (1<CF<3) thus indicating moderate contamination.  Cu and Pb have values that 
are more than 3 and less than 6 indicating high contamination. Fig. 5 presents a picture of the contaminating 
heavy metals. It should be noted that sampling site one (1) has high contaminations of Cu (23.02), Zn 
(12.37) and Pb (15.35) respectively. The modified degree of contamination (mCd) expressed in Fig. 6 
agrees with the contamination levels at site one (1) with a value of 5.60 (Table 3). 
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The results in Table 4 revealed that Er values for Cu 
and Zn are less than 40 (Er <40) respectively indicating 
low ecological risk of these heavy metals. Cu and Pb have 
varying values. Sampling sites from 2 to 10 have values that 
are less than 40 showing low ecological risks by these heavy 
metals, however, site one (1) has the value of 115.10 for Cu 
and 76.74 for Pb indicating considerable risks (Er 80-160) 
and moderate risk (Er 40- 80) respectively. The results of 
MRI revealed that about 62.53% of sample site one showed 
a considerable ecological risk of the heavy metal Cu and 
47.61% of the moderate ecological risk of Pb respectively

Assessment of Ecological Risks

The variation in the ecological risk index of the heavy 
metals across the sampling sites is presented in Fig. 9. The 
relatively considerable ecological risk index recorded for Cu 
and moderate ecological risk of Pb respectively at sampling 
sites one (1) suggests an anthropogenic source of Cu and Pb 
in this part of the study area. 

HEALTH RISK ASSESSMENT

Health risk assessment in this study is a way to determine the 
probable level of the harmful health impacts of heavy metals 
on the soil. The assessment of each metal contaminant is 
based on the level of risk of using the soil and it is classified 
as carcinogenic or non-carcinogenic health hazards (Wong-
sasuluk et al. 2014). Hazard quotients (HQ), Hazard index 
(HI), are used in the calculation of the potential carcinogenic 
and non-carcinogenic health risk caused through ingestion 
and dermal absorption of heavy metals in the soil by adults. 
HQ (for each heavy metal) is the ratio of an average daily 
intake (ADI, mg/kg/day) of metal ingested to the reference 
oral dose (RfD) through oral ingestion and dermal absorption 
for the adult residents around the environment. ADI (mg/
kg-day) for the different pathways were calculated using the 
exposure equations (6) and (7) (USEPA 2012).

Ingestion of Heavy Metals through Soil 
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ADIing = 𝑐𝑐 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 × 𝐶𝐶𝐶𝐶 × 𝐸𝐸𝐸𝐸

𝐵𝐵𝐵𝐵 × 𝐴𝐴𝐴𝐴                 …(6)  

Where, ADIingestion is the average daily intake of heavy metals ingested from the soil in mg/kg-day, C = 
concentration of heavy metal in mg/kg for soil. IR in mg/day is the ingestion rate, EF in days/year is the 
exposure frequency, ED is the exposure duration in years, BW is the bodyweight of the exposed individual 
in kg, AT is the time over which the dose is averaged in days. CF is the conversion factor in kg/mg.  

Inhalation of Heavy Metals Via Soil Particulates  

ADIinh =  𝑐𝑐 × 𝑅𝑅𝑅𝑅𝑅𝑅ℎ × 𝐸𝐸𝐶𝐶 × 𝐸𝐸𝐸𝐸
𝑃𝑃𝐸𝐸𝐶𝐶 × 𝐵𝐵𝐵𝐵 × 𝐴𝐴𝐴𝐴                  …(7)  

Where ADIinh is the average daily intake of heavy metals inhaled from the soil in mg/kg-day, CS is the 
concentration of heavy metal in the soil in mg/kg, IRair is the inhalation rate in m3/day, PEF, is the 
particulate emission factor in m3/kg. EF, ED, BW and AT are as defined earlier in Equation (7) above.  

