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ABSTRACT
To determine appropriate measures to reduce air pollution in any urban city, the first essential 
requirement is to estimate the spatial distribution of air pollution parameters in that area. In absence 
of air monitoring stations, alternative methods are required for the same. In the present work, a GIS-
based methodology is presented to estimate the level of NO2 based on the road density of the road 
network of different categories of roads. Road network GIS layer and measured levels of the average 
value of NO2 for the year 2019 at 12 air pollution monitoring stations of Jaipur city are used to develop 
a large number of possible linear regression models for estimation of NO2 values based on road density 
values. Akaike Information Criterion (AIC) and adjusted r2 values are used to evaluate and arrive at the 
best-fitted model. Values from the cities of Jodhpur and Kota are used to validate the model. Using this 
model, NO2 levels are determined at 91 wards of Jaipur city and the output is compared with the similar 
map derived based on interpolation of NO2 values at the 12 monitoring stations. It is concluded that the 
methodology developed in this study generates better estimates of NO2 at the ward levels.     

INTRODUCTION

Climate change due to global warming is the major crisis, 
presently the world is facing. Climate change is closely relat-
ed to the rise in air pollution. As per Institute for Advanced 
Sustainability Studies (IASS 2020), these air pollutants are 
responsible for climate change by affecting the incoming 
solar radiation. Few pollutants find their way and are ab-
sorbed by the atmosphere whereas others are reflected by 
the atmosphere thereby affecting the earth’s atmosphere by 
cooling or warming it. Ground-level ozone, methane, and 
black carbons are classified under short-lived climate-forcing 
pollutants (SLCPs). A report by World Health Organization 
(2019) predicts that air pollutants are the biggest reason for 
the major health threat and severely affecting climatic con-
ditions. As per the latest report by Health Effects Institute 
(2020 a), air pollution is the major cause of 1 in 9 deaths 
globally. It has been estimated that globally 6.67 million 
mortalities in the year 2019 were because of air pollution. 
This is majorly attributed to smog in the outer atmosphere 
and smoke inside the homes. Heart diseases, strokes, chronic 
obstructive pulmonary diseases resulting from acute respira-
tory infections, cancer of the lungs are major contributors to 
high mortality rates. It is estimated that nine out of ten people 
are inhaling polluted air with higher levels. UNICEF (2016) 
press report projected that 300 million children are breathing 
toxic air. As per the United States Environmental Protection 

Agency (2020), particulate matter affects the lungs and heart 
which is also confirmed through numerous scientific studies 
across the globe. The United States Environmental Protection 
Agency (2016) has identified six “criteria” air pollutants as 
these pollutants are regulated under environmental and hu-
man health-based criteria by the Center for Disease Control 
and Prevention (CDC 2019). These pollutants are CO, NO2, 
SO2, particulate matter, ground-level ozone, and lead. It is 
mentioned that not enough data may be available on the ef-
fects of air pollutants on the health of human beings, still, it 
is considered a major risk multiplier for the health of human 
being specially in developing countries.  The latest findings 
on air pollutant impacts on human health as published in the 
Lancet, “Global Burden of Disease” is very alarming for a 
country like India. Indeed, Indian population has the maxi-
mum exposure to PM 2.5 and the third highest exposure to O3. 
It is estimated that almost 1.67 million deaths annually are 
caused in India due to air pollutants which include 116,000 
infants as reported in State of Global Air 2020, Health Effects 
Institute (2020b). 

A study done for natural aerosols in South Gobi Desert 
by Filonchyk & Hurynovich (2020) was found to be of 
great importance. Data from 2016 to 2019 was analyzed 
to find the spatial-temporal patterns of atmospheric pollut-
ants in eight cities. It was reported that occurrence rates of 
pollutants exceeding in concentrations with respect to the 
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Chinese National Ambient Air Quality Standard (CNAAQS) 
grade 1 and grade 2 were 40.1% and 5.4% for PM2.5 and 
82.9% and 11.64% for PM10 in the region. Khaniabadi et 
al. (2020) studied the impact on health due to an increase in 
the concentration of different pollutants by 10 μg.m-3. They 
studied the effect of PM10, NO2, and O3 in Kermanshah City, 
Iran. The results indicated that a μg.m-3 change in PM10, 
NO2, and O3 increases the relative risk by 1.066, 1.012, and 
1.020, respectively.

Remote sensing has proved to be useful for depicting 
spatial variability of air pollutants in an urban area (Bechle 
et al. 2013). In their study, estimates of surface NO2 levels 
recorded by Ozone Monitoring Instrument (OMI) onboard 
NASA’s Aura satellite were compared with values recorded 
by US EPA ambient monitoring stations. OMI measures the 
daily level of NO2 tropospheric column abundance. Scal-
ing factors (surface-to-column ratios) were used to relate 
satellite data to ground-level measurements.  Costabile et 
al. (2010) studied the distribution of pollutants NOx, SO2, 
NO2, Xylenes, Benzene, and Toluene within the urban area 
of Lanzhou, China to understand the spatial distribution of 
these pollutants. The investigation found that it was mainly 
governed by the factors responsible for the diffusion of 
emission sources through space. 

Nieto et al. (2015) collected levels of CO, PM10 , NOx, 
O3, and SO2, for 3 years to build a regression model of air 
quality for the urban area of Oviedo, Spain. The model was 
built at a local scale using a multivariate adaptive regression 
splines (MARS) technique. Mohammad and Juahir (2015) 
identified the spatial pattern of air pollutants in the northern 
part of Peninsular Malaysia. The study was carried out from 
2008 to 2011, covering seven air pollution monitoring sta-
tions. The main pollutants that were part of the study were 
NO2, O3, CO, and PM10 obtained from the Department of 
Environment, Malaysia (DoEM). ANOVA, Artificial Neural 
Network (ANN) and environ metric techniques (HACA and 
Descriptive Analysis approaches) were used in analyzing the 
data. They reported that based on ANOVA single test, the 
p-value of PM10 is significantly a smaller alpha level (p=0.05) 
and is therefore suitable for further analysis as compared to 
O3, NO2, and CO.

Ryu et al. (2019) used the GIS-based kriging interpolation 
method to develop a nationwide map of NO2 concentration 
over South Korea.  Remote sensing data was integrated with 
the ground observations and a good value of root-mean-
square standardized (RMSS) error was obtained. In their 
study, they compared data for different data sources which 
include detailed national data besides remote sensing data 
and other sources. In the study, it was reported that the aver-
age concentration was highest when data was taken through 

remote sensing. LUR models that are land-use regression 
models were formulated to analyze the concentration of NO2 
in both urban and non-urban areas. In their paper, Zhu & 
Lok (2018) described the temporal and spatial variability of 
nitrogen dioxide concentrations at the level of major streets 
for densely populated parts of Hong Kong with very high 
traffic volumes. Using a combination of remote sensing data 
and direct measurement in the field, temporal variations were 
differentiated with spatial distributions. This was carried out 
by ignoring the flow pattern of traffic and concentrating on 
changes in the spatial distribution of NO2. 

Walkability one of the measure for air pollutants per-
taining to traffic was defined by Cowie et al. (2016). They 
compared walkability with weighted road density for Sydney 
neighborhoods, representing 3.6 million population. High 
walkability and low weighted road density were defined 
as “sweet spots” and reverse of that as “sour spots” in the 
neighborhoods. Even short exposure to a higher concentra-
tion of NO2 can aggravate asthma, respiratory diseases and 
even visiting hospital emergency rooms (EPA, 2016). In a 
report by the United States Environmental Protection Agency, 
(2016), it was reported that a long duration exposure of NO2 
severely affected children and elderly citizens. In the atmos-
phere, NO2 and NOx react with other chemicals to form ozone 
and particulate matter which when inhaled are disastrous 
to human health, mainly affecting the respiratory systems. 
Carslaw et al. (2019) in their report raised concern over the 
exceeding concentrations of NO2 of more than 40 μg m-3 as 
prescribed by the European Directive limit value. Munoth 
et al. (2015) reported higher levels of NO2 and Fluoride in 
groundwater in Rajasthan state.

Nitrogen dioxide (NO2) which is mainly emitted from ve-
hicular emissions is yellow-brownish in color is also emitted 
from industrial activity and power plants. As per the Hindu 
(2015), the emission of gas has reached significantly high 
in India and South Asia region during the decade 2005-14 
as projected in a study through NASA satellite map. NASA 
satellite maps predict that exposures of Nitrogen dioxide even 
for short periods can aggravate respiratory diseases, asthma 
and can also lead to hospitalizations. 

Balakrishnan et al. (2019) discussed that though cardio-
vascular diseases are the largest cause of death in India but 
are closely followed by air pollution, which is the second 
largest reason for premature deaths in India. Till the 1990s, 
air pollution was relatively lower in the list of causes that 
caused most deaths in India. In another study, it has been 
reported that Rajasthan is amongst the leading states in the 
country with the widespread cause of chronic obstructive 
pulmonary disease (COPD) (TNN 2017) and asthma induced 
deaths which in turn is linked to air pollution in more than 
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half the cases followed by smoking for a quarter of the cas-
es. According to ORGCC (2020), approximately one-third 
percent of the children in Jaipur suffer from acute respiratory 
infection (ARI). It was further emphasized that the figure has 
been increasing recently. Overall, in Jaipur, there has been an 
increase in Rhinitis, asthma, bronchitis, pneumonia, COPD, 
chronic cough, sneezing, itching, eye problems ARI, and 
other respiratory issues. Rajasthan tops the list when it comes 
to deaths due to air pollution, according to Singh (2019). 
Using geostatistical and geospatial techniques Dadhich et 
al. (2018b) estimated the temporal and seasonal variations 
(2004–2015) of particulate and gaseous pollutants in the city 
of Jaipur. They performed an ordinary least square (OLS) 
regression technique to reveal a good correlation between 
Air Quality Index and weathering features like wind speed, 
humidity, and temperature for both winter and summer sea-
sons. Similarly, Dadhich et al. (2018a) also used GIS-based 
approaches for assessing the ambient air quality standards 
of Kota city.

