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       ABSTRACT

In this study, the adsorption of trivalent chromium ions by green-mediated iron nanoparticles 
was studied statistically. The effect of independent variables such as pH, temperature, 
time, adsorbent dosage, and initial metal ion concentration on uptake capacity and removal 
efficiency were examined. Multiple linear regression (MLR), principal component analysis 
(PCA), partial least squares (PLS), and principal component regression (PCR) are effectively 
applied for the analysis and modeling of adsorption data. The value of p in Bartlett’s sphericity 
test was proved to be less than 0.05 which indicates that the principal component analysis 
could be useful for adsorption data. The AHC analysis showed that among all variables, the 
contribution of pH was high in the adsorption of trivalent chromium ions by ZVIN and MIN 
nanoparticles. The value of R2 in statistical modeling of adsorption of trivalent chromium ions 
by ZVIN particles was high in PCR (0.981) than in MLR (0.945) and PLS (0.752) models. 
Similarly, for MIN particles, the R2 value of PCR (0.982) was higher than the MLR (0.943) 
and PLS (0.742) models. The analysis of goodness of fit statistics showed that the PCR 
model effectively predicted the uptake capacity and removal efficiency more than MLR and 
PLS models.       

INTRODUCTION

Heavy metals are defined as metals with high atomic weight 
or high density (Briffa et al. 2020). Heavy metal discharge 
from various industrial activities is of global environmental 
challenge. The heavy metal ions such as Cr(VI), As(III) 
and Pb (II) that are present in wastewater have dangerous 
impacts on life. Especially, pollution by chromium ions is 
more common in developing countries. The chromium ions 
are widely used in many industrial processes such as leather 
tanning, electroplating, metal coating, etc. (Sun et al. 2016). 
Currently, a lot of tons of Cr-bearing solid or liquid wastes 
are getting discharged from anthropogenic sources (Bedemo 
et al. 2016). The methods such as chemical precipitation, 
coagulation, flocculation, Electrochemical treatment (ECT), 
Electrocoagulation, Electro-flotation, Electro-oxidation, 
Ion-exchange, Membrane filtration, Electrodialysis, Biore-
mediation, and Phytoremediation have been widely used 
for the removal of chromium ions from aqueous solutions. 
However, these methods have some major drawbacks such 
as low efficiency, high-energy requirements, production of 
toxic sludges, and sensitive operating conditions. Compared 
to other techniques, the adsorption process has revealed 

a higher percentage of metal ion removal from water and 
wastewater hence it is widely used for the treatment of indus-
trial effluents and solid or liquid waste containing complex 
metal ions (Abdolali et al. 2014). The commercially avail-
able adsorbents have been widely used for the removal of 
chromium ions from the aqueous solution (Renu et al. 2017). 
In recent times, nanoparticles are receiving more attention 
than conventional materials in the adsorption process due 
to their high surface area and faster adsorption rates. Car-
bon-based nanomaterials, carbon nanotubes, graphene, and 
metal oxide-based nanomaterials have been widely used as 
adsorbents for the removal of heavy metals from water and 
wastewater (Sadegh et al. 2017).

The nanoparticles can be synthesized using various phys-
ical and chemical processes however the green synthesis of 
nanoparticles is getting wider attention among researchers 
and scientists. The green synthesis of nanoparticles does 
not require any toxic substances. It consumes less energy 
and produces safer products and by-products (Usman et al. 
2019). Generally, plant extract, enzymes, microorganisms, 
and organic wastes are used as reducing agents for the 
production of nanoparticles. However, the prediction of the 
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adsorption data with statistical tools is very limited. Few 
studies such as the adsorption of boron on calcium alginate 
gel beads (Ruiz et al. 2013), Zinc ion adsorption on mango 
leaf powder (Kaushal & Singh 2017), ascorbic acid removal 
by activated carbon (Ozdemir & Onal 2013) were reported. 
In this study, the tea waste extract was used as a reducing 
agent for the synthesis of ZVIN and MIN nanoparticles. The 
ZVIN and MIN particles were then tested for their efficacy 
in the adsorption of trivalent chromium ions. The main aim 
of this research is to statistically analyze the adsorption data 
of chromium ions by ZVIN and MIN nanoparticles.   

