
   2024pp. 2391-2396  Vol. 23
p-ISSN: 0972-6268 
(Print copies up to 2016) No. 4  Nature Environment and Pollution Technology

  An International Quarterly Scientific Journal

Original Research Paper

e-ISSN: 2395-3454

Open Access JournalOriginal Research Paperhttps://doi.org/10.46488/NEPT.2024.v23i04.042

Dolomite as A Potential Source of Heterogenous Catalyst for Biodiesel Production 
from Pongamia pinnata
S. Sudalai1, M. G. Devanesan1 and A. Arumugam2†

1Department of Chemical Engineering, Annamalai University, Chidambaram, Tamilnadu, India
2Bioprocess Intensification Laboratory, Centre for Bioenergy, School of Chemical & Biotechnology,  
SASTRA Deemed University, Thirumalaisamudram, Tamil Nadu, Thanjavur, India 
†Corresponding author: A. Arumugam; aruchemxl@scbt.sastra.edu

       ABSTRACT
Biodiesel production from Pongamia pinnata, a tree-based oil using healthcare industrial 
waste dolomite as a catalyst, was studied. The studies aimed to establish the ideal parameters 
for producing biodiesel, such as temperature, the ratio of methanol to oil, and the weight 
percentage of the catalyst. The healthcare industrial waste was procured and characterized. 
With the operating conditions, temperature maintained at 75°C, methanol to oil molar ratio of 
about 20:1, and a catalyst weight of 5%, the optimum yield of 92.3% was obtained. The tree-
based nonedible oil source for biodiesel production was suggested widely due to its ability to 
achieve sustainable development goals (SDGs). The Pongamia Pinnata cultivation on barren 
land supports the afforestation projects with economic and environmental values; further 
biodiesel from renewable bioresources reduces emissions, and livelihood development to 
eradicate unemployment are the primary objectives for achieving the SDGs. The tree-based 
biodiesel production and adaptation of dolomite as a heterogeneous catalyst have proven 
to be a recent attraction among scientists. The present study is the first report on Pongamia 
pinnata for biodiesel production catalyzed by dolomite.

INTRODUCTION

The ability to produce energy scales the development of 
the nation. Resource depletion, pollution due to emissions, 
and global governance’s commitment to climate change 
are pushing to shift the fossil fuel-based energy production 
process into renewable energy sources (Dey et al. 2022). The 
capital investment toward infrastructure, time consumption, 
inconsistency in power generation, and other parameters 
limit energy production from renewable sources like wind, 
solar, and tide. Locally produced biofuel from domestic 
resources mitigates transboundary emissions and favors 
social welfare. Biodiesel from vegetative sources is widely 
investigated and adopted as an alternative to fossil fuels. As 
evidenced by the performance and emission studies, biodiesel 
significantly reduces air pollution in the production and 
operation processes (Mac Kinnon et al. 2018).

Positive socioeconomic effects from the production 
and use of biodiesel as an alternative fuel may eventually 
result in sustainable development. Developing biodiesel 
can yield socioeconomic benefits for rural communities 
and agricultural sectors, and this livelihood development 
significantly contributes to achieving the SDG, among 

other sustainability credits (Brinkman et al. 2020). 
However, the large-scale production of fuel-yielding crops 
seriously threatens food security due to the land use pattern. 
Accordingly, the search for biodiesel feedstock shifted 
toward non-edible sources. 

As a sustainable energy source, biodiesel helps reduce 
greenhouse gas emissions, which is part of the REDD+ 
(Reducing Emissions from Deforestation and Forest 
Degradation) program. Through REDD+, developing countries 
will be encouraged to manage their forests responsibly and 
prevent further global warming. In comparison to fossil 
fuels, biodiesel is a greener fuel that can be generated from 
renewable resources like plant or animal fats, which lowers 
emissions from vehicles. Biodiesel production from wild 
vegetation sources further strengthens the implementation of 
REDD+, and this further facilitates the climate financing from 
developed countries to develop forest regions in developing 
countries (Kuh 2018). The potential of various tree-based 
oils from Azadirachta indica, Jatropha curcas, Madhuca 

longifolia, Pongamia glabra, Calophyllum inophyllum, 
Pongamia pinnata, Hevea brasiliensis,  Simmondsia 

chinensis, Linum usitatissimum were studied (Chimezie et 
al. 2022). 
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The monotypic genus Karanja is a known species native 
to Southeast Asia and the Indian subcontinent. Pongamia 
is a nitrogen-fixing, self-pollinating tree that grows well in 
humid, subtropical climates with minimum mean monthly 
temperatures between 10 and 50°C. It may also be grown 
easily in wastelands and infertile areas where temperatures 
range from 16 to 40°C for ideal growth (Sharma et al. 2020).

