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       ABSTRACT

The present study has been taken up to quantify the possible impacts of climate change on 
the climate variables using the outputs of the global climate model dataset over the Sagar 
and Kokkarne catchments.  The baseline period considered is 30 years (1991-2020), and 
the daily rainfall dataset is used. The rainfall dataset for the future period is derived from five 
selected GCMs (Global Circulation Model) datasets under the (Representative Concentration 
Pathway) RCP 4.5 scenario for the period (2021-2050). The mean, standard deviation, 
and coefficient of variation of yearly rainfall are determined to check the rainfall variability 
using statistical analysis. The ensemble rainfall mean values of the five GCMs suggest 
that the uncertainty in the projected results is reduced by considering the cluster of GCMs. 
The minimum rainfall for the future period has shown an increasing trend (42.3 % 10.5 %) 
whereas maximum rainfall has shown decreasing trend (52.44 %, 15.28 %) for Sagar and 
Kokkarne catchments respectively. The future predicted results show that the percentage 
change in Ensemble mean annual rainfall for the period 2021-2050 with reference to rainfall 
data of the baseline period (1991-2020) is depicting an increasing trend of 2.52 % and 
4.12 % for Sagar and Kokkarne catchments respectively. Monsoon arrival is earlier in the 
Kokkarne catchment as compared to the Sagar catchment. The highest positive percentage 
change in mean annual rainfall of 24.89 %, 10.25 % is projected by MPI-ESM-LR GCM, and 
the Highest negative percentage change in mean annual rainfall of -28.49 %, -9.19 % is 
projected by ACCESS1.0 GCM for Sagar and Kokkarne catchments respectively. This analysis 
will provide useful information for water resources planning engineers, research scientists, 
and farmers to assess the water availability in the region and create storage if essential.

INTRODUCTION

Climate change has posed threat to development all over 
the world. Climate change is projected to induce a re-
duction in the availability of surface water in the future 
(Pachauri et al. 2014).  Climate change caused by humans 
is believed to be the greatest threat to the earth and the 
environmental system. According to the IPCC, humans are 
responsible for more than half of the average temperature 
increase between 1951 and 2010 (Pachauri et al. 2014). 
The temperature rises, although not as noticeable as 
changes found in the hydrological process but will result 
in global warming. The water cycle and land ecosystem 
processes are changing as a result of global warming. 

The temperature rises and rainfall variation, which are 
considered to be the main component of the climate sys-
tem, can have a negative impact on agriculture, forestry, 
economy, human health, and well-being (Kotir 2011, 
Mahato 2014, Thornton et al. 2014). According to future 
climate estimates, moist and mid-latitude regions will be 
going to witness an increase in rainfall frequency, whilst 
the sub-tropical, dry zone would be facing the opposite 
climatic situation. Rainfall variability is directly linked to 
the occurrence of events of floods and droughts. Floods 
will cause the overflow of water over the land surface, on 
the other hand, droughts can reduce the amount of water 
available, in the sources such as lakes and dams. Due to 
human overpopulation and their activities, the demand 
for water usage is increasing (Cassils 2004, Wang et al. 
2018). Rainfall pattern trends have a significant impact 
on smallholder farmers, due to their reliance on water 
resources from natural sources for agricultural production 
and community sustenance, Particularly the farmers who 
are relying on rain-fed agriculture will be the hardest hit.

 OCID details of the authors:

S. A. Veerabhadrannavar:  
https://orcid.org/0000-0002-1566-1640
B. Venkatesh: https://orcid.org/0000-0002-9352-5230 

mailto:shilpaveer56@gmail.com
https://orcid.org/0000-0002-9352-5230
https://orcid.org/0000-0002-1566-1640
https://info.orcid.org/