MATERIALS AND METHODS

Materials

The chemicals such as chromium (III) nitrate nonahy-
drate [Cr(NO3)3. 9H2O], ferric chloride (FeCl3), ammonia 
(NH4OH), and sodium dodecyl sulfate (NaC12H25SO4) were 
used in the experimental program. They were obtained from 
SDFCL (Sdfine-Chem Limited) and all were analytical 
reagent grade. The tea waste, sugarcane bagasse, and neem 
leaves were collected from Vellore, Tamil Nadu, India. The 
statistical analysis was performed using XLSTAT and SPSS 
software. 

Preparation of Nanoparticles

The Zerovalent Iron Nanoparticles (ZVIN) and Magnetic 
Iron oxide Nanoparticles (MIN) were green synthesized 
using effective and novel methods. The detailed prepara-
tion of nanoparticles was explained in our previous study 
(Arthy & Phanikumar 2016). Fig. 1 shows the schematic 
representation of the synthesis of nanoparticles. Briefly, 
the ZVIN nanoparticles were prepared by mixing 17 mL of 
0.1% SDS with 100 mL of tea waste extract (2.6 g of tea 
waste was boiled in 100 mL of DIW), and the solution was 
continuously stirred at a temp of 60°C.  To the above mix, 
0.1 N FeCl3 was added till the color of the solution changed 
from orange to black.  After color changes, the solution was 
stirred for 15 min and was oven-dried at 80°C for 24 h. The 
dried particles were washed several times with ethanol and 
water and again it was oven-dried at 80°C. The MIN nano-
particles were prepared by adding 15 mL of 0.1% sodium 
dodecyl sulfate solution to 5mL of Iron/tea solution (2g of 
tea waste was boiled in 100mL of 0.2M FeCl3 solution). To 
the above solution, 50 mL of 16.5% of ammonia was added 
dropwise by continuously stirring it at 60°C. The solution 
turned black immediately. The particles were separated using 
the magnet and coated with neem leaf extract (6.7 g of fresh 
neem leaves were boiled in 100 mL of DIW).  The particles 
were then washed several times with water and ethanol and 
were oven-dried at 80°C for 15 h.

Characterization of Nanoparticles

The nanoparticles were characterized using UV-Visible 
spectroscopy, BET surface area analysis, XRD, FTIR, SEM, 
EDX, AFM, VSM, and pHpzc. The size of the nanoparticles 
was found to be 53.7 nm and 16.3 nm respectively for ZVIN 
and MIN. The instrumentation analysis of ZVIN and MIN 
was reported in our previous work (Arthy & Phanikumar 
2016, Arthy & Phanikumar 2015).

Batch Adsorption Tests

The effect of independent variables such as adsorbent dosage, 
pH, time, initial metal ion concentration, and temperature was 
studied on the adsorption response of uptake capacity (mg/g) 
and removal efficiency (%). The batch adsorption process 
was carried out by varying the independent variables such as 
adsorbent dosage (0.05 to 0.125 g), pH (2-7), time (5-120 min), 
initial metal ion concentration (50-300 ppm), and temperature 
(30, 45 and 60°C). The metal ion concentration after the ad-
sorption process was measured using Varian AA240 atomic 
adsorption spectrometer (Arthy & Phanikumar 2015). The 
metal ion uptake capacity and removal efficiency of ZVIN and 
MIN was calculated using the following equations:

Uptake Capacity (qe, qt) = [Ci - Ce] / Mi x V  …(1)

Removal Efficiency Y (%) = ([Ci – Ce] / Ci) x 100 …(2)

Where V is the volume of solution (mL), M is the mass 
of the dry adsorbent (g), and Ci and Ce are the initial and 
equilibrium concentrations of Cr3+ in the aqueous solution 
(mg/L). All the experiments were performed in duplicate and 
the mean values were considered for analysis. 