The United States and other regions with humid tropical 
climates have adopted this plant. Pongamia trees can 
generally attain a height of 15-25 m, begin to flower at 3- 
4 years old, achieve maturity in 4-5 years, and yield up to 
90 kg of seeds annually. The wood, seeds, and leaves from 
Pongamia trees have various value-added applications. For 
alternative biomass sources, Pongamia pinnata has numerous 
benefits. Primarily, it is a resilient and drought-tolerant 
tree that can flourish in a variety of soil conditions, such 
as marginal and degraded areas, making it appropriate for 
cultivation in drought-prone regions where other crops could 
find it difficult. The second reason is that Pongamia pinnata 
is a nitrogen-fixing plant. It works in symbiotic partnerships 
with bacteria to enrich the soil with nitrogen, which lowers 
the demand for external fertilizers and increases soil fertility. 
Some of these applications include fuel, livestock feed, and 
medicinal uses (Degani et al. 2022).

The most common biodiesel production from bio-oil 
involves the transesterification process; a catalyst facilitates 
the reaction between the feedstock of vegetable oil and short-
chain alcohol during the transesterification process. Sodium 
hydroxide (NaOH) and potassium hydroxide (KOH) are two 
homogeneous base catalysts that are frequently employed 
to catalyze the transesterification of refined vegetable oil 
(Amirthavalli et al. 2022). When employing crude vegetable 
oil feedstock with a high free fatty acid (FFA) content, soap 
production is unavoidable with the base catalyst, and this 
limitation mandates the pretreatment of high FFA content 
feedstock using homogenous acid catalysts like phosphoric 
acid (H3PO4) and sulfuric acid (H2SO4) to lower the FFA 
concentration (Baskar et al. 2019).

However, using a homogenous catalyst has always been 
linked with drawbacks, including the inability to separate 
homogeneous phase products, the fact that they are non-
recyclable, and the significant increase in the cost of using 
a wastewater treatment system to neutralize the catalyst 
before discharging. The enzyme catalyst is expensive to 
replace the homogeneous. Recyclable and readily separable, 
heterogeneous catalysts have emerged as a viable substitute 
for homogeneous catalysts, offering better performance 
(Brahma et al. 2022). 

Dolomite is a sedimentary rock that occurs naturally and 
includes carbonates of magnesium and calcium. To make 

biodiesel, transesterification is a process that it catalyzes. 
Initi0ally, the ions calcium and magnesium function as Lewis 
acid sites to accelerate the reaction and act as catalysts. Due 
to its broad availability, dolomite is also less expensive than 
the other catalytic substitutes (Maroa & Inambao 2021).

 It uses less energy to make and generates less waste 
because of its capacity to regenerate and reuse itself. 
Furthermore, studies show that dolomite catalysts outperform 
other catalysts in terms of yield and reaction kinetics. 
Dolomite from industrial waste in the healthcare sector 
has special advantages for the manufacture of biodiesel 
since it may be used for both environmental remediation 
and catalysis. When dolomite from medical waste is used, 
resource usage is streamlined, lessening the impact on the 
environment and solving disposal issues. Moreover, the 
inherent catalytic activity of dolomite promotes effective 
transesterification processes, increasing the yield of 
biodiesel. This strategy adheres to the circular economy 
principles by reducing waste and promoting the creation of 
renewable energy.

The present study is the first work investigating the 
use of dolomite in the transesterification of Karanja oil 
with a higher yield of biodiesel. The current work uses 
Response Surface Methodology (RSM) to optimize the 
transesterification parameters for the methyl ester synthesis 
from Pongamia pinnata seed oil. This study examined how 
process variables, including catalyst weight, temperature, and 
the ratio of methanol to oil, affected the amount of biodiesel 
produced. The ASTM technique was used to determine the 
characteristics of Pongamia pinnata biodiesel.

MATERIALS AND METHODS

Materials

Pongamia pinnata oil was obtained from the highway road 
of Bahour main road, Puducherry (11°48.56.5”N, 79°4501.4” 
E) (Fig. 1). The seed extracted Pongamia pinnata oil was 
found to have the density of 906 kg/m3. At 40°C, the oil’s 
viscosity was estimated as 26.5 mm2/s. The oil had an acid 
value of 7 mg KOH/g. Stearic acid (18.36%), linolenic acid 
(14.87%), oleic acid (54.22%), and palmitic acid (12.55%) 
make up the fatty acid makeup of Pongamia pinnata oil. 
The dolomite was obtained from Puducherry, the healthcare 
sector of TTK, Puducherry. 

