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ABSTRACT

In the present study, the treatment of slaughterhouse wastewater was carried out in a sequential batch 
reactor. A lab-scale column type reactor was fabricated with Perspex material having dimensions of 10 
cm diameter, 100 cm height, and an effective volume of 7 liters provided with ports at different levels. The 
reactor performance was evaluated in terms of COD, BOD, TSS, TKN, and phosphorus removal. The 
reactor was operated for 432 days; the effectiveness of the reactor is the temperature of wastewater in 
the reactor. The removal efficiencies of COD and BOD were84% and 80% in the reactor. The maximum 
TSS removal was around 87% and TKN’s maximum removal efficiency was 61% in aerobic treatment. 
Phosphorus maximum removal efficiency was around 68%, in the meantime pH and alkalinity were 
also monitored, and no change in the pH was reported throughout the experiment. On the other hand, 
an aerobic SBR is also operated using wastewater after the DAF unit. In the same manner, the reactor 
was operated with initially diluted wastewater (05 times) and kept HRT 8 h. The reactor performance 
was studied in terms of COD, BOD, TSS, TKN, and phosphorus. The maximum removal efficiencies of 
COD and BOD were 80% and 81% respectively. The maximum removal efficiencies of TSS, TKN, and 
Phosphorus were 73%, 81%, and 69% respectively. It is concluded that the removal efficiency of COD 
was better in the anaerobic process as compared with the aerobic process in addition the generation 
of methane gas during the degradation of organic matter can be used for operating the aerobic unit by 
making some necessary arrangements. Besides this, it is also concluded that the removal efficiency of 
TKN was better in the aerobic process as compared with the anaerobic process. There was a buildup 
of VSS from 4500 mg.L-1 to 6500 mg.L-1 in the study.           

INTRODUCTION 

Water shortage and contamination of available water reserves 
have engrossed global attention in recent years (Khan et al. 
2015). The effluent coming from various industries such as 
slaughterhouses, food processing industries, chemical pro-
cessing plants, and paper & pulp industries remain highly 
contaminated. The slaughterhouse wastewater is classified 
under the category of agricultural and food industries as 
industrial wastewater. On an average 15 liters of wastewater 
are generated in each mechanized slaughtering, amounting 
to about 630 million gallons of water annually in India itself 
(Central Pollution Control Board, Delhi, Ministry of Envi-
ronment, Forest and Climate Change, Government of India, 
October 2017). Studies show that effluent generated from 
slaughterhouses contaminates both surface and groundwater 
bodies because of the slaughtering process, blood, fat, urine, 
and undigested food are produced and added to the nearby 
water streams (Alam et al. 2021). Slaughterhouse industries 
having high suspended solids, organic matter should not be 
discharged on the land or in sewers directly because of their 

high concentration of COD, and BOD (Aziz et al. 2019, 
Mittal et al. 2006). Besides this, the addition of chemicals 
for the treatment of wastewater is not a good option because 
it increases the cost of the treatment, and disposal of sludge 
is uneconomical. 

For the conventional treatment of slaughterhouse waste-
water, methods based on anaerobic treatment processes are 
more advantageous over the other treatment system (Sindhu 
et al. 2012, Sunder et al. 2013) like the advanced oxidation 
process, electro-coagulation, and physicochemical process 
(Masse & Masse 2005, Del Nery et al. 2007, Khan et al. 
2020). Advantages of the anaerobic process are high organic 
removal, less space required, less sludge generation, low 
energy requirement, working on high organic loading, less 
nutrients requirement, and methane gas production which 
can be used to operate the generators to be used for energy 
requirement in aerobic unit operations.

Few reactor configurations are used for the anaerobic 
treatment of industrial wastewater like upflow anaerobic 
sludge blanket reactor (UASB) (Rajakumar et al. 2012), 
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completely mixed anaerobic digester, fluidized and expanded 
bed reactors, and anaerobic filters, anaerobic sequencing 
batch reactor (ASBR) (Kundu et al. 2013). Among these, 
the anaerobic sequencing batch reactor had gained popular-
ity as a better biological treatment option for the treatment 
of industrial wastewater. SBR systems can degrade the 
pollutants and can withstand higher organic loading (Masse 
& Masse 2000, Sombatsompop et al. 2011). Overall these 
SBR systems have some advantages over other conventional 
treatment technologies such as low energy consumption, and 
require less space with all the operations such as Fill, React/
Aeration, Settle, and Draw taking place in a single tank (Khan 
et al. 2019, Bustillo-Lecompte et al. 2017, Chan et al. 2009). 

The objective of this study was to assess the feasibility 
of a lab-scale anaerobic-aerobic SBR for the treatment 
of slaughterhouse wastewater and a comparative analysis 
with aerobic SBR treatment of slaughterhouse wastewater 
taken after Diffused Air Flotation(DAF) unit from a running 
slaughterhouse effluent treatment plant.

MATERIALS AND METHODS

Two reactors were fabricated with Perspex material of 
similar dimensions and capacity, one anaerobic and the 
other aerobic as shown in Fig. 1. Considering the design 
and dimensions, an internal diameter of 10 cm and height 
of 100 cm, the working volume of the column type SBR 
was 7.065 L. A port at 10 cm below the top of the reactor 

was made for the collection of effluent, while a port at the 
bottom of the reactor was made for the withdrawal of ex-
cess sludge generated. Both the reactors were seeded with 
respective sludge. Initially, the diluted wastewater was fed 
to the reactor and for acclimatization of micro-organisms, 
the HRT of 24 h was fixed, later on changing the dilution of 
wastewater as well as the HRT of the reactor. The anaerobic 
SBR consists of an anaerobic UASB in the bottom part and 
a port for effluent withdrawal at 0.75 m from the bottom. 
The aerobic SBR had an air supply port at the bottom and 
an effluent withdrawal port at 0.75 m from the bottom, and 
an excess sludge collection port at a height of 0.2 m from 
the bottom was provided in both the reactors.