Principal component analysis (PCA) and 
Agglomerative Hierarchical Clustering (AHC)

PCA is a dimensionality reduction method that is used to 
reduce the dimensions of a large data set. Reducing the 
number of variables will reduce the accuracy of the data set 
whereas reducing the dimensionality will still contain most 
of the information in the data set. 

Before performing PCA and HCA, the data must be 
standardized using the following equation:

 Z = (X-µ) / σ …(3)

Where X is the score of original variables, µ is the arith-
metic mean of the variable and σ is the standard deviation 
of the variable (Frescura et al. 2020). In this study, the Z 
score was calculated using SPSS software. To access the 
differences and similarities between the factors, HCA was 
used. PCA performs the principle component analysis on 
the adsorption data set which converts the original data into 
new variables called principal components.

https://www.tandfonline.com/author/Sar%C4%B1c%C4%B1-%C3%96zdemir%2C+%C3%87i%C4%9Fdem
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Statistical Prediction of Adsorption Data 

The prediction of uptake capacity and removal efficiency was 
done by different models MLR, PLS, and PCR. Multivariate 
analysis is an efficient tool for developing a quantitative 
relationship, between the predictor variables X (pH, initial 
metal ion concentration, temperature, time, and adsorbent 
dosage) and a dependent variable Y (uptake capacity, removal 
efficiency). In this study, the generalized equation of MLR 
and PLS model was given by equation 4 whereas the gener-
alized equation for PCR is given by equation 5.

Uptake capacity/Removal Efficiency = β0 + β1 × pH + β2 
× Time + β3 × Initial metal ion conc + β4 × temperature + 
β5 × adsorbent dosage                                             …(4)

Uptake capacity/Removal Efficiency = β0 + β1 × F1 + β2 × 
F2 + β3 × F3 + β4 × F4 + β5 × F5      …(5)                                                            
where,

β0 - β5 represents the coefficients estimated by MLR, 
PLS, and PCR models

RESULTS AND DISCUSSION

The maximum experimental uptake capacity of ZVIN and 
MIN were found to be 231.19 and 232.59 mg/g respectively. 
The removal efficiency of ZVIN and MIN were found to be 
92.6% and 93% respectively (Arthy & Phanikumar 2016).

Analysis of Data

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Synthesis of ZVIN (a) and MIN (b) Nanoparticles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Synthesis of ZVIN (a) and MIN (b) Nanoparticles. 

Fig. 1: Synthesis of ZVIN (a) and MIN (b) Nanoparticles.
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Principal Component Analysis (PCA)
A principal component consists of a score vector and a 
loading vector. The score vector contains information on 
how the adsorbents are related to each PC. Loading vectors 
define the reduced dimension space and contain information 
on how the variables relate to each PC (Alvarez-Uriarte et al. 
2011). The influence of variables such as pH, initial metal 
ion concentration, temperature, time, adsorbent dosage, 
uptake capacity, and removal efficiency on factors is given 
by factor loadings. It helps in the identification of the most 
important variables which has a significant influence (positive 
or negative) on the factors. The factor loading higher than 0.5 
was assumed to be significant (Alvarez-Uriarte et al. 2011). 
Hence, the factor loading of less than 0.5 was not reported 
in this study.  Fig. 2(a) illustrates the factor loading of ZVIN 
particles on the adsorption of trivalent chromium ions.  Factor 
1 has high positive loading for pH (0.921), uptake capacity 
(0.911) and removal efficiency (0.929). Factor 2 has high 