1838 Shilpa A. Veerabhadrannavar and B. Venkatesh

Vol. 21, No. 4, 2022 • Nature Environment and Pollution Technology  

With its complicated geographical characteristics, Vari-
ous parts of India suffer from natural disasters, such as floods 
and long dry seasons (Pareek & Trivedi 2011, Rasul 2015), 
and climate variations are becoming more common as a result 
of climate change (Jolly et al. 2015), putting Indian geograph-
ical region at risk. High rainfall magnitude can be assessed 
in terms of water availability, agricultural development, food 
security, and the economics of the country. The amount of 
water available is determined by rainfall rates (García-Ruiz 
et al. 2011, Sharma 2000) and the land-use changes in the 
region. Historical climate fluctuation should\ be evaluated to 
anticipate future climate variations and manage the available 
water resources for agriculture and other purposes in the best 
possible way and be ready with contingency plans as there 
is always uncertainty associated with the rainfall received in 
the catchment. Hence the primary goal of this research is to 
identify rainfall changes during the future period of (2021-
2050) with reference to the baseline period of (1991-2020). 
This will encourage the development of ecologically friendly, 
long-term technologies and innovation for self-sufficiency 
in agriculture and food security.

STUDY AREA

The study area under consideration is composed of two river 
catchments, Sagar catchment, and Kokkarne catchments, 
belonging to Varada river and Seetha river respectively. Both 
the Varada river and Seetha river originate in the Western 
ghats of India in Karnataka (Fig. 1).

MATERIALS AND METHODS

The various steps followed in the present study are as follows:

 1. IMD gridded rainfall data for the baseline period (1991-
2020) of Sagar catchment and Kokkarne catchment is 
used in the present study. 

 2. The rainfall dataset is obtained from the following five 
selected global climate models (GCMs) (Table 1) under 
the RCP 4.5 scenario for the future period of (2021-
2050) which is downscaled for the South Asia region.

 3. The downscaled rainfall dataset is further bias-correct-
ed, and then statistical factors are used to investigate 
the variation in distribution across the study area. The 
rainfall dataset acquired for the catchments is statisti-
cally analyzed to see whether there are any significant 

differences in the rainfall dataset. Also included are the 
graphs demonstrating the percentage change in rainfall 
statistical parameters for the study period of 2021-2050, 
as well as graphs depicting the effect of bias correction 
in the raw GCM dataset. The mean, median, standard 
deviation, kurtosis, skewness, minimum, maximum, and 
range are all used in this study to calculate the metric.

 4. The standard deviation is a measure of dispersion. A 
low number implies that the data is clustered closely 
around the mean. A large number implies that the dataset 
is widely distributed on both sides of the mean. A high 
standard deviation denotes large year-to-year fluctua-
tions, whereas a low standard deviation denotes smaller 
fluctuations. In other words, high-standard-deviation 
rainfall is deemed to be more volatile than low-stand-
ard-deviation rainfall.

 5. The skewness and kurtosis are calculated to see if the 
annual rainfall dataset followed a normal distribution. 
Skewness is a metric for symmetry, or more specifically, 
the lack of it. If the dataset appears the same to the left 
and right of the center point, it is considered to be sym-
metric. A normal distribution has zero skewness, and 
any symmetric dataset should have skewness close to 
zero. Negative skewness values indicate that the dataset 
is skewed to the left, whereas positive skewness values 
show that the dataset is biased to the right. Kurtosis is a 
metric for how peaked or flat a dataset is in comparison 
to a normal distribution. To put it another way, a dataset 
with a high kurtosis has a noticeable peak near the mean, 
a rapid drop, and heavy tails. The low kurtosis dataset 
features a flat top near the mean instead of a high peak. 
The kurtosis of the standard normal distribution is zero. 
A peaked distribution has positive kurtosis, while a flat 
distribution has negative kurtosis.

RESULTS AND DISCUSSION 

Statistical Analysis of Climate Projections for the Near 
Future (2021-2050)

The GCM model projecting the lowest mean annual rainfall 
for the Sagar catchment is the ACCESS1.0 GCM model, with 
a corresponding lowest mean value of 1271.29 mm, according 
to Table 2. The corresponding dataset is skewed right, with 
the standard deviation correlating the lowest annual rainfall 

Table 1: List of CMIP5 GCMs used in the present study. (Source: http://cccr.tropmet.res.in)

