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ABSTRACT

The predominant scarcity of water globally has necessitated the invention of non-conventional resources 
to bridge the clean freshwater demand gap. Even in areas where there is access to water, inadequate 
quality and sanitation are pervasive problems, especially in developing countries. Resolving these 
intricate water-related problems, which emanate from population increase, the rise of urbanization and 
industrialization has not been realized using modern cost-, energy- and water-intensive technologies. 
In light of these challenges, wastewater treatment is a viable solution to supplement limited water 
resources. Of the available eco-technologies used in wastewater treatment for reuse, constructed 
wetlands (CWs) have proved to be the most effective. In this review, CWs are confirmed as reliable and 
low-cost green technologies with high effectiveness in wastewater treatment compared to conventional 
technologies. Therefore, their application among rural communities of developing countries is practical 
and highly advisable.

INTRODUCTION 

The world is currently sharing a recurrent problem of water 
scarcity where available natural water sources cannot meet 
the demand adequately (Suhad et al. 2018). According to 
Scheierling et al. (2011), more than 67 % of the globe will 
have a water shortage state in 2025 and 50 % will experience 
high water stress by 2030. The World Water Assessment 
Programme (WWAP) (2015) agreed with these projections 
claiming that they will result from increased water demand 
at all production levels and at least 40 % of the world will 
likely be water scarce by 2030. Other drivers of water 
scarcity include a high population growth rate, expansion 
of agricultural and industrial activities, climate change, 
and global warming. These drivers result in a sharp rise in 
wastewater generation trends. Wastewater contains pollut-
ants such as biochemical and chemical oxygen demand, 
microbes, heavy metals, non-biodegradable organics, and 
particles that deteriorate water quality once it is released into 
freshwater resources making the resources unsustainable for 
aquatic life, irrigation, and potability (Suhad et al. 2018). 
Due to the soaring water scarcity situation, researchers are 
exploring the use of non-conventional sources to meet the 
ever-rising demand. Wastewater has been identified as a 
feasible alternative (Noori et al. 2014, Zhang et al. 2014, 
Almuktar & Scholz 2015, Gorgoglione & Torretta 2018). The 

reuse of wastewater, however must be taken up with caution 
considering its characteristic pollutants whose unregulated 
environmental release is risky to ecological health. This 
consideration necessitates wastewater treatment before reuse. 

The use of constructed wetlands (CWs) serves as a 
promising and innovative solution for cost-effective and 
sustainable treatment of wastewater particularly in devel-
oping countries where conventional wastewater treatment 
infrastructure is limited due to financial constraints (Zhang 
et al. 2014). The countries in addition experience water 
scarcity owing to the rising population and economic 
growth. CWs are ecological technologies and engineered 
systems for wastewater treatment that incorporate physical, 
chemical, and biological processes to decontaminate water 
in natural wetland environs. Constructed wetlands have 
been successfully used to cleanse wastewater off suspended 
solids, heavy metals, nutrients, and organic compounds 
(Zhang et al. 2014, Gorgoglione & Torretta 2018, Suhad et 
al. 2018). The preference to use CWs is associated with their 
high removal efficacy, great potential to reuse nutrients and 
water, simplicity of operation, and cost efficiency (Almuktar 
& Scholz 2015). Despite these successes, there have been 
limited studies focusing on the use of CWs in developing 
countries whose water status is dire due to the aforementioned 
drivers. This review study, therefore, focuses on the use of 
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ecological technology in wastewater treatment, the various 
types of CWs, and their effectiveness in cleansing wastewater 
with a particular focus on developing countries. 

CONSTRUCTED WETLANDS IN DEVELOPING 
COUNTRIES

The adoption of CWs in wastewater treatment for developing 
countries is on a rising trend due to its low energy require-
ments and ability to recycle large volumes fast according 
to Vymazal (2011). The technology has been used in de-
veloping countries to treat agricultural runoff (Yang et al. 
2008), landfill leachate (Nahlik & Mitsch 2006), laboratory 
waste (Meutia 2001), and hospital wastewater (Shrestha et 
al. 2001), wastewater from sugar factories (Bojcevska & 
Tonderski 2007). In addition, CWs treat storm-water runoff 
(Sim et al. 2008, Avila et al. 2013), wastewater produced 
from oil processing (Ji et al. 2007), sludge effluent (Ahmed 
et al. 2008), lake and river water (Li et al. 2009, Tang et al. 
2009). Domestic water (Zhai et al. 2011, Mburu et al. 2013), 
industrial wastewater (Chen et al. 2006, Maine et al. 2007), 
and agricultural wastewater (He et al. 2006, Zhang et al. 
2014) have been treated using this ecological technique too.