Transesterification Process

Every transesterification experiment was carried out in a 
50 ml vial. 20 grams of Karanja oil were combined with 
a 3:1 methanol to oil ratio, 1 weight percent catalyst, and 
a temperature of 70°C sustained for 9 h at 400 rpm. To 
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eliminate any remaining methanol in the combination, the 
sample was centrifuged at 4000 rpm after 9 h. Methanol 
to oil ratio of 15:1 to 25:1, a temperature range of 65°C to 
85°C, a catalyst weight of 1 to 3 wt%, and methyl esters 
yield measured by GC-MS were all adjusted to maximize 

production (Fig. 2). Gas chromatography-mass spectroscopy 
(CLARUS 500, PerkinElmer, USA) was used to analyze the 
biodiesel made from the Karanja oil (Pongamia pinnata). 
Every experiment was carried out in triplicates (Vishali et 
al. 2023).
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Biodiesel yield = (Mass of biodiesel produced/ Mass of 
oil used) × Area % of FAME × 100

Characterization

Pongamia pinnata biodiesel produced using a dolomite 
catalyst has been subjected to GC-MS analysis. A potent 
method for characterizing biodiesel is gas chromatography-
mass spectrometry (GC-MS) analysis, which yields 
comprehensive data on the composition and quality of 
biodiesel fuels. Gas chromatography is used in this analytical 
approach to separate the components of biodiesel according 
to their volatility and affinity for the stationary phase. 
Mass spectrometry is used to identify and quantify these 
components by examining their mass-to-charge ratios. 

RESULTS AND DISCUSSION

Effect of Methanol Content

Stoichiometry indicated that three moles of methanol were 
needed for the transesterification reaction to yield methyl 
esters from one mole of triglyceride. Excessive addition 
of alcohol can be used to adjust the rate of reaction. The 
stoichiometric molar ratio of alcohol to oil in the generation 
of biodiesel is 1:3; however, to shift the chemical equilibrium 
in favor of the generation of biodiesel, more excellent molar 
ratios are a convenient solution. Furthermore, developing 
the three phases (oil, alcohol, and catalyst) at the start of the 
reaction may limit the contact between the reactive mixes; 
still, in this scenario, the excess alcohol in the reaction 
reduces the issue (Hoda 2010). As shown in Fig. 3, biodiesel 
yield improves with increased methanol-to-oil ratio up to 
a certain point when the yield declines from the highest 
possible biodiesel production. Therefore, it is essential 
to carefully optimize the methanol-to-oil ratio to achieve 

maximum biodiesel yield without compromising efficiency 
and cost-effectiveness (Kedir et al. 2023). The highest yield 
of 90.7% was obtained at a 20:1 methanol to oil molar ratio. 

Effect of Temperature

The temperature significantly influences biodiesel production 
via transesterification since the intrinsic rate constants 
strongly depend on temperature. Therefore, to get the highest 
yield, it is crucial to adjust the operating temperature. The 
trials were performed with a temperature range of 65°C to 
85°C to obtain the optimum yield (Takase 2022). The data 
shown in Fig. 4 indicates that biodiesel yields rise as the 
temperature rises, peaking at 75°C, after which it begins to 
fall. After 75°C, the conversion percentage decreased. As 
the temperature rises, the methanol vaporizes at a greater 
temperature, shifting the balance to the reactant side and 
decreasing the biodiesel output (Ezekannagha et al. 2017).

Catalyst Concentration

The impact of catalyst amount (range of 3-5 wt%) in the 
transesterification reaction as catalyst was shown in Fig. 5. 
The percentage yield of 84.6% was obtained at 3wt% catalyst 
concentration. Further increased the catalyst concentration to 
4 wt% the maximum yield of 92.3 was obtained. When the 
amount of catalyst is increased beyond 4 wt%, the yield of 
biodiesel decreases to 88.3%. This may be due to too high 
concentration of catalyst reduces the reactant interaction and 
also favors high glycerin concentration which in turn reduces 
the biodiesel yield (Jan et al. 2023).  

Reusability of Dolomite

Dolomite catalyst’s reusability was also looked at since it 
can lower process costs. Following the reaction, the dolomite 
catalyst was filtered out and reused for a new reaction  
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CONCLUSIONS

The findings of the research emphasize the significant effects 
of temperature, catalyst concentration, and methanol to molar 
ratio on the production of biodiesel from Pongamia pinnata 
oil. To produce biodiesel with improved quality and yields 
and to support environmentally friendly and sustainable 
energy production, the study emphasizes the importance 
of optimizing these factors. An industrial waste dolomite 
heterogeneous catalyst is used for biodiesel production. 
Maximum biodiesel yield of 92.3% was observed at 20:1 
methanol to oil ratio, temperature of 75°C, and catalyst 
weight of about 5 wt%. Additionally, research has been 
done on the catalyst’s reusability. Even after five cycles, 
it has been discovered that dolomite still exhibits superior 
catalytic activity. The characteristics of the biodiesel made 
from Pongamia pinnata and diesel appear to be comparable. 
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