GCM code 1 2 3 4 5

GCMs ACCESS1.0 CNRM-CM5 GFDL-CM3 MPI-ESM-LR NorESM1-M

Horizontal grid spacing (lon x lat) 1.875 x 1.25 1.4 x 1.4 2.5 x 2.0 1.9 x 1.9 x 1.9
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being 414.83 mm. However, the maximum annual rainfall 
projected by the MPI-ESM-LR GCM model has a standard 
deviation of 472.05 mm, indicating that the maximum rainfall 
is greatly distributed or that the maximum rainfall pattern in the 
MPI-ESM-LR GCM model is inconsistent, as indicated by the 
highest range value. This conclusion is supported once more 
by the coefficient of variation statistics. The larger CV value 
signifies larger dispersion (Thangjai et al. 2020, Yosboonruang 
et al. 2019). The variation in CV values implies that the rainfall 
in the study area is highly variable.

For the period under consideration, the ACCESS1.0 
GCM model projects the lowest and highest mean annual 
rainfall of 3555.61 mm, and 6197.29 mm respectively, and 
the corresponding standard deviation of 1244.91 mm for the 
Kokkarne catchment, as shown in Table 3. The ACCESS1.0 
GCM model rainfall dataset is skewed to the right side. The 
high standard deviation figure is directly linked to the wide 
range of rainfall. The difference between the maximum and 
minimum annual rainfall is represented by the rainfall range. 
The standard deviation and range represent the unpredicta-
bility of annual rainfall and thus how dependable the rainfall 
is in terms of persistence.

Table 2 and Table 3 show that, except for the ACCESS1.0 
GCM model, the coefficient of variation for all global 

circulation models is lower for both catchments, indicating 
smaller variability from the mean, and comparable 
observations are made for the rainfall data projected by 
this GCM. The low coefficient of variability reported for 
the aforementioned global circulation models indicates that 
they are more reliable than the ACCESS1.0 GCM model in 
terms of rainfall. The CV indicates the degree of precision 
with which the treatments are compared and is a good 
indicator of the reliability of the experiment. It is also stated 
that the larger the CV value, the poorer the reliability of the  
experiment.

The mean annual rainfall of 1822.47 mm and the as-
sociated standard deviation of 200.67 mm is expected for 
the Sagar catchment, whereas the mean annual rainfall of 
4076.94 mm and the related standard deviation of 447.96 mm 
is projected for the Kokkarne catchment. The highest median 
rainfall values are projected for the Sagar and Kokkarne 
catchments, with 2277.05 and 4463.12 mm (as projected by 
the MPI-ESM-LR GCM model) respectively. Tables 2 and 
3 show that rainfall datasets for both catchments are posi-
tively skewed as projected by the ACCESS1.0 GCM model, 
CNRM-CM5 GCM model, GFDL-CM3 GCM model, and 
negatively skewed as projected by the MPI-ESM-LR GCM 
model, NORESM1-M GCM model.

Table 3: Statistical summary of annual rainfall over Kokkarne catchment.

GCM ACCESS1.0 CNRM-CM5 GFDL-CM3 MPI-ESM-LR NorESM1-M Ensemble

Mean [mm] 3555.61 4202.54 4285.76 4317.04 4023.73 4076.94

Min [mm] 1483.08 2580.02 2547.21 2568.25 1588.61 3161.08

Max [mm] 6197.29 5813.67 5912.52 5843.10 5778.03 5191.50

Median [mm] 3366.61 4008.59 4127.59 4463.12 4169.99 4076.55

Std Dev [mm] 1244.91 839.03 826.27 927.43 856.34 447.96

CV (%) 35.01 19.96 19.28 21.48 21.28 10.99

Kurtosis [mm] -0.59 -0.69 -0.70 -0.96 1.03 0.40

Skewness [mm] 0.29 0.23 0.14 -0.18 -0.42 -0.07

Table 2: Statistical summary of annual rainfall over Sagar catchment.