To reduce the impact of air quality parameters in any 
area, the first essential requirement is to estimate the spatial 
distribution of these parameters in that area. This would 
provide an indication of areas where the air quality is bad 
or lower than the standard. If this information is available, 
it becomes easier for urban planners and experts to apply 
remedial measures and subsequent actions can be taken in 
the areas which are highly polluted. Adequate measurements 
thus can be planned and taken in those areas. Estimate of air 
quality parameters in any area is typically determined with 
the help of observed values of these parameters at air quality 
monitoring stations. Different interpolation tools are used to 
predict the values at other places. However, the density of 
such air quality monitoring stations is presently extremely 
too low in many urban areas. Determining air quality in 
such areas, other than the vicinity of such sensors, is a chal-
lenging task. Interpolation typically leads to extrapolation 
as monitoring stations are usually located in the central part 
of the city. This leads to the overestimation of air pollution 
parameters in the urban periphery of big cities. Therefore, a 
methodology is desired which could estimate the air quality 
parameter even in the absence of monitoring stations.  

In the present study, a new methodology is presented 
which determines the value of NO2 due to vehicular pollu-
tion, based on the density of the road network of any area.  
The road network layer, consisting of roads of different cat-
egories, such as highways, major roads, and inner roads, of 
any urban area, can easily be mapped using various remote 
sensing systems or google earth. Such road network layers 
could be generated and updated on regular basis. Therefore, 
a methodology that is dependent on such easily available 

information is likely to be of great importance in the absence 
of a good density of air quality monitoring stations.

Jaipur city with almost 3.5 million urban population as 
of 2020 (3.1 million as per 2011 census) has three contin-
uous monitoring stations named Continuous Ambient Air 
Quality Monitoring Stations (CAAQMS) and nine manual 
stations. Pollutants emitted from vehicular emissions like 
Nitrogen Dioxide (NO2) and particulate matter PM10 are 
key pollutants that are continuously monitored at these sta-
tions besides other pollutants. The data available is of very 
limited capacity for a large area of 470 sq km of Jaipur city. 
Even if it is required to find out the concentration at ward 
level from these 12 points through GIS spatial interpolation 
methods, the density is not appropriate, and therefore data 
is rather extrapolated or interpolated between drastically 
different points locations. In that case, the values are likely 
to be not accurate except for those wards where these sta-
tions are located. In this paper, there has been an attempt to 
relate Jaipur road network layer data with available vehicular 
pollutant data (NO2) measured at 12 air pollution monitoring 
stations. A large number of possible models are generated, 
and their prediction accuracy is compared between different 
models. Multi-model selection criteria such as the Akaike 
information criterion and Bayesian information criterion are 
used to select better-performing models amongst the several 
hundred models generated. Model output for two additional 
air quality monitoring stations of Jodhpur and Kota cities 
are used to validate the model. Estimated values of NO2 are 
determined for all the wards of Jaipur city to understand 
the spatial distribution of vehicular pollution in Jaipur city.

STUDY AREA

Jaipur the capital city of Rajasthan state is a big tourist 
hub; part of the golden triangle is also called as pink city of 
India.  As per the 2011 census, Jaipur has a population of 
around 3.1 million which is characterized by high summer 
temperatures, low rainfalls, and mild winter as shown in Fig. 
1. The average yearly rain for the city is just below 600 mm 
in comparison to India’s national average of almost 1100 
mm. The city recorded a yearly growth rate of five percent 
in 2011 in comparison to 2001 and was ranked 10th among 
India’s megacities (Sogani & Vyas 2019). The city is part 
of the government of India’s Smart City Program and there 
are massive plans for urban infrastructure development. The 
maps of zones and wards of the city are as per JDA (2020) 
and were further digitized. Fig. 1 shows the different zones 
and wards of Jaipur city. Table 1 gives major information 
about the city.

All the 91 wards of Jaipur city based on 2019 classifi-
cations were taken into consideration for this study (Vyas 
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Fig. 1:  Zones and wards of Jaipur city.

Table 1: Key statistics of Jaipur City

Study area: Name of city Jaipur City

Total Area 467 Square Kilometres

City Wards and Zones 91 wards and 8 zones

Total House Holds 737179

Total Population covered 3046185 (As per the year 2011 census data)

Male 1603136

Female 1443048

Sex Ratio 900 Females per 1000 Males

et al, 2020a).  A new bifurcation of city wards was done in 
December 2019 where the city wards were reclassified into 
a total of 250 wards. The Greater Jaipur has 150 wards and 
Heritage Jaipur has 100 wards. This study was confined to 
8 Zones and 91 wards as shown in Table 2.

Ambient air quality is continuously monitored in the city 
as State Pollution Control Board has installed three Continu-
ous Ambient Air Quality Monitoring Station (CAAQMS) and 
nine manual air quality monitoring stations under National 
Air Quality Monitoring Programme (NAMP), as shown in 
Fig 2.  At CAAQMS Particulate Matter (PM2.5 and PM10), 
Gaseous pollutants, NOx, SO2, CO, O3 VOC, and NH3, and 

Meteorological parameters like Wind Speed, Wind Direction, 
Temperature, Relative Humidity, Solar Radiation, Pressure, 
etc. are measured continuously (Vyas et al. 2020). At NAMP 
stations PM10, NO2, and SO2 are measured twice a week. 
Due to the dry conditions prevailing over a major part of the 
year, levels of PM10 are found to be in excess.  Suspended 
particulate matter coming from road dust, construction and 
demolition activities, vehicular emissions, burning of fossil 
fuels, and solid waste in open, industrial emissions are key 
air pollutants of the city.

Table 3 shows the annual average PM10 and NO2 values 
at different stations for the year 2019.  Fig. 3 and Fig. 4 show 
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Table 2: Classification of Jaipur city Wards and Zones

S. No. Name of Zone Total Wards Classification of Wards

1 Vidhya  Dhar Nagar 21 1 to 14, 23 to 25 and 79-82

2 Civil Lines 16 15 to 22, 26 to 28, 30, 56 to 58 and76

3 Man Sarovar 11 29, 31 to 34, 40 to 44 and 55

4 Sanganer 12 35 to 39, 45 to 50 and 52

5 Moti Doongri 9 51, 53 and 54, 59 to 62, 64 and 65

6 Hawa Mahal East 11 63 to 73, 85 and 86

7 Hawa Mahal West 6 74 and 75, 77 and 78, 83 and 84

8 Amer 5 87 to  91
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Fig. 2: Location of Air Quality Monitoring Stations 
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112 26.940 75.801 22.57 116.09 
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Fig. 4: Spatial distribution of average annual NO2.

the spatial distribution of PM10 and NO2 concentrations for 
the year 2019 for Jaipur city based on the annual average 
observed values of these parameters at the monitoring sta-

tions. As can be seen, most of the variation is visible only in 
the closed proximity of the air quality monitoring stations. 
Since monitoring stations only exist inside the city area, 
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Fig. 5: Ward-wise Levels of Average PM10 
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Level 03 roads are inner roads, typically carrying only the vehicular traffic of residents of that 
area. Though the level of pollution may be less on these roads, however, their density is more than 
that of other levels of roads. It is also observed that typically inner roads have a better level of 
plantations around the roads as compared to level 01 and 02 roads. Due to this, these roads may 
be serving as a sink for NO2 pollution rather than the generation of pollution. Fig. 7 shows all the 
three levels of roads in sub maps A, B, and C respectively. 
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Fig. 6: Ward-wise levels of average NO2.

where traffic density and hence air pollution parameter levels 
are generally high, when interpolation is used, most of the 
outskirts of Jaipur city also show high levels of NO2 values. 
NO2 levels are likely to be lesser in these areas as the traffic 
density, a major contributor of NO2 is much less as compared 
to inner city areas. 

From the interpolated maps and using the zonal statis-
tics tool, the average concentration of PM10 and NO2 could 
also be derived at the ward level. Color-coded maps are 
then plotted showing levels of PM10 and NO2 for different 
wards (Fig. 5 and 6). Most of the outer area of Jaipur city is 
classified under the category of 25-30 for NO2, which seems 
to be on the higher side as traffic in these areas is typically 
lower than in the city area.

All roads of Jaipur cities were classified into three differ-
ent groups based on estimated traffic on these roads. Level 01 
roads are those roads that carry most of the daily vehicular 

traffic of the city. Level 02 roads are those interconnecting 
level 01 roads. Though traffic on these roads is less than the 
level 01 roads however it is still good enough to generate 
some level of vehicular pollution. Level 03 roads are inner 
roads, typically carrying only the vehicular traffic of resi-
dents of that area. Though the level of pollution may be less 
on these roads, however, their density is more than that of 
other levels of roads. It is also observed that typically inner 
roads have a better level of plantations around the roads as 
compared to level 01 and 02 roads. Due to this, these roads 
may be serving as a sink for NO2 pollution rather than the 
generation of pollution. Fig. 7 shows all the three levels of 
roads in sub maps A, B, and C respectively.

MATERIALS AND METHODS 

Road maps of any area could be used to generate road density 
maps at different search radius levels. The line density tool 
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calculates the density of linear features in the neighborhood 
of each output raster cell. Road density is determined in m 
length per m2 area within the search radius. Conceptually, a 
circle of the size of the search radius is drawn around each 
raster cell center. The length of the portion of each road 
that falls within the circle is calculated. These figures are 
summed for all the roads falling within the search radius 
and the total is divided by the circle’s area. Road density 
maps of different levels were generated for different search 
radius of 125, 250, 500, 750, 1000, 1250, and 1500 m. 
Fig. 8 shows the road density map of level 01 roads for the 
search radius of 750 m. Further buffer tool of GIS was used 
to generate planar buffers of the same sizes, as the search 
radius used for road density calculation, around each of the 
monitoring station. So, planar buffers of sizes 125, 250, 
500, 750, 1000, 1250, and 1500 m were generated around 
each monitoring station. A dissolved type of none was used 
to ensure that each monitoring station has its own buffer 
even in case of partial overlap of buffers of different sta-
tions. Fig. 9 shows the buffers of 500m for all monitoring  
stations.

Using the buffer maps (Arc Map 2020a, 2020b) of a 
particular radius, say 1000 m, and road density maps of the 
same search radius of 1000 m, the zonal statistics tool was 
used to calculate the mean value of road density around each 
individual station for different road levels with different 
search radius. 

Table 4 shows the value of road densities for all three 
levels of the road network around each monitoring station 
for a search radius of 750 and 1000 m.