positive loading for initial metal ion concentration (0.826) 
and high negative loading for adsorbent dosage (-0.578). Fac-
tor 3 has high positive loading for adsorbent dosage (0.624) 
and temperature (0.735). Factors 4 and 5 have high positive 
loading for time (0.998) and temperature (0.577) respectively.   
Fig. 2(b) shows the scree plot of ZVIN particles, totally of 
seven factors were extracted for the adsorption of trivalent 
chromium ions using ZVIN particles. The Eigenvalue of the 
factors were found to be 2.743, 1.380, 1.098, 1.001, 0.733, 
0.042 and 0.004 respectively for factor 1, factor 2, factor 3, 
factor 4, factor 5, factor 6 and factor 7. The percentage of 
variability was found to be 39.188%, 19.717%, 15.682%, 
14.293%, 10.47%, 0.593% and 0.057% respectively for fac-
tor 1, factor 2, factor 3, factor 4, factor 5, factor 6 and factor 
7. Fig. 2(c) illustrates the factor loading of MIN-particles on 
the adsorption of trivalent chromium ions. Factor 1 has high 
positive loading for pH (0.934), uptake capacity (0.907), and 
removal Efficiency (0.934). Factor 2 has high positive loading 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Loading plot of ZVIN (a) and MIN (c) and Scree plot of ZVIN (b) and MIN (d). 
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Fig. 2: Loading plot of ZVIN (a) and MIN (c) and Scree plot of ZVIN (b) and MIN (d). 
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Fig. 2: Loading plot of ZVIN (a) and MIN (c) and Scree plot of ZVIN (b) and MIN (d).

for time (0.508) Initial metal ion concentration (0.785) and 
negative loading for adsorbent dosage (-0.5). Factor 3 has high 
positive loading for adsorbent dosage (0.661) and temperature 
(0.724). Factor 4 has high positive loading on time (0.701) and 
negative loading on initial metal ion concentration (-0.552). 
Factor 5 has high factor loading on temperature (0.584). Fig. 
2(d) shows the scree plot of MIN- particles which resulted in 
seven factors, the Eigenvalues of the factors were found to be 
2.738, 1.460, 1.120, 0.899, 0.734, 0.045, and 0.004 respec-
tively for factor 1, factor 2, factor 3, factor 4, factor 5, factor 
6 and factor 7. The percentage of variability was found to be 
39.117%, 20.859%, 15.999%, 12.847%, 10.481%, 0.647% 
and 0.050% respectively for factor 1, factor 2, factor 3, factor 
4, factor 5, factor 6 and factor 7.  

Eigenvalues indicate the importance of the factors. 
Thus, the factors with an Eigen value greater than one were 

assumed to be significant. Similarly, the percentage of vari-
ability should also be greater than 10 (Alvarez-Uriarte et al. 
2011). Hence, the number of factors retained for ZVIN and 
MIN was found to be 4 and 3 respectively.  For ZVIN and 
MIN particles, Factor 3 showed high positive loading for 
temperature when compared with Factor 5 hence it is not 
considered. The cumulative variance of ZVIN and MIN were 
found to be 88.88% (four factors) and 75.97% (three factors), 
while the minimum decisive factor of the satisfactory analysis 
is 70% (Cvejanov & Skrbic 2017, Sciutto et al. 2017). 

Agglomerative Hierarchial Clustering (AHC)
Agglomerative hierarchical clustering is an iterative classi-
fication method, which clusters the dissimilarities between 
objects together. The type of dissimilarity depends on the 
nature of the data and the subject studied.  The result of AHC 
is shown in the dendrogram which shows the progressive 
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grouping of data. From the dendrogram, the appropriate 
number of classes into which the data can be grouped can 
be identified. In this study, the ward’s agglomeration method 
and Euclidean distance of dissimilarity were chosen. 

Fig. 3(a) and 3(b) show the dendrogram of ZVIN and 
MIN particles respectively. The dendrogram has been ma-
jorly classified into two clusters C1 and C2 for both ZVIN 
and MIN particles. The AHC was used to examine the dif-
ferent operating conditions of adsorbents in the removal of 
trivalent chromium ions. The elements belonging to the same 
group are similar to each other and the elements in different 
groups are heterogeneous in relation to the same variables 
(Vandeginste 1998). In this study, cluster C2 belongs to the 
observations on pH for both ZVIN and MIN particles. The 
cluster C1 belongs to the observations of other input variables 
like time, temperature, initial metal ion concentration, and 
adsorbent dosage. The result indicates that, when compared 
with other independent variables, the pH influences more 
the removal of trivalent chromium ions by ZVIN and MIN 
nanoparticles. Table 1 and Table 2 show the AHC result by 
class respectively for ZVIN and MIN particles. The C2 is 
more homogeneous than the C1. This is validated by the 
result of the Within-class variance shown in Table 1 and 
Table 2 of ZVIN and MIN. The within-class variance of C1 
is found to be 6.074 and 3.646 respectively for ZVIN and 
MIN which is higher than C2. 