GCM ACCESS1.0 CNRM-CM5 GFDL-CM3 MPI-ESM-LR NorESM1-M Ensemble

Mean [mm] 1271.29 1541.47 2106.05 2220.15 1973.36 1822.47

Min [mm] 480.51 965.93 1200.46 1372.94 832.98 1442.61

Max [mm] 2238.05 2302.34 2982.49 3008.17 2942.97 2153.71

Median [mm] 1218.49 1492.66 2011.40 2277.05 1961.86 1831.21

Std Dev [mm] 414.83 342.75 420.86 472.05 413.02 200.67

CV [%] 32.63 22.24 19.98 21.26 20.93 11.01

Kurtosis [mm] -0.42 -0.29 -0.07 -0.90 1.20 -0.62

Skewness [mm] 0.17 0.47 0.32 -0.20 -0.12 -0.12
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Fig. 1: Study areas (Sagar and Kokkarne catchments). 
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Kokkarne catchments, belonging to Varada river and Seetha river respectively. Both the Varada 

river and Seetha river originate in the Western ghats of India in Karnatak.

MATERIALS AND METHODS 

The various steps followed in the present study are as follows: 

1. IMD gridded rainfall data for the baseline period (1991-2020) of Sagar catchment and Kokkarne 

catchment is used in the present study.  

Fig. 1: Study areas (Sagar and Kokkarne catchments).

The standard deviation is one way of summarizing the 
spread of a probability distribution. It has to do with the level 
of uncertainty involved in projecting the value of a random 
variable. High levels indicate a greater degree of uncertainty 
than low values. Tables 2 and 3 clearly showed that the standard 
deviation values of the Kokkarne catchment are higher than the 
standard deviation values of the Sagar catchment. Because of 
the relationship between the standard deviation and the mean 
values, the deviation from the normal distribution cannot be 
ignored. This is backed up by the coefficients of variation of 
rainfall dataset projected by GCM models under consideration, 
which range from 19-33 and 19-36 for the Sagar and Kokkarne 
catchments, respectively. This demonstrates that rainfall values 
in the Kokkarne catchment are significantly different from the 
rainfall of the Sagar catchment. The fact that the CV values are 
so high indicates that the rainfall is highly unpredictable and 
unreliable, which can be ascribed to the length of the dataset 
set used or the quality of the dataset.

The smaller the coefficient of variation of rainfall dataset 
projected in a GCM, the lower the variability and the more 
reliable the projected rainfall of that particular GCM model. 
Tables 2 and 3 show that the rainfall variability projected by 
the GFDL-CM3 GCM model for both the catchments is the 
lowest of all the GCMs and so can be considered reliable.

According to the findings of statistical analysis tests, there 
are substantial discrepancies in the statistical characteristics 
of the rainfall dataset for the Sagar and Kokkarne catchments 
over the research period.

Evaluation of Climate Projections for the Near Future 
(2021–2050)

Fig. 3 also shows that rainfall in both the catchments is un-
derestimated throughout the monsoon season. It can be seen 
that rainfall in the monsoon season is indicating delayed com-
mencement of the monsoon season for Sagar catchment and a 
slightly early start of monsoon season in Kokkarne catchment. 
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The bias correction method is unable to rectify the beginning 
of monsoon as projected by many GCMs, and this may be the 
case for subsequent seasons when analyzing future estimates. 
The so-called climate change may be to blame for the change 
in rainfall season. This kind of natural variability in the pre-
cipitation trends being underestimated by the GCMs is also 

reported by (Mahmood et al. 2018, Pervez & Henebry 2014, 
Singh et al. 2019, Tolika et al. 2006, Van Haren et al. 2013) 
During the winter season, underestimation of rainfall datasets 
may be seen in both catchments as a modest corrective shift in 
the quantity of rainfall received compared to the rainfall dataset 
of the baseline period (1991-2020).
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Fig. 2: Parameters of statistical analysis of rainfall dataset 

Note: Std. Dev= standard deviation, CV=Coefficient of variation 
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Nevertheless, there are considerable sources of uncer-
tainties in the results, related mainly to the climate model 
projections’ ability to describe the probability of occurrence 
of extreme events. Further, due to the nature of extreme 
events, there is only a limited dataset available and the in-
herent natural or internal variability adds uncertainty to the 
analysis of the results. GCM bias might also be blamed for 
the uncertainties (Fig. 3). For locations with the GCM data-
set, bias correction approaches can be employed in climate 
change studies. Using an ensemble of climate projections, 
as in this work, can provide an estimate of the internal var-
iability uncertainty of the GCM model. The choice of the 
bias-correction method, on the other hand, influences the total 
uncertainty in the outcome, and the method should only be 
adopted after a thorough examination of other options. To 
deal with significant biases, such as those due to erroneous 
timing and location of stationary synoptic scale rainfall 
fields like the monsoon, improvements in climate model 
post-processing approaches are still needed. There have been 
advancements in analyzing the influence of climate change 
at the regional scale, but further methods for reducing the 
uncertainties associated with GCM datasets and scaling 
procedures need to be investigated.