Dermal Contact with Soil  

ADIdems  =   𝑐𝑐 × 𝑆𝑆𝐴𝐴 × 𝐶𝐶𝐶𝐶 × 𝑆𝑆𝑆𝑆 × 𝐴𝐴𝐵𝐵𝑆𝑆 × 𝐸𝐸𝐸𝐸
𝐵𝐵𝐵𝐵 × 𝐴𝐴𝐴𝐴                …(8)  

Where ADIdems is the exposure dose via dermal contact in mg/kg/day. CS is the concentration of heavy 
metal in the soil in mg/kg, SA is exposed skin area in cm2, FE is the fraction of the dermal exposure ratio 
to the soil, AF is the soil adherence factor in mg/cm2, ABS is the fraction of the applied dose absorbed on 
the skin. EF, ED, BW, CF and AT are as defined earlier in Equation (8).  

Non-Carcinogenic Risk 

The results for ingestion, inhalation and dermal pathways presented in Table 5 indicated that HI values for 
ingestion pathways and dermal pathways are 9.84636×10-5 and 7.85357×10-7 respectively implying that the 
values are less than one (HI < 1) and no obvious risks. 
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sample sites.
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Fig. 9: Modified potential ecological risk index (MRI).  
 
The results in Table 4 revealed that Er values for Cu and Zn are less than 40 (Er <40) respectively indicating 
low ecological risk of these heavy metals. Cu and Pb have varying values. Sampling sites from 2 to 10 have 
values that are less than 40 showing low ecological risks by these heavy metals, however, site one (1) has 
the value of 115.10 for Cu and 76.74 for Pb indicating considerable risks (Er 80-160) and moderate risk (Er 
40- 80) respectively. The results of MRI revealed that about 62.53% of sample site one showed a 
considerable ecological risk of the heavy metal Cu and 47.61% of the moderate ecological risk of Pb 
respectively
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Fig. 9: Modified potential ecological risk index (MRI).

Table 4: Ecological risk factor for nickel, copper, zinc and lead.

Sample no. Ni Cu Zn Pb

1. 6.65 115.10 12.37 76.74

2. 2.61 2.65 0.72 5.61

3. 3.20 10.61 0.99 14.04

4. 4.56 5.46 0.64 11.18

5. 6.87 7.94 0.89 9.66

6. 6.50 7.35 1.05 7.73

7. 4.04 8.83 1.07 6.62

8 5.23 6.21 0.80 9.26

9. 3.21 4.71 0.38 10.41

10. 5.28 26.13 0.90 9.93

TR 5 5 1 5

Mean 4.815 19.4975 1.980579 16.1175

Ranges 2.61-6.65 2.65-115.10 0.38-12.37 6.67-76.74
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m3/kg. EF, ED, BW and AT are as defined earlier in Equa-
tion (7) above. 

Dermal Contact with Soil 
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Assessment of Ecological Risks 
 
The variation in the ecological risk index of the heavy metals across the sampling sites is presented in Fig. 
9. The relatively considerable ecological risk index recorded for Cu and moderate ecological risk of Pb 
respectively at sampling sites one (1) suggests an anthropogenic source of Cu and Pb in this part of the 
study area.  
 

HEALTH RISK ASSESSMENT 

Health risk assessment in this study is a way to determine the probable level of the harmful health impacts 
of heavy metals on the soil. The assessment of each metal contaminant is based on the level of risk of 
using the soil and it is classified as carcinogenic or non-carcinogenic health hazards (Wongsasuluk et al. 
2014). Hazard quotients (HQ), Hazard index (HI), are used in the calculation of the potential carcinogenic 
and non-carcinogenic health risk caused through ingestion and dermal absorption of heavy metals in the 
soil by adults. HQ (for each heavy metal) is the ratio of an average daily intake (ADI, mg/kg/day) of 
metal ingested to the reference oral dose (RfD) through oral ingestion and dermal absorption for the adult 
residents around the environment. ADI (mg/kg-day) for the different pathways were calculated using the 
exposure equations (6) and (7) (USEPA 2012).