Concerning the performance of CWs, their effectiveness 
in developing countries is favored by the warm subtropical 
and tropical climates of the regions, where these technologies 
are better performers compared to temperate regions (Kivaisi 
2001, Zhang et al. 2014). In tropical regions unlike temperate 
regions, plant growth and microbial activity occur throughout 
the year, which are favorable prerequisites to CWs effective-
ness (Kaseva 2004). Zhang et al. (2012) agreed with these 
sentiments claiming that tropical wetlands are exposed to 
direct sunlight and have higher temperatures year round, 
favor plant growth, and reduced microbial degradation time, 
which are important factors in wastewater treatment via CWs. 

TYPES OF CWS AND THEIR TREATMENT 
EFFICIENCY 

Constructed wetlands are classified into three; subsurface 
flow (SSF), free water surface (FWS), and hybrid CWs 
(Zhang et al. 2014). SSF CWs are further classified into 
horizontal and vertical systems. The selection of a particular 
type of CW depends on the treatment goals, available area, 
cost, geographic location, and target pollutants for treatment 
(Horner et al. 2012). 

Free Water Surface Systems 

The FWS systems are arranged with channels and tanks that 
are artificially or naturally waterproofed and where the water 
level remains constant above the medium surface and the 

depth ranges between 0.3 and 0.6 m (Gorgoglione & Torretta 
2018). Flow in the system originates from an inlet area to an 
outlet in a region with low flow velocity, low water depth, 
and plant bodies. Small channels that mimic the plug flow 
reactor help in standardizing flow. According to Vymazal 
(2011), FWS systems ensure wastewater encounters biolog-
ically active surfaces to enhance its hydraulic retention time 
and prevent hydraulic short-circuit formation. FWS systems 
remove suspended solids through sedimentation and filtration 
as well as organics via microbial degradation. Removal effi-
cacy for pathogens, chemical and biological oxygen demand 
(COD, BOD), and total suspended solids (TSS) is above 70% 
while nitrogen removal efficacy ranges between 40 and 50 % 
(Kadlec & Wallace 2008). At slow rates, FWS systems can 
remove phosphorous from wastewater at an efficacy rate of 
40 to 90% (Vymazal 2011). A summary of the applications of 
FWS systems in decontaminating wastewater pollutants and 
their specific effectiveness in named developing countries is 
shown in Table 1. The results show varied removal efficacies 
based on individual studies and the pollutant being removed. 

Subsurface Flow Systems 

Subsurface flow (SSF) CWs are designed as horizontal 
(HSSF) or vertical (VSSF) where wastewater flows through 
a permeable medium (Vymazal 2011). In horizontal systems, 
wastewater flows towards the granular material horizontally 
and encounters anaerobic, anoxic, and aerobic conditions 
in the subsurface. The latter occurs near rhizomes and roots 
of plants that release oxygen to the substrate. Anoxic zones 
are rich with aerobic microbes, which transfer oxygen to 
the filter bed from the atmosphere. The redox conditions 
enable wastewater decontamination. Vertical CWs use a 
distribution system to feed wastewater to the entire surface 
and passes the media vertically (Zhang et al. 2014). The 
effluent introduction is discontinuous, unlike the horizon-
tal systems where there is a continuous flow. Some of the 
studies demonstrating the effectiveness of SSF systems in 
developing countries, contaminants treated and plant species 
used are summarized in Table 2. Plant species in both vertical 
and horizontal systems enable purification by enhancing 
microbial activity at the rhizosphere and via oxygen release 
to the atmosphere from the root system to the surrounding 
environment (Gorgoglione & Torretta 2018). 

From the comparisons of HSSF and VSSF, the former 
offers good conditions for denitrification though such sys-
tems have limited ability to denitrify ammonia. In VSSF 
systems, NH3-N can be removed but denitrification barely 
occurs. The two systems have a moderate ability to remove 
total nitrogen (TN) while HSSF had better removal efficacy 
for total phosphorous (TP) compared to VSSF (Zhang et al. 
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2014). A higher potential overall is evident in HSSF systems 
since their design incorporates substrate flooding and con-
sistent redox potential in the bed, unlike VSSF which has 
intermittent feeding of wastewater resulting in oxygenation 
of the bed and subsequent desorption and release of some 
pollutants such as phosphorous (Vymazal 2011). 

Hybrid Systems 

The subsurface and free water surface CWs cannot achieve 
the total removal of some pollutants such as TN. In a hybrid 
system, the various systems (surface and subsurface) are 
combined to optimize their advantages in a series of different 
types of CW systems (Vymazal 2011). Hybrid systems use 
VSSF to remove suspended solids and organics as well as 
offer nitrification environs while HSSF enables denitrifica-
tion and further removal of TSS and organics. A summary of 
the application of hybrid CWs to treat wastewater and their 
effectiveness in some developing countries is summarized 
in Table 4. An analysis of the hybrid system results showed 
higher efficacy in wastewater treatment compared to the 
surface and subsurface systems though results differed based 
on the design characteristics of individual studies. 