Seasonal Uncertainty

Table 4 shows the absolute difference in mean monthly 
rainfall between the GCM projections and the mean monthly 
rainfall in the baseline scenario for the Sagar catchment. 
The Ensemble mean of all the projections show an increase 
in rainfall contribution during monsoon (+4.59%), Post 
monsoon (+17.91%) winter (+1.52%) whereas a decrease in 
rainfall contribution during summer (-47.41%) is projected. 
The rainfall data values for the baseline period (1991-2020), 
as shown in Fig. 4 and Table 4, are significantly low in the 
monsoon, post-monsoon, and winter seasons, and high in the 
summer season which can be attributed to the effect produced 
by climate change. When compared to the reference dataset, 

all GCMs are unanimously depicting decreasing trend in the 
percentage contribution during the summer season for the 
future period (2021-2020).

The Ensemble mean of all the projections shows an 
increase in rainfall contribution during monsoon (+4.69 
%) and summer (+16 %), and a decrease in rainfall contri-
bution during Post monsoon (-6.39 %), winter (-50.76 %) 
for the Kokkarne catchment. As shown in Fig. 4 and Table 
5, the observed rainfall data values are comparatively low 
in monsoon and summer seasons, and substantially high in 
post-monsoon and winter seasons, which can be attributed to 
the effect of climate change. In comparison to the reference 
rainfall dataset for the baseline period, the overall percent-
age contribution to the winter season for the future period 
(2021-2020) is decreasing as projected by all the GCMs 
under consideration.

This kind of seasonal variation in precipitation in different 
regions has also been reported by (Cheung et al. 2008, Gede-
faw et al. 2018, Hussain & Lee 2013) The weather system 
being different in a different season of a year is the prime factor 
leading to seasonal variation in precipitation as reported by 
(Arora et al. 2006).

GCM Uncertainty

Uncertainties are inherent in any modeling system, and proper 
assessment of uncertainties is a major research task. Although 
uncertainties cannot be eliminated, evaluating and compre-
hending their impact on model prediction is critical (Rupa & 
Mujumdar 2019). Though the climate models for the research 
region are carefully chosen, the measurement of uncertainty 
in climate change impacts on climatic variables such as rain-
fall and temperature is required because GCM simulations are 
mostly based on initial boundary conditions. Rainfall and tem-
perature are the most important input variables in hydrological 
modeling, hence uncertainty in these variables is important in 
climate change effect studies on streamflow.
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Fig. 3: Mean annual rainfall cycle over the future period (2021-2050) using a 30-day moving average of the Sagar and Kokkarne catchments. 
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The model uncertainty in climate change impact on the mean 
percentage change of mean, minimum and maximum annual 
rainfall in the Sagar catchment (Table 6) for RCP 4.5 indicate an 
increasing trend (+2.52%), an increasing trend (+42.30 %), and 
a decreasing trend (-52.44%) with respect to the corresponding 
mean, minimum and maximum annual rainfall of baseline period 
(1991-2020) respectively. reduction in maximum rainfall falls in 
line with a research report by (Al-Ansari et al. 2014, Modarres 
et al. 2018, Rana et al. 2014).

In the case of the Kokkarne catchment, the model uncertainty 
in climate change impact on the mean percentage change of 
mean, minimum and maximum annual rainfall (Table 7) for 
RCP 4.5 shows an increasing trend (+4.12 %), an increasing 
trend (10.50 %) and a decreasing trend (-15.28 %) with respect 
to the mean, minimum and maximum annual rainfall of baseline 
period (1991-2020) respectively. It is worth noting that most 
of the estimates show a decrease in mean annual rainfall when 
compared to the rainfall data of the baseline period of 1777.69 
mm for the Sagar catchment. However, most predictions show 

a rise in mean annual rainfall for the baseline period of 3915.61 
mm for the Kokkarne catchment.