RESULTS AND DISCUSSION

A large number of linear regression models could be devel-
oped to find the relationship between air pollution parameters 
PM10 or NO2 or a combination of them with the road density 
values of different levels of roads for different search radius 
and buffer areas. For examples if RDLi

SRm is Road density of 
road level i and search radius m then some models that could 
be tried are shown as eqns. 1, 2, 3, and 4 below.
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Table 4: Road Density Values Around Monitoring Stations 
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pared. r2
 is a scale-invariant statistic that gives the proportion 

of variation in the target variable explained by the linear 
regression model (Analytics Vidya 2020). The R-squared 
statistic suffers from a major flaw. Its value never decreases 
no matter the number of variables we add to our regression 
model, even if redundant variables are added. Therefore 
“Adjusted r2” (referred to as adj r2) values are determined. 
The adj r2 takes into account the number of independent 
variables used for predicting the target variable.

It is well known that when fitting linear regression models 
between two sets of known and unknown variables, more 

than one model could be developed with almost comparing 
values of r2 or adj r2. Choosing a specific model between 
them would require evaluations of uncertainties associated 
with these models. A number of statistical criteria could 
be used to evaluate alternative models (Poeter & Anderson 
2005). Akaike Information Criterion (AIC) and Bayesian 
Information Criterion (BIC) are used in the present work 
(Zhou & Herath 2017, Rajput et al. 2020).

AIC for a model could be calculated using eqns. 5, 6 and 7

 

 

15 | P a g e  
 

decreases no matter the number of variables we add to our regression model, even if redundant 
variables are added. Therefore “Adjusted r2” (referred to as adj r2) values are determined. The adj 
r2 takes into account the number of independent variables used for predicting the target variable. 

It is well known that when fitting linear regression models between two sets of known and 
unknown variables, more than one model could be developed with almost comparing values of r2 
or adj r2. Choosing a specific model between them would require evaluations of uncertainties 
associated with these models. A number of statistical criteria could be used to evaluate alternative 
models (Poeter & Anderson 2005). Akaike Information Criterion (AIC) and Bayesian Information 
Criterion (BIC) are used in the present work (Zhou & Herath 2017, Rajput et al. 2020). 

AIC for a model could be calculated using eqns. 5, 6 and 7 

𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑛𝑛 ln(𝜎𝜎2) + 2𝑘𝑘 (5) 

𝜎𝜎2 =  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑛𝑛  (6) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  ∑ 𝜔𝜔𝑖𝑖[𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖
′(𝑏𝑏)]2𝑛𝑛

𝑖𝑖=1  (7) 

here: 

n: number of observations, equal to 12 for all the models; 

k: number of model parameters, varies from 1 to 3; 

σ2:  residual variance; 

SWSR: sum of weighted squared residuals; 

ωi: weight for the ith observation, taken as 1 for all observations; 

yi, yi
': measured and model calculated dependent variable, respectively. 

BIC is calculated as given in eqn. 8. 

𝐵𝐵𝐴𝐴𝐴𝐴 = 𝑛𝑛 ln(𝜎𝜎2) + 𝑘𝑘 𝑙𝑙𝑛𝑛(𝑛𝑛) (8) 

AIC and BIC values of all models were also evaluated using a script in R language. The model 
with minimum values of AIC was selected as the best model. 

Models were divided into two different streams, one with normal values and another with log10 
values of parameters. Table 5 shows the 5 best models of both the streams with the values of r2, 
adj r2, AIC, and BIC. 
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Fig. 7: Road Maps of Jaipur City (A – Level 01, B – Level 02, and C – Level 03) 

 

MATERIALS AND METHODS  

Road maps of any area could be used to generate road density maps at different search radius 
levels. The line density tool calculates the density of linear features in the neighborhood of each 
output raster cell. Road density is determined in m length per m2 area within the search radius. 
Conceptually, a circle of the size of the search radius is drawn around each raster cell center. The 
length of the portion of each road that falls within the circle is calculated. These figures are 
summed for all the roads falling within the search radius and the total is divided by the circle's 
area. Road density maps of different levels were generated for different search radius of 125, 250, 
500, 750, 1000, 1250, and 1500 m. Fig. 8 shows the road density map of level 01 roads for the 
search radius of 750 m. Further buffer tool of GIS was used to generate planar buffers of the same 
sizes, as the search radius used for road density calculation, around each of the monitoring station. 
So, planar buffers of sizes 125, 250, 500, 750, 1000, 1250, and 1500 m were generated around 
each monitoring station. A dissolved type of none was used to ensure that each monitoring station 
has its own buffer even in case of partial overlap of buffers of different stations. Fig. 9 shows the 
buffers of 500m for all monitoring stations. 

Using the buffer maps (Arc Map 2020a, 2020b) of a particular radius, say 1000 m, and road density 
maps of the same search radius of 1000 m, the zonal statistics tool was used to calculate the mean 
value of road density around each individual station for different road levels with different search 
radius.  

Fig. 7: Road maps of Jaipur city (A – Level 01, B – Level 02 and C – Level 03).
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Fig. 8: Road Density Map of Level 01 Roads with Search Radius: 750 m 

 

Fig. 9: Buffers Around Monitoring Stations of Radius 500 m 

Table 4 shows the value of road densities for all three levels of the road network around each 
monitoring station for a search radius of 750 and 1000 m. 

  

Fig. 8: Road density map of level 01 roads with search radius: 750 m.
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unknown variables, more than one model could be developed with almost comparing values of r2 
or adj r2. Choosing a specific model between them would require evaluations of uncertainties 
associated with these models. A number of statistical criteria could be used to evaluate alternative 
models (Poeter & Anderson 2005). Akaike Information Criterion (AIC) and Bayesian Information 
Criterion (BIC) are used in the present work (Zhou & Herath 2017, Rajput et al. 2020). 

AIC for a model could be calculated using eqns. 5, 6 and 7 

𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑛𝑛 ln(𝜎𝜎2) + 2𝑘𝑘 (5) 

𝜎𝜎2 =  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑛𝑛  (6) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  ∑ 𝜔𝜔𝑖𝑖[𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖
′(𝑏𝑏)]2𝑛𝑛

𝑖𝑖=1  (7) 

here: 

n: number of observations, equal to 12 for all the models; 

k: number of model parameters, varies from 1 to 3; 

σ2:  residual variance; 

SWSR: sum of weighted squared residuals; 

ωi: weight for the ith observation, taken as 1 for all observations; 

yi, yi
': measured and model calculated dependent variable, respectively. 

BIC is calculated as given in eqn. 8. 

𝐵𝐵𝐴𝐴𝐴𝐴 = 𝑛𝑛 ln(𝜎𝜎2) + 𝑘𝑘 𝑙𝑙𝑛𝑛(𝑛𝑛) (8) 

AIC and BIC values of all models were also evaluated using a script in R language. The model 
with minimum values of AIC was selected as the best model. 

Models were divided into two different streams, one with normal values and another with log10 
values of parameters. Table 5 shows the 5 best models of both the streams with the values of r2, 
adj r2, AIC, and BIC. 
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here:
n: number of observations, equal to 12 for all the models;
k: number of model parameters, varies from 1 to 3;
s2:  residual variance;
SWSR: sum of weighted squared residuals;
wi: weight for the ith observation, taken as 1 for all obser-
vations;
yi, yi

’: measured and model calculated dependent variable, 
respectively.

BIC is calculated as given in eqn. 8.
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AIC and BIC values of all models were also evaluated 
using a script in R language. The model with minimum values 
of AIC was selected as the best model.

Models were divided into two different streams, one with 
normal values and another with log10 values of parameters. 
Table 5 shows the 5 best models of both the streams with 
the values of r2, adj r2, AIC, and BIC.

As can be seen, the best values of r2 and adj r2 are achieved 
for model 1, belonging to stream 1 of the models, which is 
between normal values of NO2 and road density values of 
levels 1, 2, and 3 roads with a search radius of 750m. This 
model also gives the lowest AIC and BIC values in stream 1 
of the models. In stream 2, the best model is model 6, which 
is for the same NO2 and road density values of levels 1, 2, 
and 3 roads with a search radius of 750m, however with log10 
values of all these parameters. This model gives lower r2 

Table 5: Performance parameters of different parameters

Model num-
ber

Stream 1: Normal values of parameters

Model description r2 adj r2 AIC BIC pm
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Table 5: Performance parameters of different parameters 

Model 
numb

er 

Stream 1: Normal values of parameters 

Model description r2 adj 
r2 AIC BIC pm 

1 𝑁𝑁𝑁𝑁2 = 𝑓𝑓(𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆750, 𝑅𝑅𝑅𝑅𝐿𝐿2

𝑆𝑆𝑆𝑆750, 𝑅𝑅𝑅𝑅𝐿𝐿3
𝑆𝑆𝑆𝑆750)  0.86 0.81 64.4

7 
66.9

0 
42.6 

2  𝑁𝑁𝑁𝑁2 = 𝑓𝑓(𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆1000, 𝑅𝑅𝑅𝑅𝐿𝐿2

𝑆𝑆𝑆𝑆1000, 𝑅𝑅𝑅𝑅𝐿𝐿3
𝑆𝑆𝑆𝑆1000) 0.85 0.80 65.2

0 
67.6

2 
28.1 

3 𝑁𝑁𝑁𝑁2 = 𝑓𝑓(𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆500, 𝑅𝑅𝑅𝑅𝐿𝐿2

𝑆𝑆𝑆𝑆500, 𝑅𝑅𝑅𝑅𝐿𝐿3
𝑆𝑆𝑆𝑆500)  0.83 0.77 66.8

4 
69.2

7 
10.4 

4  𝑁𝑁𝑁𝑁2 = 𝑓𝑓(𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆1000) 0.76 0.74 67.1

7 
68.6

2 
10.0 

5  𝑁𝑁𝑁𝑁2 = 𝑓𝑓(𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆1250, 𝑅𝑅𝑅𝑅𝐿𝐿3

𝑆𝑆𝑆𝑆1250) 0.80 0.75 67.1
8 

69.1
2 

8.9 

  Stream 2: log10 values of parameters 

6  log(𝑁𝑁𝑁𝑁2) =
𝑓𝑓(log 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝐿𝐿1

𝑆𝑆𝑆𝑆750, 𝑅𝑅𝑅𝑅𝐿𝐿2
𝑆𝑆𝑆𝑆750, 𝑅𝑅𝑅𝑅𝐿𝐿3

𝑆𝑆𝑆𝑆750) 