DISCUSSION 

The findings of this review confirm that CWs are promising 
technologies for the treatment of various types of wastewa-
ter including greywater, blackwater, laboratory, hospital, 
lake, and river water (Gorgoglione & Torretta 2018). HSSF 
systems have longer life cycles that lead to humic acid 
formation, which is effective for nitrogen and phosphorous 
removal through redox reactions. VSSF systems are good 
nitrifiers due to adequate oxygen supply, require simple 
hydraulics, and only require a small setup area. FWS CWs 
are green spaces for communities in addition to having a 
high capacity to remove water pollutants such as TSS, BOD, 
and COD while hybrid systems have a combination of these 
advantages. The effectiveness of these systems in wastewater 
pollutant removal depends on a number of factors apart from 
the individual type. These include temperature, vegetation 
type, hydrologic regime, and pollutant loading (Kadlec & 
Wallace 2008, Trang et al. 2010). At a low hydraulic load-
ing rate and high hydraulic retention time, the movement of 
wastewater is slower, which allows for its prolonged inter-
action with microorganisms and rhizosphere and ultimately, 

Table 3: Application of HSSF systems in decontaminating wastewater contaminants and their effectiveness in named developing countries.

Study Character-
istics

Type of 
Wastewater

TSS BOD COD NH4-N NO3-N TN TP Plant species References

Kampala, Uganda
Effluent level
% removal efficacy

Municipal 
wastewater

-
-

-
-

-
-

7.1
75.43

0.09
60.87

16.1
72.48

2.6
83.23

C. papyrus Kyambadde et 
al. 2004

Jalisco, Mexico
Effluent level
% removal efficacy

21.9
61.56

20.8
81.94

49.5
80.32

-
-

-
-

14.6
49.38

4.2
50.14

Anthurium andreanum
Strelitzia reginae

Zurita et al. 
2011

Wuhan, China
Effluent level
% removal efficacy

-
-

-
-

115.5
59.9

22.59
-

0.34
79.52

25.6
15

1.42
52

Canna indica
Typha orientalis

Chang et al. 
2012

Beijing, China
Effluent level
% removal efficacy

302.4
97

11.8
96

-
-

30.7
90

-
-

-
-

5
88

Salix babylonica Wu et al. 2011

Wuxi, China
Effluent level
% removal efficacy

Livestock 
wastewater 96

77.1
61.8
81.3

-
-

32.9
61.7

-
-

41.3
66.6

23.6
48.9

P. communis 
P. typhia

He et al. 2006

Taihu, China
Effluent level
% removal effica-
cies

Polluted 
lake water -

-
-
-

4.25
40.4

0.89
45.9

0.5
62.9

2.37
51.6

0.05
51.6

T. angustifolia Li et al. 2008

Tianjin, China
Effluent level
% removal effica-
cies

Polluted 
river water

-
-

-
-

68.9
35

1.7
71.3

-
-

2.6
64.9

0.2
61.2

T. latifolia Tang e t  a l . 
2009

Longdao, Beijing
Effluent level
% removal effica-
cies

10.9
92.6

6.9
90.5

38.3
73.5

18.5
10.5

-
-

18.5
10.6

1.59
30.6

P. australis
Zizania aquatica

Chen et  al . 
2008

*All effluent levels are in mg.L-1
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better contaminant removal (Ranieri et al. 2013). Planted 
CWs are better performers unlike unplanted ones because 
their rhizosphere enhances the growth and activity of mi-
crobes by providing carbon from root exudates (Vymazal 
2011). In tropical compared to temperate regions where plant 
growth occurs throughout the year and microbial activity is 
enhanced, CWs are more effective in contaminant removal. 
High temperatures of the tropics enhance biotic activity, 
which is a prerequisite for contaminant removal in CWs.  Dif-
ferent macrophytes have varied abilities to take up nutrients 
and contaminants and the selection of an appropriate species 
is an essential consideration in designing CW systems. Zhang 
et al. (2014) also noted that CW systems are cost sensitive 
and space intensive and hence the need to optimize essential 
factors using hybrid systems to reduce the costs and at the 
same time, obtain the best results for wastewater treatment. 
Compared to conventional wastewater treatment plants, CWs 
have low operation and maintenance costs but require ample 
and affordable land space (Gorgoglione & Torretta 2018). 

CONCLUSION 

Constructed wetlands are promising ecological technologies 
whose emergence in developing countries is a viable, cost-ef-
fective, and suitable solution for wastewater treatment and 
use as an alternative water source to natural water sources that 
are scarce. They have been used in the treatment of greywater, 
blackwater, polluted river, and lake water among other types 
of wastewaters effectively. This review shows various CWs 
including VSSF, HSSF, FWS, and hybrid systems being 
useful in decontaminating pollutants such as TN, TP, COD, 
BOD, and TSS among others at different efficacy rates and 
based on the designs of the systems. Individual systems 
can be optimized by manipulation of design variables such 
as pollutant loading, vegetation species used, temperature, 
and hydrologic regimes of the CWs while availing enough 
space for such systems at reduced costs. Therefore, the use 
of CWs in developing countries is a promising step toward 
water security.
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