Modeling of Adsorption Data

Multiple Linear Regression Analysis
The purpose of multiple linear regression is used to learn the 
relationship between the predictor variable and the depend-
ent variable. In linear regression, models of the unknown 
parameters are estimated from the data using linear models. 
Linear regression has many practical applications such as 
prediction, forecasting…etc. It can be used to fit a predictive 
model to an observed set of input x and output y values. The 
generalized equation of MLR is given by equation 6.

 Yi = β0 + β 1X1 +……..+ βnXn …(6)

 Where, βi (i = 0,.,n) are the parameters generally esti-

mated by least squares and Xi (i =1,.,n) are the explanatory 
variables (predictors) (Sousa et al. 2007). Multiple linear 
regression analysis (MLR) is one of the most widely used 
methodologies for expressing the dependence of a response 
variable on several independent variables. Despite its success 
in many applications, the regression approach can face seri-
ous difficulties when the independent variables are correlated 
with each other (McAdams et al. 2000). Multicollinearity, 
or high correlation among the independent variables in a 
regression equation, can make it difficult to correctly identify 
the most important contributors to a physical process. In this 
study, the linear regression was calculated using the ‘For-
ward’ model. Eq. 7 and 9 show the MLR model for uptake 
capacity of ZVIN and MIN respectively whereas Eq. 8 and 
10 show the MLR model for removal efficiency of ZVIN 
and MIN respectively. 

Uptake capacity of ZVIN - 0.789 pH + 0.525 IMIC - 0.351 
Adsorbent dosage      …(7)

Removal Efficiency of ZVIN - 0.949 pH     …(8)

Uptake capacity of MIN - 0.792pH + 0.510 IMIC - 0.346 
Adsorbent dosage      …(9)

Removal Efficiency of MIN - 0.95 pH  …(10)

Principal Component Regression
Principal component regression (PCR) combines principal 
component analysis (PCA) and multiple linear regression 
(MLR). In PCR, instead of directly using dependent variables 
on the explanatory variables, the principal components of 
explanatory variables are used as regressors. The principal 
components with higher variances are selected as regressors. 
The PCR is used to overcome the multicollinearity problem. 
Eq. 11 shows the generalized equation of PCR.

 Yi= β0 + β 1F1 +….+ βnFn…(11)

Where, βi (i = 0,., n) are the parameters generally es-
timated by least squares and Fi (i =1,.,n) are the factors 
calculated by principal component analysis. Eq. 12 and 14 
show the PCR model for uptake capacity of ZVIN and MIN 
respectively whereas Eq. 13 and 15 show the PCR model 
for removal efficiency of ZVIN and MIN respectively. In 

Table 1: AHC Result analysis by class of ZVIN.

Class 1 2

Objects 14 4

Sum of weights 14 4

Within-class variance 6.074 1.466

Minimum distance to the centroid 0.698 0.319

Average distance to the centroid 2.141 0.918

Maximum distance to the centroid 3.695 1.518

Table 2: AHC Result analysis by class of MIN.

Class 1 2

Objects 16 4

Sum of weights 16 4

Within-class variance 3.646 1.436

Minimum distance to centroid 0.176 0.308

Average distance to centroid 1.480 0.914

Maximum distance to centroid 3.636 1.520
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this study, the linear regression of principal components was 
calculated using the ‘Forward’ model.

Uptake capacity of ZVIN - 0.534 × F1 + 0.321 × F2  …(12)

Removal Efficiency of ZIVN - 0.545 × F1 - 0.270 × F2  
   …(13) 

Uptake capacity of MIN - 0.534 × F1 + 0.303 × F2 - 0.124 
× F3    …(14)

Removal Efficiency of MIN - 0.549 × F1 - 0.224 × F2 + 
0.117 × F3   …(15)

Partial Least Square
Partial least square is a rapid, well-organized, and best 
regression method based on covariance. It is a technique 
that decreases the predictors to a lesser set of uncorrelated 
components and achieves least square regression on these 
components, instead of on the original data. PLS is used to 
find a relationship between explanatory variables (X) and 
independent variables (y). The generalized equation for PLS 
is given by the following equation

 Y=Xb …(16)

Table 3: Statistical analysis of uptake capacity by ZVIN and MIN nanoparticles. 