0.81 0.74 -
33.5

8 

-
31.1

6 

39.7 

7  log(𝑁𝑁𝑁𝑁2) =
𝑓𝑓(log 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝐿𝐿1

𝑆𝑆𝑆𝑆1000, 𝑅𝑅𝑅𝑅𝐿𝐿2
𝑆𝑆𝑆𝑆1000, 𝑅𝑅𝑅𝑅𝐿𝐿3

𝑆𝑆𝑆𝑆1000) 

0.80 0.72 -
32.7

5 

-
30.3

2 

27.6 

8  log(𝑁𝑁𝑁𝑁2) =
𝑓𝑓(log 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝐿𝐿1

𝑆𝑆𝑆𝑆1000, 𝑅𝑅𝑅𝑅𝐿𝐿3
𝑆𝑆𝑆𝑆1000) 

0.72 0.66 -
30.7

6 

-
28.8

2 

12.1 

9  log(𝑁𝑁𝑁𝑁2) =
𝑓𝑓(log 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝐿𝐿1

𝑆𝑆𝑆𝑆500, 𝑅𝑅𝑅𝑅𝐿𝐿2
𝑆𝑆𝑆𝑆500, 𝑅𝑅𝑅𝑅𝐿𝐿3

𝑆𝑆𝑆𝑆500) 

0.76 0.67 -
30.6

8 

-
28.2

5 

10.3 

10  log(𝑁𝑁𝑁𝑁2) = 𝑓𝑓(log 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆1000) 

0.66 0.63 -
30.4

5 

-
29.0

0 

10.2 

 

As can be seen, the best values of r2 and adj r2 are achieved for model 1, belonging to stream 1 of 
the models, which is between normal values of NO2 and road density values of levels 1, 2, and 3 
roads with a search radius of 750m. This model also gives the lowest AIC and BIC values in stream 
1 of the models. In stream 2, the best model is model 6, which is for the same NO2 and road density 
values of levels 1, 2, and 3 roads with a search radius of 750m, however with log10 values of all 
these parameters. This model gives lower r2 and adj r2 values, however, AIC and BIC values are 
negative values and much lower as compared to model 1. Based on adj r2 values, it can be said that 
model 1 explains 81% of the variations in NO2 values whereas model 6 explains 74% of such 
variation. Thus, it can be concluded that the contribution of road traffic in average NO2 value is 
around 75-80% in Jaipur city. To further compare these models, a posterior model probability (pm) 
is defined, as given in eqn. 9. 

 
0.86 0.81 64.47 66.90 42.6
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  Stream 2: log10 values of parameters 

6  log(𝑁𝑁𝑁𝑁2) =
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𝑆𝑆𝑆𝑆750, 𝑅𝑅𝑅𝑅𝐿𝐿3

𝑆𝑆𝑆𝑆750) 

0.81 0.74 -
33.5

8 

-
31.1

6 

39.7 

7  log(𝑁𝑁𝑁𝑁2) =
𝑓𝑓(log 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝐿𝐿1

𝑆𝑆𝑆𝑆1000, 𝑅𝑅𝑅𝑅𝐿𝐿2
𝑆𝑆𝑆𝑆1000, 𝑅𝑅𝑅𝑅𝐿𝐿3

𝑆𝑆𝑆𝑆1000) 

0.80 0.72 -
32.7

5 

-
30.3

2 

27.6 

8  log(𝑁𝑁𝑁𝑁2) =
𝑓𝑓(log 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝐿𝐿1

𝑆𝑆𝑆𝑆1000, 𝑅𝑅𝑅𝑅𝐿𝐿3
𝑆𝑆𝑆𝑆1000) 

0.72 0.66 -
30.7

6 

-
28.8

2 

12.1 

9  log(𝑁𝑁𝑁𝑁2) =
𝑓𝑓(log 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝐿𝐿1

𝑆𝑆𝑆𝑆500, 𝑅𝑅𝑅𝑅𝐿𝐿2
𝑆𝑆𝑆𝑆500, 𝑅𝑅𝑅𝑅𝐿𝐿3

𝑆𝑆𝑆𝑆500) 

0.76 0.67 -
30.6

8 

-
28.2

5 

10.3 

10  log(𝑁𝑁𝑁𝑁2) = 𝑓𝑓(log 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆1000) 

0.66 0.63 -
30.4

5 

-
29.0

0 

10.2 

 

As can be seen, the best values of r2 and adj r2 are achieved for model 1, belonging to stream 1 of 
the models, which is between normal values of NO2 and road density values of levels 1, 2, and 3 
roads with a search radius of 750m. This model also gives the lowest AIC and BIC values in stream 
1 of the models. In stream 2, the best model is model 6, which is for the same NO2 and road density 
values of levels 1, 2, and 3 roads with a search radius of 750m, however with log10 values of all 
these parameters. This model gives lower r2 and adj r2 values, however, AIC and BIC values are 
negative values and much lower as compared to model 1. Based on adj r2 values, it can be said that 
model 1 explains 81% of the variations in NO2 values whereas model 6 explains 74% of such 
variation. Thus, it can be concluded that the contribution of road traffic in average NO2 value is 
around 75-80% in Jaipur city. To further compare these models, a posterior model probability (pm) 
is defined, as given in eqn. 9. 
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Table 5: Performance parameters of different parameters 

Model 
numb

er 

Stream 1: Normal values of parameters 

Model description r2 adj 
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7 
66.9
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42.6 
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69.2

7 
10.4 

4  𝑁𝑁𝑁𝑁2 = 𝑓𝑓(𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆1000) 0.76 0.74 67.1

7 
68.6

2 
10.0 

5  𝑁𝑁𝑁𝑁2 = 𝑓𝑓(𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆1250, 𝑅𝑅𝑅𝑅𝐿𝐿3

𝑆𝑆𝑆𝑆1250) 0.80 0.75 67.1
8 

69.1
2 

8.9 

  Stream 2: log10 values of parameters 

6  log(𝑁𝑁𝑁𝑁2) =
𝑓𝑓(log 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝐿𝐿1

𝑆𝑆𝑆𝑆750, 𝑅𝑅𝑅𝑅𝐿𝐿2
𝑆𝑆𝑆𝑆750, 𝑅𝑅𝑅𝑅𝐿𝐿3

𝑆𝑆𝑆𝑆750) 

0.81 0.74 -
33.5

8 

-
31.1

6 

39.7 

7  log(𝑁𝑁𝑁𝑁2) =
𝑓𝑓(log 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝐿𝐿1

𝑆𝑆𝑆𝑆1000, 𝑅𝑅𝑅𝑅𝐿𝐿2
𝑆𝑆𝑆𝑆1000, 𝑅𝑅𝑅𝑅𝐿𝐿3

𝑆𝑆𝑆𝑆1000) 

0.80 0.72 -
32.7

5 

-
30.3

2 

27.6 

8  log(𝑁𝑁𝑁𝑁2) =
𝑓𝑓(log 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝐿𝐿1

𝑆𝑆𝑆𝑆1000, 𝑅𝑅𝑅𝑅𝐿𝐿3
𝑆𝑆𝑆𝑆1000) 

0.72 0.66 -
30.7

6 

-
28.8

2 

12.1 

9  log(𝑁𝑁𝑁𝑁2) =
𝑓𝑓(log 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝐿𝐿1

𝑆𝑆𝑆𝑆500, 𝑅𝑅𝑅𝑅𝐿𝐿2
𝑆𝑆𝑆𝑆500, 𝑅𝑅𝑅𝑅𝐿𝐿3

𝑆𝑆𝑆𝑆500) 

0.76 0.67 -
30.6

8 

-
28.2

5 

10.3 

10  log(𝑁𝑁𝑁𝑁2) = 𝑓𝑓(log 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆1000) 

0.66 0.63 -
30.4

5 

-
29.0

0 

10.2 

 

As can be seen, the best values of r2 and adj r2 are achieved for model 1, belonging to stream 1 of 
the models, which is between normal values of NO2 and road density values of levels 1, 2, and 3 
roads with a search radius of 750m. This model also gives the lowest AIC and BIC values in stream 
1 of the models. In stream 2, the best model is model 6, which is for the same NO2 and road density 
values of levels 1, 2, and 3 roads with a search radius of 750m, however with log10 values of all 
these parameters. This model gives lower r2 and adj r2 values, however, AIC and BIC values are 
negative values and much lower as compared to model 1. Based on adj r2 values, it can be said that 
model 1 explains 81% of the variations in NO2 values whereas model 6 explains 74% of such 
variation. Thus, it can be concluded that the contribution of road traffic in average NO2 value is 
around 75-80% in Jaipur city. To further compare these models, a posterior model probability (pm) 
is defined, as given in eqn. 9. 

 
0.83 0.77 66.84 69.27 10.4
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Table 5: Performance parameters of different parameters 

Model 
numb

er 

Stream 1: Normal values of parameters 

Model description r2 adj 
r2 AIC BIC pm 

1 𝑁𝑁𝑁𝑁2 = 𝑓𝑓(𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆750, 𝑅𝑅𝑅𝑅𝐿𝐿2

𝑆𝑆𝑆𝑆750, 𝑅𝑅𝑅𝑅𝐿𝐿3
𝑆𝑆𝑆𝑆750)  0.86 0.81 64.4

7 
66.9

0 
42.6 

2  𝑁𝑁𝑁𝑁2 = 𝑓𝑓(𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆1000, 𝑅𝑅𝑅𝑅𝐿𝐿2

𝑆𝑆𝑆𝑆1000, 𝑅𝑅𝑅𝑅𝐿𝐿3
𝑆𝑆𝑆𝑆1000) 0.85 0.80 65.2

0 
67.6

2 
28.1 

3 𝑁𝑁𝑁𝑁2 = 𝑓𝑓(𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆500, 𝑅𝑅𝑅𝑅𝐿𝐿2

𝑆𝑆𝑆𝑆500, 𝑅𝑅𝑅𝑅𝐿𝐿3
𝑆𝑆𝑆𝑆500)  0.83 0.77 66.8

4 
69.2

7 
10.4 

4  𝑁𝑁𝑁𝑁2 = 𝑓𝑓(𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆1000) 0.76 0.74 67.1

7 
68.6

2 
10.0 

5  𝑁𝑁𝑁𝑁2 = 𝑓𝑓(𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆1250, 𝑅𝑅𝑅𝑅𝐿𝐿3