CONCLUSIONS 

The current study examines the impact of global climate 
change on rainfall datasets from the Sagar and Kokkarne 
catchments from 2021 to 2050 (a 30-year period). The 
present statistical analysis of the rainfall dataset provides 
a clear picture of variations in the rainfall dataset with re-
spect to various statistical parameters. The mean, standard 
deviation, and coefficient of variation of the annual rainfall 
dataset are calculated to check the rainfall variability. The 
rainfall pattern is observed to be slightly scattered based 
on the computed results. The purpose of this research is to 
determine the rainfall variability and GCM uncertainty in the 
projected rainfall data of the present studied areas.

Following conclusions can be made from the present 
study.

Table 4: Percentage changes of rainfall in near future bias corrected dataset (2021–2050) over the monsoon months as compared to baseline dataset 
(1991–2020) for Sagar catchment.

Season Monsoon Post-monsoon Winter Summer

Ensemble 16.64(4.59) 17.29(17.91) 0.07(1.52) -18.86(-47.41)

ACCESS1.0 -105.73(-29.14) -15.39(-15.94) 2.4(51.95) -19.97(-50.2)

CNRM-CM5 -53.77(-14.82) 23.42(24.25) -2.13(-46.1) -20.52(-51.58)

GFDL-CM3 83.01(22.88) 20.32(21.04) -1.63(-35.28) -13.14(-33.03)

MPI-ESM-LR 110.75(30.52) 39.35(40.75) 0.33(7.14) -26.74(-67.22)

NorESM1-M 48.94(13.49) 18.74(19.41) 1.4(30.3) -13.92(-34.99)

Note: Values in the parentheses represent the relative change from IMD data for the baseline period (1991-2020).
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CNRM-CM5 -236.22 (-13.29) 328.36 (18.47) 442.46 (24.89) 

GFDL-CM3 328.36 (18.47) 186.69 (18.42) -1546.17 (-34.14) 

MPI-ESM-LR 442.46 (24.89) 359.17 (35.43) -1520.5 (-33.58) 

NorESM1-M 195.66 (11.01) -180.78 (-17.83) -1585.69 (-35.01) 

Ensemble 44.78 (2.52) 428.84 (42.3) -2374.96 (-52.44) 

-80.00

-60.00

-40.00

-20.00

0.00

20.00

40.00

60.00

%
 c

ha
ng

e

Season

Sagar Catchment

Ensemble ACCESS1.0 CNRM-CM5

GFDL-CM3 MPI-ESM-LR NorESM1-M

-100.00

-50.00

0.00

50.00

100.00

%
 c

ha
ng

e

Season

Kokkarne Catchment

Ensemble ACCESS1.0 CNRM-CM5

GFDL-CM3 MPI-ESM-LR NorESM1-M

Fig. 4: Percentage changes of rainfall in near future bias corrected dataset (2021–2050) over  the monsoon months as compared to the baseline dataset 
(1991–2020).
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 1. The mean annual rainfall in the Kokkarne catchment is 
more than Sagar catchment by 123.70 %.

 2. Although the standard deviation values of ensemble rainfall 
data of Kokkarne catchment are higher than that of Sagar 
catchment, the coefficient of variation value of Kokkarne 
catchment is lower than that of Sagar catchment. This 
essentially means that the ensemble rainfall dataset of the 
Kokkarne catchment has lesser variability.

 3. According to the RCP 4.5 scenario, by 2050, mean annual 
rainfall is expected to be highly variable, with an increasing 
trend in rainfall for the Sagar catchment (+2.52 %) and 
Kokkarne catchment (+4.12%).

Table 5: Percentage changes of rainfall in the near future bias corrected dataset (2021–2050) over the monsoon months as compared to baseline dataset 
(1991-2020) for Kokkarne catchment.