Uptake Capacity ZVIN MIN

MLR PCR PLS MLR PCR PLS

Observations 18 18 18 20 20 20

Sum of weights 18 18 18 20 20 20

DF 14 15 16 16 16 18

R² 0.945 0.981 0.752 0.943 0.982 0.742

Adjusted R² 0.934 0.978 0.513 0.932 0.978 0.521

MSE 0.066 0.022 0.234 0.068 0.022 0.245

RMSE 0.257 0.148 0.484 0.261 0.148 0.495

MAPE 29.328 27.011 41.409 39.142

DW 0.985 0.631 1.015 0.649

Cp 3.482 4.737 3.265 4.000

AIC -45.398 -66.078 -50.183 -72.865

SBC -41.836 -63.407 -46.200 -68.882

PC 0.086 0.027  0.086 0.028  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3:  Dendrogram obtained from AHC of ZVIN (a) and MIN (b) particles. 
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Where b is the calibration vector. Eq. 17 and 19 show the 
PLS model for uptake capacity of ZVIN and MIN respec-
tively whereas Eq. 18 and 20 illustrate the PLS model for 
removal efficiency of ZVIN and MIN respectively.

Uptake capacity of ZVIN - 0.766 × pH + 0.038 × Time + 
0.121 × IMIC - 0.199Adsorbent dosage + 0.232 Tempera-
ture   …(17)

Removal Efficiency of ZVIN - 0.785 × pH + 0.039 × Time 
+ 0.124 × IMIC - 0.204 × Adsorbent dosage + 0.238 × Tem-
perature   …(18)

Uptake capacity of MIN - 0.773 × pH - 0.058 × Time + 
0.116 × IMIC - 0.186 × Adsorbent dosage + 0.206 × Tem-
perature  …(19)

Removal Efficiency of MIN - 0.8 × pH - 0.06 × Time + 
0.120 × IMIC - 0.192 × Adsorbent dosage + 0.213 × Tem-
perature  …(20)

Comparison of MLR, PCR and PLS Models

Goodness of Fit
Tables 3 and 4 show the statistical analysis of the adsorption 
data by ZVIN and MIN respectively. The DF represents 
the number of degrees of freedom, which indicate that the 
number of independent values, can vary in a study without 
breaking any constraint. The DF of MLR, PCR, and PLS was 
given in Tables 3 and 4. The values indicated that the PCR 
and PLS model has high degrees of freedom when compared 
with MLR for both uptake capacity and removal efficiency 
of ZVIN and MIN nanoparticles. The R2 is interpreted as the 

amount of the variability of the dependent variable explained 
by the model. The better fit of the model should have the 
value of R2 close to 1. In this study, the R2 value of PCR 
was found to be greater than in other models. Similarly, the 
adjusted R2 value is also greater for the PCR model (Tables 
3 and 4). The mean of the squares of the error (MSE) is the 
average squared difference between the predicted values and 
the actual values. The Root Mean Square Error (RMSE) is 
the standard deviation of the residuals. The values closer to 
zero are better hence, the MSE and RMSE values of the PCR 
model were found to be less when compared with MLR and 
PLS models. The mean absolute percentage error (MAPE) is 
a measure of the prediction accuracy of forecasting methods. 
The result shows that the PCR model has less MAPE value 
than MLR (Tables 3 and 4). 