𝑆𝑆𝑆𝑆1250) 0.80 0.75 67.1
8 

69.1
2 

8.9 

  Stream 2: log10 values of parameters 

6  log(𝑁𝑁𝑁𝑁2) =
𝑓𝑓(log 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝐿𝐿1

𝑆𝑆𝑆𝑆750, 𝑅𝑅𝑅𝑅𝐿𝐿2
𝑆𝑆𝑆𝑆750, 𝑅𝑅𝑅𝑅𝐿𝐿3

𝑆𝑆𝑆𝑆750) 

0.81 0.74 -
33.5

8 

-
31.1

6 

39.7 

7  log(𝑁𝑁𝑁𝑁2) =
𝑓𝑓(log 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝐿𝐿1

𝑆𝑆𝑆𝑆1000, 𝑅𝑅𝑅𝑅𝐿𝐿2
𝑆𝑆𝑆𝑆1000, 𝑅𝑅𝑅𝑅𝐿𝐿3

𝑆𝑆𝑆𝑆1000) 

0.80 0.72 -
32.7

5 

-
30.3

2 

27.6 

8  log(𝑁𝑁𝑁𝑁2) =
𝑓𝑓(log 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝐿𝐿1

𝑆𝑆𝑆𝑆1000, 𝑅𝑅𝑅𝑅𝐿𝐿3
𝑆𝑆𝑆𝑆1000) 

0.72 0.66 -
30.7

6 

-
28.8

2 

12.1 

9  log(𝑁𝑁𝑁𝑁2) =
𝑓𝑓(log 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝐿𝐿1

𝑆𝑆𝑆𝑆500, 𝑅𝑅𝑅𝑅𝐿𝐿2
𝑆𝑆𝑆𝑆500, 𝑅𝑅𝑅𝑅𝐿𝐿3

𝑆𝑆𝑆𝑆500) 

0.76 0.67 -
30.6

8 

-
28.2

5 

10.3 

10  log(𝑁𝑁𝑁𝑁2) = 𝑓𝑓(log 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆1000) 

0.66 0.63 -
30.4

5 

-
29.0

0 

10.2 

 

As can be seen, the best values of r2 and adj r2 are achieved for model 1, belonging to stream 1 of 
the models, which is between normal values of NO2 and road density values of levels 1, 2, and 3 
roads with a search radius of 750m. This model also gives the lowest AIC and BIC values in stream 
1 of the models. In stream 2, the best model is model 6, which is for the same NO2 and road density 
values of levels 1, 2, and 3 roads with a search radius of 750m, however with log10 values of all 
these parameters. This model gives lower r2 and adj r2 values, however, AIC and BIC values are 
negative values and much lower as compared to model 1. Based on adj r2 values, it can be said that 
model 1 explains 81% of the variations in NO2 values whereas model 6 explains 74% of such 
variation. Thus, it can be concluded that the contribution of road traffic in average NO2 value is 
around 75-80% in Jaipur city. To further compare these models, a posterior model probability (pm) 
is defined, as given in eqn. 9. 

0.76 0.74 67.17 68.62 10.0
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Table 5: Performance parameters of different parameters 

Model 
numb

er 

Stream 1: Normal values of parameters 

Model description r2 adj 
r2 AIC BIC pm 

1 𝑁𝑁𝑁𝑁2 = 𝑓𝑓(𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆750, 𝑅𝑅𝑅𝑅𝐿𝐿2

𝑆𝑆𝑆𝑆750, 𝑅𝑅𝑅𝑅𝐿𝐿3
𝑆𝑆𝑆𝑆750)  0.86 0.81 64.4

7 
66.9

0 
42.6 

2  𝑁𝑁𝑁𝑁2 = 𝑓𝑓(𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆1000, 𝑅𝑅𝑅𝑅𝐿𝐿2

𝑆𝑆𝑆𝑆1000, 𝑅𝑅𝑅𝑅𝐿𝐿3
𝑆𝑆𝑆𝑆1000) 0.85 0.80 65.2

0 
67.6

2 
28.1 

3 𝑁𝑁𝑁𝑁2 = 𝑓𝑓(𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆500, 𝑅𝑅𝑅𝑅𝐿𝐿2

𝑆𝑆𝑆𝑆500, 𝑅𝑅𝑅𝑅𝐿𝐿3
𝑆𝑆𝑆𝑆500)  0.83 0.77 66.8

4 
69.2

7 
10.4 

4  𝑁𝑁𝑁𝑁2 = 𝑓𝑓(𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆1000) 0.76 0.74 67.1

7 
68.6

2 
10.0 

5  𝑁𝑁𝑁𝑁2 = 𝑓𝑓(𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆1250, 𝑅𝑅𝑅𝑅𝐿𝐿3

𝑆𝑆𝑆𝑆1250) 0.80 0.75 67.1
8 

69.1
2 

8.9 

  Stream 2: log10 values of parameters 

6  log(𝑁𝑁𝑁𝑁2) =
𝑓𝑓(log 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝐿𝐿1

𝑆𝑆𝑆𝑆750, 𝑅𝑅𝑅𝑅𝐿𝐿2
𝑆𝑆𝑆𝑆750, 𝑅𝑅𝑅𝑅𝐿𝐿3

𝑆𝑆𝑆𝑆750) 

0.81 0.74 -
33.5

8 

-
31.1

6 

39.7 

7  log(𝑁𝑁𝑁𝑁2) =
𝑓𝑓(log 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝐿𝐿1

𝑆𝑆𝑆𝑆1000, 𝑅𝑅𝑅𝑅𝐿𝐿2
𝑆𝑆𝑆𝑆1000, 𝑅𝑅𝑅𝑅𝐿𝐿3

𝑆𝑆𝑆𝑆1000) 

0.80 0.72 -
32.7

5 

-
30.3

2 

27.6 

8  log(𝑁𝑁𝑁𝑁2) =
𝑓𝑓(log 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝐿𝐿1

𝑆𝑆𝑆𝑆1000, 𝑅𝑅𝑅𝑅𝐿𝐿3
𝑆𝑆𝑆𝑆1000) 

0.72 0.66 -
30.7

6 

-
28.8

2 

12.1 

9  log(𝑁𝑁𝑁𝑁2) =
𝑓𝑓(log 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝐿𝐿1

𝑆𝑆𝑆𝑆500, 𝑅𝑅𝑅𝑅𝐿𝐿2
𝑆𝑆𝑆𝑆500, 𝑅𝑅𝑅𝑅𝐿𝐿3

𝑆𝑆𝑆𝑆500) 

0.76 0.67 -
30.6

8 

-
28.2

5 

10.3 

10  log(𝑁𝑁𝑁𝑁2) = 𝑓𝑓(log 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆1000) 

0.66 0.63 -
30.4

5 

-
29.0

0 

10.2 

 

As can be seen, the best values of r2 and adj r2 are achieved for model 1, belonging to stream 1 of 
the models, which is between normal values of NO2 and road density values of levels 1, 2, and 3 
roads with a search radius of 750m. This model also gives the lowest AIC and BIC values in stream 
1 of the models. In stream 2, the best model is model 6, which is for the same NO2 and road density 
values of levels 1, 2, and 3 roads with a search radius of 750m, however with log10 values of all 
these parameters. This model gives lower r2 and adj r2 values, however, AIC and BIC values are 
negative values and much lower as compared to model 1. Based on adj r2 values, it can be said that 
model 1 explains 81% of the variations in NO2 values whereas model 6 explains 74% of such 
variation. Thus, it can be concluded that the contribution of road traffic in average NO2 value is 
around 75-80% in Jaipur city. To further compare these models, a posterior model probability (pm) 
is defined, as given in eqn. 9. 

0.80 0.75 67.18 69.12 8.9

 Stream 2: log10 values of parameters

6
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Table 5: Performance parameters of different parameters 

Model 
numb

er 

Stream 1: Normal values of parameters 

Model description r2 adj 
r2 AIC BIC pm 

1 𝑁𝑁𝑁𝑁2 = 𝑓𝑓(𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆750, 𝑅𝑅𝑅𝑅𝐿𝐿2

𝑆𝑆𝑆𝑆750, 𝑅𝑅𝑅𝑅𝐿𝐿3
𝑆𝑆𝑆𝑆750)  0.86 0.81 64.4

7 
66.9

0 
42.6 

2  𝑁𝑁𝑁𝑁2 = 𝑓𝑓(𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆1000, 𝑅𝑅𝑅𝑅𝐿𝐿2

𝑆𝑆𝑆𝑆1000, 𝑅𝑅𝑅𝑅𝐿𝐿3
𝑆𝑆𝑆𝑆1000) 0.85 0.80 65.2

0 
67.6

2 
28.1 

3 𝑁𝑁𝑁𝑁2 = 𝑓𝑓(𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆500, 𝑅𝑅𝑅𝑅𝐿𝐿2

𝑆𝑆𝑆𝑆500, 𝑅𝑅𝑅𝑅𝐿𝐿3
𝑆𝑆𝑆𝑆500)  0.83 0.77 66.8

4 
69.2

7 
10.4 

4  𝑁𝑁𝑁𝑁2 = 𝑓𝑓(𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆1000) 0.76 0.74 67.1

7 
68.6

2 
10.0 

5  𝑁𝑁𝑁𝑁2 = 𝑓𝑓(𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆1250, 𝑅𝑅𝑅𝑅𝐿𝐿3

𝑆𝑆𝑆𝑆1250) 0.80 0.75 67.1
8 

69.1
2 

8.9 

  Stream 2: log10 values of parameters 

6  log(𝑁𝑁𝑁𝑁2) =
𝑓𝑓(log 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝐿𝐿1

𝑆𝑆𝑆𝑆750, 𝑅𝑅𝑅𝑅𝐿𝐿2
𝑆𝑆𝑆𝑆750, 𝑅𝑅𝑅𝑅𝐿𝐿3

𝑆𝑆𝑆𝑆750) 

0.81 0.74 -
33.5

8 

-
31.1

6 

39.7 

7  log(𝑁𝑁𝑁𝑁2) =
𝑓𝑓(log 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝐿𝐿1

𝑆𝑆𝑆𝑆1000, 𝑅𝑅𝑅𝑅𝐿𝐿2
𝑆𝑆𝑆𝑆1000, 𝑅𝑅𝑅𝑅𝐿𝐿3

𝑆𝑆𝑆𝑆1000) 

0.80 0.72 -
32.7

5 

-
30.3

2 

27.6 

8  log(𝑁𝑁𝑁𝑁2) =
𝑓𝑓(log 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝐿𝐿1