Ingestion of Heavy Metals through Soil  

 
ADIing = 𝑐𝑐 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 × 𝐶𝐶𝐶𝐶 × 𝐸𝐸𝐸𝐸

𝐵𝐵𝐵𝐵 × 𝐴𝐴𝐴𝐴                 …(6)  

Where, ADIingestion is the average daily intake of heavy metals ingested from the soil in mg/kg-day, C = 
concentration of heavy metal in mg/kg for soil. IR in mg/day is the ingestion rate, EF in days/year is the 
exposure frequency, ED is the exposure duration in years, BW is the bodyweight of the exposed individual 
in kg, AT is the time over which the dose is averaged in days. CF is the conversion factor in kg/mg.  

Inhalation of Heavy Metals Via Soil Particulates  

ADIinh =  𝑐𝑐 × 𝑅𝑅𝑅𝑅𝑅𝑅ℎ × 𝐸𝐸𝐶𝐶 × 𝐸𝐸𝐸𝐸
𝑃𝑃𝐸𝐸𝐶𝐶 × 𝐵𝐵𝐵𝐵 × 𝐴𝐴𝐴𝐴                  …(7)  

Where ADIinh is the average daily intake of heavy metals inhaled from the soil in mg/kg-day, CS is the 
concentration of heavy metal in the soil in mg/kg, IRair is the inhalation rate in m3/day, PEF, is the 
particulate emission factor in m3/kg. EF, ED, BW and AT are as defined earlier in Equation (7) above.  

Dermal Contact with Soil  

ADIdems  =   𝑐𝑐 × 𝑆𝑆𝐴𝐴 × 𝐶𝐶𝐶𝐶 × 𝑆𝑆𝑆𝑆 × 𝐴𝐴𝐵𝐵𝑆𝑆 × 𝐸𝐸𝐸𝐸
𝐵𝐵𝐵𝐵 × 𝐴𝐴𝐴𝐴                …(8)  

Where ADIdems is the exposure dose via dermal contact in mg/kg/day. CS is the concentration of heavy 
metal in the soil in mg/kg, SA is exposed skin area in cm2, FE is the fraction of the dermal exposure ratio 
to the soil, AF is the soil adherence factor in mg/cm2, ABS is the fraction of the applied dose absorbed on 
the skin. EF, ED, BW, CF and AT are as defined earlier in Equation (8).  

Non-Carcinogenic Risk 

The results for ingestion, inhalation and dermal pathways presented in Table 5 indicated that HI values for 
ingestion pathways and dermal pathways are 9.84636×10-5 and 7.85357×10-7 respectively implying that the 
values are less than one (HI < 1) and no obvious risks. 

 …(8) 

Where ADIdems is the exposure dose via dermal contact 
in mg/kg/day. CS is the concentration of heavy metal in 
the soil in mg/kg, SA is exposed skin area in cm2, FE is the 
fraction of the dermal exposure ratio to the soil, AF is the 
soil adherence factor in mg/cm2, ABS is the fraction of the 
applied dose absorbed on the skin. EF, ED, BW, CF and AT 
are as defined earlier in Equation (8). 

Non-Carcinogenic Risk

The results for ingestion, inhalation and dermal pathways 
presented in Table 5 indicated that HI values for inges-
tion pathways and dermal pathways are 9.84636×10-5 and 

7.85357×10-7 respectively implying that the values are less 
than one (HI < 1) and no obvious risks.

The HI value for ingestion is greater than that of the 
dermal pathway indicating that the ingestion pathway con-
tributes the greatest non-carcinogenic effect. The inhalation 
pathway is the least contributor (Fig. 10). Sultana et al. 
(2019) suggested that when HI > 1 there is the possibility that 
non-carcinogenic impacts may occur in the adult residents 
whereas when HI < 1 it is expected that the exposed person 
may not experience noticeable harmful health impacts.