Durbin-Watson (DW) is a test for autocorrelation in the 
residuals from a statistical regression analysis. DW statistic 
value always lies between 0 and 4. If the result lies between 
0 and <2 there is a positive autocorrelation. If the value is 
2 there is no autocorrelation detected in the sample. If the 
value lies between >2 and 4 it is negative autocorrelation. In 
this study, the value suggests a positive correlation for both 
ZVIN and MIN nanoparticles (Tables 3 and 4). Mallows Cp 
coefficient evaluates the accuracy and bias of the full model 
to the models with a subset of the predictors. The Mallows 
Cp value should be close to the number of predictors plus 
the constant. The nearer the Cp coefficient to the predictor 
variable, the less the model is biased. The value of Cp of 
ZVIN and MIN on uptake capacity and removal efficiency 

Table 4: Statistical analysis of Cr3+ ion removal by ZVIN and MIN nanoparticles. 

Removal Efficiency                                  ZVIN                                 MIN

MLR PCR PLS MLR PCR PLS

Observations 18 18 18 20 20 20

Sum of weights 18 18 18 20 20 20

DF 16 15 16 18 16 18

R² 0.901 0.970 0.790 0.902 0.965 0.794

Adjusted R² 0.895 0.966 0.473 0.897 0.958 0.466

MSE 0.105 0.034 0.199 0.103 0.042 0.195

RMSE 0.325 0.184 0.446 0.321 0.204 0.442

MAPE 148.729 110.638 53.343 33.135

DW 0.990 1.069 1.152 1.245

Cp 3.070 2.403 2.195 4.000

AIC -38.635 -58.233 -43.553 -60.098

SBC -36.854 -55.562 -41.562 -56.115

PC 0.124 0.042  0.119 0.052  
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Fig. 4:  Variation of predicted values on uptake capacity (a, b, c) and removal efficiency (d, e, f) of ZVIN nanoparticles by MLR (a, 

d), PCR (b, e) and PLS(c, f) models.  
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Fig. 4:  Variation of predicted values on uptake capacity (a, b, c) and removal efficiency (d, e, f) of ZVIN nanoparticles by MLR (a, d), PCR (b, e) and 
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Fig. 5:  Variation of predicted values on uptake capacity (a, b, c) and removal efficiency (d, e, f) of MIN nanoparticles by MLR (a, d), PCR (b, e) and 
PLS(c, f) models.
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indicated that both MLR and PCR models are less biased.  
Akaike’s information criterion (AIC) is an estimator of pre-
diction error. AIC estimates the amount of information lost 
by the model. It is used to compare the quality of the model.  
Schwarz’s Bayesian Criterion (SBC) is a decisive factor for 
model selection, the model with the lowest BIC is chosen. 
Table 3 and 4 shows the PCR model has fewer AIC and 
SBC values than the MLR model for both uptake capacity 
and removal efficiency of ZVIN and MIN nanoparticles. 
Amemiya’s prediction criterion (PC) is similar to adjusted 
R2, where, it penalizes more heavily than adjusted R-square. 
The value of PC is less for the PCR model when compared 
to the MLR model for both ZVIN and MIN nanoparticles 
on the removal of Cr3+ ions.

Thus the analysis of goodness of fit indicates that the PCR 
model is best suited for the prediction of uptake capacity and 
removal efficiency for MLR, PCR, and PLS models.

Prediction of Uptake Capacity and Removal Efficiency

Fig. 4 and 5 show the variation of predicted values on uptake 
capacity and removal efficiency of ZVIN and MIN nanopar-
ticles by MLR, PCR, and PLS models. The figures show that 
the PCR model has effectively predicted the uptake capacity 
and removal efficiency of ZVIN and MIN nanoparticles.

CONCLUSION

In this paper, two statistical analysis techniques (PCA and 
HCA) and three statistical modeling techniques (PCR, MCR, 
and PLS) were applied to the adsorption data. These data 
analysis tools enhance the understanding of the adsorption 
process. PCA and HCA were applied to identify the chief 
contribution of independent variables in the removal of Cr3+ 
ions from an aqueous solution. The results indicated that 
among all variables, the contribution of pH in the removal 
of Cr3+ ions from an aqueous solution was found to be high.  
PCR, MLR, and PLS were used for the prediction of adsorp-
tion data. The analysis of goodness of fit for MLR, PCR, and 
PLS models indicates that the PCR model is best suited for 
the prediction of uptake capacity and removal efficiency.
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