𝑆𝑆𝑆𝑆1000, 𝑅𝑅𝑅𝑅𝐿𝐿3
𝑆𝑆𝑆𝑆1000) 

0.72 0.66 -
30.7

6 

-
28.8

2 

12.1 

9  log(𝑁𝑁𝑁𝑁2) =
𝑓𝑓(log 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝐿𝐿1

𝑆𝑆𝑆𝑆500, 𝑅𝑅𝑅𝑅𝐿𝐿2
𝑆𝑆𝑆𝑆500, 𝑅𝑅𝑅𝑅𝐿𝐿3

𝑆𝑆𝑆𝑆500) 

0.76 0.67 -
30.6

8 

-
28.2

5 

10.3 

10  log(𝑁𝑁𝑁𝑁2) = 𝑓𝑓(log 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆1000) 

0.66 0.63 -
30.4

5 

-
29.0

0 

10.2 

 

As can be seen, the best values of r2 and adj r2 are achieved for model 1, belonging to stream 1 of 
the models, which is between normal values of NO2 and road density values of levels 1, 2, and 3 
roads with a search radius of 750m. This model also gives the lowest AIC and BIC values in stream 
1 of the models. In stream 2, the best model is model 6, which is for the same NO2 and road density 
values of levels 1, 2, and 3 roads with a search radius of 750m, however with log10 values of all 
these parameters. This model gives lower r2 and adj r2 values, however, AIC and BIC values are 
negative values and much lower as compared to model 1. Based on adj r2 values, it can be said that 
model 1 explains 81% of the variations in NO2 values whereas model 6 explains 74% of such 
variation. Thus, it can be concluded that the contribution of road traffic in average NO2 value is 
around 75-80% in Jaipur city. To further compare these models, a posterior model probability (pm) 
is defined, as given in eqn. 9. 

0.81 0.74 -33.58 -31.16 39.7

7
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Table 5: Performance parameters of different parameters 

Model 
numb

er 

Stream 1: Normal values of parameters 

Model description r2 adj 
r2 AIC BIC pm 

1 𝑁𝑁𝑁𝑁2 = 𝑓𝑓(𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆750, 𝑅𝑅𝑅𝑅𝐿𝐿2

𝑆𝑆𝑆𝑆750, 𝑅𝑅𝑅𝑅𝐿𝐿3
𝑆𝑆𝑆𝑆750)  0.86 0.81 64.4

7 
66.9

0 
42.6 

2  𝑁𝑁𝑁𝑁2 = 𝑓𝑓(𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆1000, 𝑅𝑅𝑅𝑅𝐿𝐿2

𝑆𝑆𝑆𝑆1000, 𝑅𝑅𝑅𝑅𝐿𝐿3
𝑆𝑆𝑆𝑆1000) 0.85 0.80 65.2

0 
67.6

2 
28.1 

3 𝑁𝑁𝑁𝑁2 = 𝑓𝑓(𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆500, 𝑅𝑅𝑅𝑅𝐿𝐿2

𝑆𝑆𝑆𝑆500, 𝑅𝑅𝑅𝑅𝐿𝐿3
𝑆𝑆𝑆𝑆500)  0.83 0.77 66.8

4 
69.2

7 
10.4 

4  𝑁𝑁𝑁𝑁2 = 𝑓𝑓(𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆1000) 0.76 0.74 67.1

7 
68.6

2 
10.0 

5  𝑁𝑁𝑁𝑁2 = 𝑓𝑓(𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆1250, 𝑅𝑅𝑅𝑅𝐿𝐿3

𝑆𝑆𝑆𝑆1250) 0.80 0.75 67.1
8 

69.1
2 

8.9 

  Stream 2: log10 values of parameters 

6  log(𝑁𝑁𝑁𝑁2) =
𝑓𝑓(log 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝐿𝐿1

𝑆𝑆𝑆𝑆750, 𝑅𝑅𝑅𝑅𝐿𝐿2
𝑆𝑆𝑆𝑆750, 𝑅𝑅𝑅𝑅𝐿𝐿3

𝑆𝑆𝑆𝑆750) 

0.81 0.74 -
33.5

8 

-
31.1

6 

39.7 

7  log(𝑁𝑁𝑁𝑁2) =
𝑓𝑓(log 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝐿𝐿1

𝑆𝑆𝑆𝑆1000, 𝑅𝑅𝑅𝑅𝐿𝐿2
𝑆𝑆𝑆𝑆1000, 𝑅𝑅𝑅𝑅𝐿𝐿3

𝑆𝑆𝑆𝑆1000) 

0.80 0.72 -
32.7

5 

-
30.3

2 

27.6 

8  log(𝑁𝑁𝑁𝑁2) =
𝑓𝑓(log 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝐿𝐿1

𝑆𝑆𝑆𝑆1000, 𝑅𝑅𝑅𝑅𝐿𝐿3
𝑆𝑆𝑆𝑆1000) 

0.72 0.66 -
30.7

6 

-
28.8

2 

12.1 

9  log(𝑁𝑁𝑁𝑁2) =
𝑓𝑓(log 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝐿𝐿1

𝑆𝑆𝑆𝑆500, 𝑅𝑅𝑅𝑅𝐿𝐿2
𝑆𝑆𝑆𝑆500, 𝑅𝑅𝑅𝑅𝐿𝐿3

𝑆𝑆𝑆𝑆500) 

0.76 0.67 -
30.6

8 

-
28.2

5 

10.3 

10  log(𝑁𝑁𝑁𝑁2) = 𝑓𝑓(log 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆1000) 

0.66 0.63 -
30.4

5 

-
29.0

0 

10.2 

 

As can be seen, the best values of r2 and adj r2 are achieved for model 1, belonging to stream 1 of 
the models, which is between normal values of NO2 and road density values of levels 1, 2, and 3 
roads with a search radius of 750m. This model also gives the lowest AIC and BIC values in stream 
1 of the models. In stream 2, the best model is model 6, which is for the same NO2 and road density 
values of levels 1, 2, and 3 roads with a search radius of 750m, however with log10 values of all 
these parameters. This model gives lower r2 and adj r2 values, however, AIC and BIC values are 
negative values and much lower as compared to model 1. Based on adj r2 values, it can be said that 
model 1 explains 81% of the variations in NO2 values whereas model 6 explains 74% of such 
variation. Thus, it can be concluded that the contribution of road traffic in average NO2 value is 
around 75-80% in Jaipur city. To further compare these models, a posterior model probability (pm) 
is defined, as given in eqn. 9. 

0.80 0.72 -32.75 -30.32 27.6

8
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Table 5: Performance parameters of different parameters 

Model 
numb

er 

Stream 1: Normal values of parameters 

Model description r2 adj 
r2 AIC BIC pm 

1 𝑁𝑁𝑁𝑁2 = 𝑓𝑓(𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆750, 𝑅𝑅𝑅𝑅𝐿𝐿2

𝑆𝑆𝑆𝑆750, 𝑅𝑅𝑅𝑅𝐿𝐿3
𝑆𝑆𝑆𝑆750)  0.86 0.81 64.4

7 
66.9

0 
42.6 

2  𝑁𝑁𝑁𝑁2 = 𝑓𝑓(𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆1000, 𝑅𝑅𝑅𝑅𝐿𝐿2

𝑆𝑆𝑆𝑆1000, 𝑅𝑅𝑅𝑅𝐿𝐿3
𝑆𝑆𝑆𝑆1000) 0.85 0.80 65.2

0 
67.6

2 
28.1 

3 𝑁𝑁𝑁𝑁2 = 𝑓𝑓(𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆500, 𝑅𝑅𝑅𝑅𝐿𝐿2

𝑆𝑆𝑆𝑆500, 𝑅𝑅𝑅𝑅𝐿𝐿3
𝑆𝑆𝑆𝑆500)  0.83 0.77 66.8

4 
69.2

7 
10.4 

4  𝑁𝑁𝑁𝑁2 = 𝑓𝑓(𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆1000) 0.76 0.74 67.1

7 
68.6

2 
10.0 

5  𝑁𝑁𝑁𝑁2 = 𝑓𝑓(𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆1250, 𝑅𝑅𝑅𝑅𝐿𝐿3

𝑆𝑆𝑆𝑆1250) 0.80 0.75 67.1
8 

69.1
2 

8.9 

  Stream 2: log10 values of parameters 

6  log(𝑁𝑁𝑁𝑁2) =
𝑓𝑓(log 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝐿𝐿1

𝑆𝑆𝑆𝑆750, 𝑅𝑅𝑅𝑅𝐿𝐿2
𝑆𝑆𝑆𝑆750, 𝑅𝑅𝑅𝑅𝐿𝐿3

𝑆𝑆𝑆𝑆750) 

0.81 0.74 -
33.5

8 

-
31.1

6 

39.7 

7  log(𝑁𝑁𝑁𝑁2) =
𝑓𝑓(log 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝐿𝐿1

𝑆𝑆𝑆𝑆1000, 𝑅𝑅𝑅𝑅𝐿𝐿2
𝑆𝑆𝑆𝑆1000, 𝑅𝑅𝑅𝑅𝐿𝐿3

𝑆𝑆𝑆𝑆1000) 

0.80 0.72 -
32.7

5 

-
30.3

2 

27.6 

8  log(𝑁𝑁𝑁𝑁2) =
𝑓𝑓(log 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝐿𝐿1

𝑆𝑆𝑆𝑆1000, 𝑅𝑅𝑅𝑅𝐿𝐿3
𝑆𝑆𝑆𝑆1000) 

0.72 0.66 -
30.7

6 

-
28.8

2 

12.1 

9  log(𝑁𝑁𝑁𝑁2) =
𝑓𝑓(log 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝐿𝐿1

𝑆𝑆𝑆𝑆500, 𝑅𝑅𝑅𝑅𝐿𝐿2
𝑆𝑆𝑆𝑆500, 𝑅𝑅𝑅𝑅𝐿𝐿3

𝑆𝑆𝑆𝑆500) 

0.76 0.67 -
30.6

8 

-
28.2

5 

10.3 

10  log(𝑁𝑁𝑁𝑁2) = 𝑓𝑓(log 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆1000) 

0.66 0.63 -
30.4

5 

-
29.0

0 

10.2 

 

As can be seen, the best values of r2 and adj r2 are achieved for model 1, belonging to stream 1 of 
the models, which is between normal values of NO2 and road density values of levels 1, 2, and 3 
roads with a search radius of 750m. This model also gives the lowest AIC and BIC values in stream 
1 of the models. In stream 2, the best model is model 6, which is for the same NO2 and road density 
values of levels 1, 2, and 3 roads with a search radius of 750m, however with log10 values of all 
these parameters. This model gives lower r2 and adj r2 values, however, AIC and BIC values are 
negative values and much lower as compared to model 1. Based on adj r2 values, it can be said that 
model 1 explains 81% of the variations in NO2 values whereas model 6 explains 74% of such 
variation. Thus, it can be concluded that the contribution of road traffic in average NO2 value is 
around 75-80% in Jaipur city. To further compare these models, a posterior model probability (pm) 
is defined, as given in eqn. 9. 