Carcinogenic Risk

The results of the carcinogenic risk calculated for heavy 
metals are presented in Table 6. Pb is singled out for car-
cinogenic health risk assessment because of its toxicity and 
its known CSF. The cancer slope factor is defined as the risk 
generated by a lifetime average amount of one mg/kg/day of 
carcinogen around the sampled area. Table 6 indicated that 

Table 5: The Hazard Index (HI) of some selected heavy metals.

Pb Ni Cu Zn HI

HQ ingestion (ing) 7.01E-05 9.42E-06 1.65E-05 2.45473E-06 9.84636E-05

HQ inhalation (inh) - - - - -

HQ dermal - 3.83E-07 2.9E-07 1.11936E-07 7.85357E-07

Risk pathway ing 2.14E-09 - - - -

Risk pathway inh 2.81E-10 - - - -

Risk Total 2.43E-09 - - - -
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for carcinogenic health risk assessment because of its toxicity and its known CSF. The cancer slope factor 
is defined as the risk generated by a lifetime average amount of one mg/kg/day of carcinogen around the 
sampled area. Table 6 indicated that the values of the heavy metals are less than one meaning that it is 
below the generally acceptable value which Tepanosyan (2017) suggested should be 1×10-6  for a single 
carcinogenic element and 1×10-4 f for multi-element carcinogens. The value 2.43×10-9

 is less than the 
acceptable value implying a negligible cancer risk for the soils of the dumpsites.  
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Table 6: Average daily intake (ADI) of heavy metals in the sampled soil. 

Sc V Co Ni Cu Zn Rb Mo Cs Pb

ADI  
ingestion

6.54E -08 4.4E -07 7.74E-08 1.88356E-07 6.10489E-07 7.36419E-07 5.87E-07 9.23E-09 2.23E-08 2.52329E-07

ADI 
inhalation

1.73E-09 1.17E-08 2.05E-09 4.9859E-09 1.616E-08 1.94934E-08 1.55E-08 2.44E-10 5.9E-10 6.67929E-09

ADI dermal 7.45E-10 5.02E-09 8.83E-10 2.14726E-09 6.95958E-09 8.39517E-09 6.69E-09 1.05E-10 2.54E-10 2.87655E-09
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the values of the heavy metals are less than one meaning that 
it is below the generally acceptable value which Tepanosyan 
(2017) suggested should be 1×10-6  for a single carcinogenic 
element and 1×10-4 f for multi-element carcinogens. The 
value 2.43×10-9

 is less than the acceptable value implying a 
negligible cancer risk for the soils of the dumpsites. 

CONCLUSIONS

The ecological and health risks of some heavy metals of 
dumpsites at Wotan, Ibadan were studied. The results of 
the enrichment factor indicated a very high enrichment of 
Cu (25.07), and 15.14 significant enrichment of Pb (18.78), 
moderate enrichment of Zn (15.14) and minor enrichment of 
Co, Ni, Rb and Cs. The very high, significant and moderate 
enrichments of Cu, Pb and Zn are an initial indication of 
an anthropogenic influence of the metals in the soil. V, Ni 
and Mo have shown low contamination. Sc, Co, Zn, Rb, Cs 
indicated moderate contamination while Cu and Pb indicated 
high contamination. It should be noted that sampling site 
one (1) has high contaminations of Cu (23.02), Zn (12.37) 
and Pb. Cu and Pb exhibited high contamination levels. The 
relatively considerable ecological risk index recorded for Cu 
and moderate ecological risk of Pb respectively at sampling 
sites one (1) suggests an anthropogenic source of Cu and 
Pb in this part of the study area. The health-risk study indi-
cated that hazard quotient HQing, HQderm and hazard index 
(HI) values were below the acceptable limits of 1x10−6 and 
1x10−4 and therefore showed no obvious non-carcinogenic 
risk and negligible cancer risk from the soils on health and 
environment. 
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