Season Monsoon Post-monsoon Winter Summer

Ensemble 39.87(4.69) -9.64(-6.39) -3.34(-50.76) 10.38(16)

ACCESS1.0 -68.01(-8) -31.97(-21.18) -0.46(-6.99) -7.55(-11.64)

CNRM-CM5 55.38(6.52) 3.83(2.54) -3.49(-53.04) 22.74(35.06)

GFDL-CM3 77.53(9.12) -12.61(-8.35) -5.15(-78.27) 33.55(51.73)

MPI-ESM-LR 115.02(13.53) 6.97(4.62) -3.9(-59.27) -20.3(-31.3)

NorESM1-M 19.41(2.28) -14.43(-9.56) -3.69(-56.08) 23.47(36.19)

Note: Values in the parentheses represent the relative change from IMD data for the baseline period (1991-2020).

 4. The mean annual rainfall data of the Sagar catchment is 
slightly more negatively skewed than the rainfall data of 
the Kokkarne catchment.

 5. It is preferable to use the ensemble mean for subsequent 
analysis since it reduces the standard deviation and coef-
ficient of variation, making the rainfall data more depend-
able.

 6. The raw rainfall data from both the catchments are underes-
timated.  The underestimation of the case of the Kokkarne 
catchment is more than that of the Sagar catchment.

 7. Ensemble means rainfall data of GCMs used in this analysis 
predict that monsoon rainfall from 2021 to 2050 in both 

Table 6: Percentage changes in the mean, minimum and maximum annual rainfall (mm) over the study area for Sagar catchment during 2021-2050 with reference 
to the baseline period of 1991-2020.

GCM Mean Minimum Maximum 

ACCESS1.0 -506.41 (-28.49) -533.26 (-52.6) -2290.62 (-50.58)

CNRM-CM5 -236.22 (-13.29) 328.36 (18.47) 442.46 (24.89)

GFDL-CM3 328.36 (18.47) 186.69 (18.42) -1546.17 (-34.14)

MPI-ESM-LR 442.46 (24.89) 359.17 (35.43) -1520.5 (-33.58)

NorESM1-M 195.66 (11.01) -180.78 (-17.83) -1585.69 (-35.01)

Ensemble 44.78 (2.52) 428.84 (42.3) -2374.96 (-52.44)

Note: Values in the parentheses represent the relative change from IMD data for the baseline period (1991-2020).

Table 7: Percentage changes in the mean, minimum and maximum annual rainfall (mm) over the study area for Kokkarne catchment during 2021-2050 with 
reference to the baseline period of 1991-2020.

GCM model Mean Minimum Maximum

ACCESS1.0 -360 (-9.19) -1377.55 (-48.16) 69.56 (1.14)

CNRM-CM5 286.93 (7.33) -280.61 (-9.81) -314.06 (-5.13)

GFDL-CM3 370.15 (9.45) -313.42 (-10.96) -215.21 (-3.51)

MPI-ESM-LR 401.43 (10.25) -292.38 (-10.22) -284.63 (-4.65)

NorESM1-M 108.12 (2.76) -1272.02 (-44.47) -349.7 (-5.71)

Ensemble 161.33 (4.12) 300.46 (10.5) -936.23 (-15.28)

Note: Values in the parentheses represent the relative change from IMD data for the baseline period (1991-2020).
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the catchments will be higher than monsoon rainfall data 
of the baseline period (1991-2020). 

 8. For Sagar and Kokkarne catchments, GFDL-CM3 GCM 
with the lowest CV of 19.98, 19.28 is projecting 2106.05 
mm, 4285.76 mm of mean annual rainfall which is more 
than the ensemble mean annual rainfall by 15.56 %, 5.12 
% respectively.

 9. For Sagar and Kokkarne catchments, ACCESS1.0 GCM 
with the highest CV of 32.63, 35.01 is projecting 
1271.29 mm, 3555.61 mm of mean annual rainfall which 
is less than the ensemble mean annual rainfall by 30.24 
%, 12.78 % respectively.

To prove the conjecture of the scientists, more than one 
statistical procedure is required to measure changes in hy-
drological datasets such as rainfall. This endeavor is a little 
step in that direction.
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