0.72 0.66 -30.76 -28.82 12.1

9
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Table 5: Performance parameters of different parameters 

Model 
numb

er 

Stream 1: Normal values of parameters 

Model description r2 adj 
r2 AIC BIC pm 

1 𝑁𝑁𝑁𝑁2 = 𝑓𝑓(𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆750, 𝑅𝑅𝑅𝑅𝐿𝐿2

𝑆𝑆𝑆𝑆750, 𝑅𝑅𝑅𝑅𝐿𝐿3
𝑆𝑆𝑆𝑆750)  0.86 0.81 64.4

7 
66.9

0 
42.6 

2  𝑁𝑁𝑁𝑁2 = 𝑓𝑓(𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆1000, 𝑅𝑅𝑅𝑅𝐿𝐿2

𝑆𝑆𝑆𝑆1000, 𝑅𝑅𝑅𝑅𝐿𝐿3
𝑆𝑆𝑆𝑆1000) 0.85 0.80 65.2

0 
67.6

2 
28.1 

3 𝑁𝑁𝑁𝑁2 = 𝑓𝑓(𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆500, 𝑅𝑅𝑅𝑅𝐿𝐿2

𝑆𝑆𝑆𝑆500, 𝑅𝑅𝑅𝑅𝐿𝐿3
𝑆𝑆𝑆𝑆500)  0.83 0.77 66.8

4 
69.2

7 
10.4 

4  𝑁𝑁𝑁𝑁2 = 𝑓𝑓(𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆1000) 0.76 0.74 67.1

7 
68.6

2 
10.0 

5  𝑁𝑁𝑁𝑁2 = 𝑓𝑓(𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆1250, 𝑅𝑅𝑅𝑅𝐿𝐿3

𝑆𝑆𝑆𝑆1250) 0.80 0.75 67.1
8 

69.1
2 

8.9 

  Stream 2: log10 values of parameters 

6  log(𝑁𝑁𝑁𝑁2) =
𝑓𝑓(log 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝐿𝐿1

𝑆𝑆𝑆𝑆750, 𝑅𝑅𝑅𝑅𝐿𝐿2
𝑆𝑆𝑆𝑆750, 𝑅𝑅𝑅𝑅𝐿𝐿3

𝑆𝑆𝑆𝑆750) 

0.81 0.74 -
33.5

8 

-
31.1

6 

39.7 

7  log(𝑁𝑁𝑁𝑁2) =
𝑓𝑓(log 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝐿𝐿1

𝑆𝑆𝑆𝑆1000, 𝑅𝑅𝑅𝑅𝐿𝐿2
𝑆𝑆𝑆𝑆1000, 𝑅𝑅𝑅𝑅𝐿𝐿3

𝑆𝑆𝑆𝑆1000) 

0.80 0.72 -
32.7

5 

-
30.3

2 

27.6 

8  log(𝑁𝑁𝑁𝑁2) =
𝑓𝑓(log 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝐿𝐿1

𝑆𝑆𝑆𝑆1000, 𝑅𝑅𝑅𝑅𝐿𝐿3
𝑆𝑆𝑆𝑆1000) 

0.72 0.66 -
30.7

6 

-
28.8

2 

12.1 

9  log(𝑁𝑁𝑁𝑁2) =
𝑓𝑓(log 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝐿𝐿1

𝑆𝑆𝑆𝑆500, 𝑅𝑅𝑅𝑅𝐿𝐿2
𝑆𝑆𝑆𝑆500, 𝑅𝑅𝑅𝑅𝐿𝐿3

𝑆𝑆𝑆𝑆500) 

0.76 0.67 -
30.6

8 

-
28.2

5 

10.3 

10  log(𝑁𝑁𝑁𝑁2) = 𝑓𝑓(log 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑓𝑓 𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆1000) 

0.66 0.63 -
30.4

5 

-
29.0

0 

10.2 

 

As can be seen, the best values of r2 and adj r2 are achieved for model 1, belonging to stream 1 of 
the models, which is between normal values of NO2 and road density values of levels 1, 2, and 3 
roads with a search radius of 750m. This model also gives the lowest AIC and BIC values in stream 
1 of the models. In stream 2, the best model is model 6, which is for the same NO2 and road density 
values of levels 1, 2, and 3 roads with a search radius of 750m, however with log10 values of all 
these parameters. This model gives lower r2 and adj r2 values, however, AIC and BIC values are 
negative values and much lower as compared to model 1. Based on adj r2 values, it can be said that 
model 1 explains 81% of the variations in NO2 values whereas model 6 explains 74% of such 
variation. Thus, it can be concluded that the contribution of road traffic in average NO2 value is 
around 75-80% in Jaipur city. To further compare these models, a posterior model probability (pm) 
is defined, as given in eqn. 9. 

0.76 0.67 -30.68 -28.25 10.3

10
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Table 5: Performance parameters of different parameters 

Model 
numb

er 

Stream 1: Normal values of parameters 

Model description r2 adj 
r2 AIC BIC pm 

1 𝑁𝑁𝑁𝑁2 = 𝑓𝑓(𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆750, 𝑅𝑅𝑅𝑅𝐿𝐿2

𝑆𝑆𝑆𝑆750, 𝑅𝑅𝑅𝑅𝐿𝐿3
𝑆𝑆𝑆𝑆750)  0.86 0.81 64.4

7 
66.9

0 
42.6 

2  𝑁𝑁𝑁𝑁2 = 𝑓𝑓(𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆1000, 𝑅𝑅𝑅𝑅𝐿𝐿2

𝑆𝑆𝑆𝑆1000, 𝑅𝑅𝑅𝑅𝐿𝐿3
𝑆𝑆𝑆𝑆1000) 0.85 0.80 65.2

0 
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As can be seen, the best values of r2 and adj r2 are achieved for model 1, belonging to stream 1 of 
the models, which is between normal values of NO2 and road density values of levels 1, 2, and 3 
roads with a search radius of 750m. This model also gives the lowest AIC and BIC values in stream 
1 of the models. In stream 2, the best model is model 6, which is for the same NO2 and road density 
values of levels 1, 2, and 3 roads with a search radius of 750m, however with log10 values of all 
these parameters. This model gives lower r2 and adj r2 values, however, AIC and BIC values are 
negative values and much lower as compared to model 1. Based on adj r2 values, it can be said that 
model 1 explains 81% of the variations in NO2 values whereas model 6 explains 74% of such 
variation. Thus, it can be concluded that the contribution of road traffic in average NO2 value is 
around 75-80% in Jaipur city. To further compare these models, a posterior model probability (pm) 
is defined, as given in eqn. 9. 
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Fig. 8: Road Density Map of Level 01 Roads with Search Radius: 750 m 

 

Fig. 9: Buffers Around Monitoring Stations of Radius 500 m 

Table 4 shows the value of road densities for all three levels of the road network around each 
monitoring station for a search radius of 750 and 1000 m. 
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𝑝𝑝𝑚𝑚 = 𝑒𝑒−0.5∆𝑚𝑚

∑ 𝑒𝑒−0.5∆𝑗𝑗𝑚𝑚
𝑗𝑗=1

 (9) 

here 

∆𝑚𝑚= 𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚 − 𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚  

AICm: AIC value for model m; 

AICmin: the minimum AIC values of all models. 

Table 5 also shows the values of posterior model probability of all the models considering the two 
streams separately and considering only the 5 best models per stream. As can be seen, model 1 has 
about 42.6% probability of being the best amongst the first five models of stream 1 whereas model 
6 has a 39.7% probability of being the best amongst the first five models of stream 2. 

As a next step, models 1 and 6 are further analyzed to compare them against each other. Fig. 9 
shows the scatter plot between NO2 and 𝑅𝑅𝑅𝑅𝐿𝐿1

𝑆𝑆𝑆𝑆750  and log10 variant of the same parameters. As 
can be seen from the graphs there is a trend in both the curves, however, the range of values is 
considerably lower in model 6 as compared to model 1. 
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Fig. 10: (a) Scatter plot between NO2 and 𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆750 (b) Between log10 values 

In model 1, coefficients for 𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆750, 𝑅𝑅𝑅𝑅𝐿𝐿2

𝑆𝑆𝑆𝑆750 and 𝑅𝑅𝑅𝑅𝐿𝐿3
𝑆𝑆𝑆𝑆750are calculated as 7.10, 2.52, and -0.58 

respectively, and the intercept is 15.07. Similarly, the coefficient for model 6 are 0.45, 0.23, and -
0.31 respectively for log10 values of 𝑅𝑅𝑅𝑅𝐿𝐿1

𝑆𝑆𝑆𝑆750, 𝑅𝑅𝑅𝑅𝐿𝐿2
𝑆𝑆𝑆𝑆750 and 𝑅𝑅𝑅𝑅𝐿𝐿3

𝑆𝑆𝑆𝑆750 and the intercept is 1.57. 

Fig. 10 (a) and (b) shows the graphs between the observed and computed values of NO2 for model 
1 and 6, respectively. 
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1 and 6, respectively. 
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about 42.6% probability of being the best amongst the first five models of stream 1 whereas model 
6 has a 39.7% probability of being the best amongst the first five models of stream 2. 

As a next step, models 1 and 6 are further analyzed to compare them against each other. Fig. 9 
shows the scatter plot between NO2 and 𝑅𝑅𝑅𝑅𝐿𝐿1

𝑆𝑆𝑆𝑆750  and log10 variant of the same parameters. As 
can be seen from the graphs there is a trend in both the curves, however, the range of values is 
considerably lower in model 6 as compared to model 1. 
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𝑆𝑆𝑆𝑆750 (b) Between log10 values 
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𝑆𝑆𝑆𝑆750 and 𝑅𝑅𝑅𝑅𝐿𝐿3
𝑆𝑆𝑆𝑆750are calculated as 7.10, 2.52, and -0.58 

respectively, and the intercept is 15.07. Similarly, the coefficient for model 6 are 0.45, 0.23, and -
0.31 respectively for log10 values of 𝑅𝑅𝑅𝑅𝐿𝐿1
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intercept is 1.57.

Fig. 10 (a) and (b) shows the graphs between the observed 
and computed values of NO2 for model 1 and 6, respectively.    

To compare these models for observed values at other 
cities, two CAAQMS stations of Kota and Jodhpur cities 
are used. Road maps were prepared in the vicinities of 
these stations and road density values for levels 1, 2, and 3 
roads with a search radius of 750 m were determined. Table 
6 below gives details of observed NO2 values for the year 
2019 as well as road density values of different levels for a 
search radius of 750 m.

Both the cities are also shown in Fig. 10 (a) and (b). It 
can be seen that model no. 6 poorly estimates the value for 
Kota city. For Jodhpur city, both models 1 and 6 give similar 
estimates. Therefore, it is concluded that model 1 is better 
suited to estimate the value of NO2 as compared to other 
models. Therefore, the estimated value of NO2 values of any 
area such as wards, roads, plots, or points could be computed 
by first obtaining road density values of different levels 1, 
2, and 3 of the roads at a search radius of 750 m and then 
using the eqn. 10 below
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Fig. 11: Observed Vs Computed, (a) Model 1 (b) Model 6 

To compare these models for observed values at other cities, two CAAQMS stations of Kota and 
Jodhpur cities are used. Road maps were prepared in the vicinities of these stations and road 
density values for levels 1, 2, and 3 roads with a search radius of 750 m were determined. Table 6 
below gives details of observed NO2 values for the year 2019 as well as road density values of 
different levels for a search radius of 750 m. 

Table 6: Parameters for other cities 

City NO2 
Road Density for Search 

Radius of 750 m 
Level 1 Level 2 Level 3 

Kota 29.29 2.068 0.404 16.642 
Jodhpur 29.25 1.774 1.513 17.16 

 

Both the cities are also shown in Fig. 10 (a) and (b). It can be seen that model no. 6 poorly estimates 
the value for Kota city. For Jodhpur city, both models 1 and 6 give similar estimates. Therefore, it 
is concluded that model 1 is better suited to estimate the value of NO2 as compared to other models. 
Therefore, the estimated value of NO2 values of any area such as wards, roads, plots, or points 
could be computed by first obtaining road density values of different levels 1, 2, and 3 of the roads 
at a search radius of 750 m and then using the eqn. 10 below 

𝑁𝑁𝑁𝑁2 = 15.07 +  7.10 𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆750 + 2.52  𝑅𝑅𝑅𝑅𝐿𝐿2

𝑆𝑆𝑆𝑆750 − 0.58 𝑅𝑅𝑅𝑅𝐿𝐿3
𝑆𝑆𝑆𝑆750 (10) 

Estimated values of NO2 have been calculated for all the wards of Jaipur city and the map is shown 
in Fig. 11. This map is very different from that of Fig. 6, which was developed based on 
interpolated values of NO2 and then calculating average value over different wards. Also, it can be 
seen that wards with NO2 values of more than 35 are more in Fig. 11 as compared to in Fig. 6. 
Overall it can be concluded that NO2 values derived from model 1 give a better estimate for the 
area which is farther away from the air monitoring station as compared to interpolated maps. 

 (10)

Estimated values of NO2 have been calculated for all the 
wards of Jaipur city and the map is shown in Fig. 11. This 
map is very different from that of Fig. 6, which was developed 
based on interpolated values of NO2 and then calculating 
average value over different wards. Also, it can be seen that 
wards with NO2 values of more than 35 are more in Fig. 11 
as compared to in Fig. 6. Overall it can be concluded that 
NO2 values derived from model 1 give a better estimate for 
the area which is farther away from the air monitoring station 
as compared to interpolated maps.

CONCLUSION

A new methodology is developed to estimate the level of 
air pollution parameter NO2, which is mostly caused by 
vehicular pollution, by using road density levels of different 
levels of road network in Jaipur city. The road network of 
Jaipur city is developed for 3 different levels of roads and 

Table 6: Parameters for other cities.

City NO2 Road Density for Search Radius of 750 m

Level 1 Level 2 Level 3

Kota 29.29 2.068 0.404 16.642

Jodhpur 29.25 1.774 1.513 17.16
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To compare these models for observed values at other cities, two CAAQMS stations of Kota and 
Jodhpur cities are used. Road maps were prepared in the vicinities of these stations and road 
density values for levels 1, 2, and 3 roads with a search radius of 750 m were determined. Table 6 
below gives details of observed NO2 values for the year 2019 as well as road density values of 
different levels for a search radius of 750 m. 
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Kota 29.29 2.068 0.404 16.642 
Jodhpur 29.25 1.774 1.513 17.16 

 

Both the cities are also shown in Fig. 10 (a) and (b). It can be seen that model no. 6 poorly estimates 
the value for Kota city. For Jodhpur city, both models 1 and 6 give similar estimates. Therefore, it 
is concluded that model 1 is better suited to estimate the value of NO2 as compared to other models. 
Therefore, the estimated value of NO2 values of any area such as wards, roads, plots, or points 
could be computed by first obtaining road density values of different levels 1, 2, and 3 of the roads 
at a search radius of 750 m and then using the eqn. 10 below 

𝑁𝑁𝑁𝑁2 = 15.07 +  7.10 𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆750 + 2.52  𝑅𝑅𝑅𝑅𝐿𝐿2

𝑆𝑆𝑆𝑆750 − 0.58 𝑅𝑅𝑅𝑅𝐿𝐿3
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Estimated values of NO2 have been calculated for all the wards of Jaipur city and the map is shown 
in Fig. 11. This map is very different from that of Fig. 6, which was developed based on 
interpolated values of NO2 and then calculating average value over different wards. Also, it can be 
seen that wards with NO2 values of more than 35 are more in Fig. 11 as compared to in Fig. 6. 
Overall it can be concluded that NO2 values derived from model 1 give a better estimate for the 
area which is farther away from the air monitoring station as compared to interpolated maps. 

Fig. 11: Estimated values of NO2 for different wards.
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Table 5 also shows the values of posterior model probability of all the models considering the two 
streams separately and considering only the 5 best models per stream. As can be seen, model 1 has 
about 42.6% probability of being the best amongst the first five models of stream 1 whereas model 
6 has a 39.7% probability of being the best amongst the first five models of stream 2. 

As a next step, models 1 and 6 are further analyzed to compare them against each other. Fig. 9 
shows the scatter plot between NO2 and 𝑅𝑅𝑅𝑅𝐿𝐿1

𝑆𝑆𝑆𝑆750  and log10 variant of the same parameters. As 
can be seen from the graphs there is a trend in both the curves, however, the range of values is 
considerably lower in model 6 as compared to model 1. 

  

      (a)      (b) 

Fig. 10: (a) Scatter plot between NO2 and 𝑅𝑅𝑅𝑅𝐿𝐿1
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In model 1, coefficients for 𝑅𝑅𝑅𝑅𝐿𝐿1
𝑆𝑆𝑆𝑆750, 𝑅𝑅𝑅𝑅𝐿𝐿2

𝑆𝑆𝑆𝑆750 and 𝑅𝑅𝑅𝑅𝐿𝐿3
𝑆𝑆𝑆𝑆750are calculated as 7.10, 2.52, and -0.58 

respectively, and the intercept is 15.07. Similarly, the coefficient for model 6 are 0.45, 0.23, and -
0.31 respectively for log10 values of 𝑅𝑅𝑅𝑅𝐿𝐿1

𝑆𝑆𝑆𝑆750, 𝑅𝑅𝑅𝑅𝐿𝐿2
𝑆𝑆𝑆𝑆750 and 𝑅𝑅𝑅𝑅𝐿𝐿3

𝑆𝑆𝑆𝑆750 and the intercept is 1.57. 

Fig. 10 (a) and (b) shows the graphs between the observed and computed values of NO2 for model 
1 and 6, respectively. 

Fig. 10: (a) Scatter plot between NO2 and RDL1
SR750 (b) between log10 values.

road density values are determined in the proximity of air 
pollution monitoring stations of Jaipur city. Proximity is 
defined in terms of search radius for measuring road density 
and buffer distance for air pollution monitoring stations.

It is found that for Jaipur city, linear regression mod-
el between measured average NO2 values of 2019 and 
road density for search radius and buffer of 750 m is 
found to best-fitted model. Models are compared based 
on adj r2 and AIC values and posterior model proba-
bility of the best five models in different streams are  
determined.

It is found that road networks could explain about 75-80% 
of the variations in NO2 values. Also, the finally selected model 
has a 42.6% probability of being the best model amongst the 
first five selected from the normal stream of models.

Finally, the selected model is used to calculate estimated 
values of NO2 at 91 wards of Jaipur city based on the road 
network of these wards and this map is compared with an-
other map generated based on interpolated values of NO2. 
It is concluded that the map generated from the selected 
model better explains the spatial distribution of NO2. This 
model could also be used in other urban areas where either 
very few numbers or none at all air pollution monitoring 
stations are available.
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CONCLUSION 

A new methodology is developed to estimate the level of air pollution parameter NO2, which is 
mostly caused by vehicular pollution, by using road density levels of different levels of road 
network in Jaipur city. The road network of Jaipur city is developed for 3 different levels of roads 
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Jaipur city. Proximity is defined in terms of search radius for measuring road density and buffer 
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It is found that for Jaipur city, linear regression model between measured average NO2 values of 
2019 and road density for search radius and buffer of 750 m is found to best-fitted model. Models 
are compared based on adj r2 and AIC values and posterior model probability of the best five 
models in different streams are determined. 

It is found that road networks could explain about 75-80% of the variations in NO2 values. Also, 
the finally selected model has a 42.6% probability of being the best model amongst the first five 
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Finally, the selected model is used to calculate estimated values of NO2 at 91 wards of Jaipur city 
based on the road network of these wards and this map is compared with another map generated 
based on interpolated values of NO2. It is concluded that the map generated from the selected 
model better explains the spatial distribution of NO2. This model could also be used in other urban 
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Fig. 12: Observed Vs Computed, (a) Model 1 (b) Model 6.
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