The anaerobic sequential batch reactor (SBR) was seeded 
with two L of digested slaughterhouse UASB sludge. The 
aerobic sludge was fed in the reactor taken from the aera-
tion tank of an activated sludge process treatment unit. The 
slaughterhouse wastewater was fed to the reactors having the 
following characteristics as given in Table 1.

Operation Cycle

Initially, the raw wastewater was 10 times diluted in the 
reactor to avoid shock loading, keeping the HRT at24 h for 
microorganisms to acclimatize. The dilutions of the raw sam-
ple were further varied as 5 times, 4 times, and so on in the 
end sample without dilution, varying the HRT of the reactor 
gradually. The dilutions were changed accordingly on the 
attainment of the steady-state conditions as shown in Table 2.

 
Fig. 1: Two reactors set up in parallel at lab scale and schematic diagram for the treatment of slaughterhouse 

wastewater. 

 

The anaerobic sequential batch reactor (SBR) was seeded with two L of digested slaughterhouse 

UASB sludge. The aerobic sludge was fed in the reactor taken from the aeration tank of an activated sludge 
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Aerobic SBR While Using DAF Sample

The reactor was seeded with two L of digested sludge 
taken from the activated sludge process unit of a running 
treatment plant. The slaughterhouse wastewater fed to the 
reactor has the following characteristics as a DAF unit as 
shown in Table 3.

When the microorganisms were acclimating, the raw 
wastewater was diluted 05 times in the reactor to avoid 
shock loading, and the HRT was kept at 8 hours. When the 
microorganisms were acclimating, the dilution of the raw 
sample was changed 4 times, 3 times, 2 times, and without 
dilution, and the HRT was kept at 8 hours. When the micro-

organisms were acclimatizing, the dilution of the raw sample 
was changed 4 times, 3 times, 2 times, and without dilution, 
and HRT was kept as 8. The dilutions of the sample were 
changed when the steady-state conditions were reached as 
shown in Table 4.

Experimental Setup and Operational Cycle

The reactors were operated with a cycle length of 24 h in-
itially, after steady-state conditions were reached, then the 
dilution of the sample and cycle length of the reactors were 
changed to18 h, 12 h, and 8 h. Anaerobic SBR reactor was 
fed continuously from the bottom and no air was supplied 
in the reactor. However, the aerobic SBR reactor was having 

Table 1: General characteristics of slaughterhouse wastewater.

S.No. Wastewater Characteristics Range

1 pH 6.8 to 8.5

2 Alkalinity (mg.L-1 as CaCO3) 930 to 1350

3 Chemical Oxygen Demand (COD) (mg.L-1) 4700 to 6200

4 Biochemical Oxygen Demand (BOD) (mg.L-1) 2400 to 3200

5 Total Suspended Solids (TSS) (mg.L-1) 950 to 4200

6 Total Dissolved Solids (TDS) (mg.L-1) 5200 to 7200

7 Total Kjeldahl Nitrogen (TKN) (mg.L-1) 180 to 256

8 Phosphate (PO4) (mg.L-1) 130 to 256

Table 2: COD values of influent feed to the anaerobic reactor.

S.No. Dilution Factor COD Influent in Reactor(mg.L-1) Total Days

1 Ten Times 510 96 days

2 Five Times 1006 72 days

3 Four Times 1530 48 days

4 Three Times 2070 54 days

5 Two Times 3031 48 days

6 Without Dilution (Raw Wastewater) 6172 120 days

Table 3: Characteristics of slaughterhouse wastewater after the DAF unit.

S.No. Wastewater Characteristics Range

1 pH 7.20

2 Alkalinity (mg/l as CaCO3) 1130

3 Chemical Oxygen Demand (COD) ( mg.L-1) 4120

4 Biochemical Oxygen Demand (BOD) ( mg.L-1) 2390

5 Total Suspended Solids (TSS) ( mg.L-1) 2164

6 Total Dissolved Solids (TDS) ( mg.L-1) 4200

7 Total Kjeldahl Nitrogen (TKN) ( mg.L-1) 769

8 Phosphate (PO4) (mg/l) 258
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continuous oxygen supply to maintain the population of 
microorganisms, although aeration was turned off during 
adding of the effluent and its withdrawal.

The timing of the phase cycle for SBR was: Fill-05 min, 
React-23 hrs 10 min, Settle-40 min, Draw-05 min.

The analytical techniques used in this study were per-
formed according to the method described in Standard 
Methods. pH, total dissolved solids, and dissolved oxygen 
were analyzed by using HACH HQ30d portable meter(USA) 
coupled with their respective probes. Analysis of alkalinity, 
TSS, BOD, and COD was analyzed by standard methods 
(APHA 2005). The analysis of Phosphate and total Kjeldahl 
nitrogen (TKN) was carried out by DR 5000 (HACH, USA) 
UV spectrophotometer.

RESULTS AND DISCUSSION 

Both the reactors were operated for varying hydraulic reten-
tion times (HRT) namely 24, and 18,12, and 8 h respectively, 
and variable dilutions. The dilutions and HRT were changed 
when optimum removal was achieved in the last HRT and 
dilution. The maximum OLR applied was 6.172 kg COD.m-

3.d-1 for the anaerobic reactor and 1.311 kg COD.m-3.d-1 for 
the aerobic SBR reactor.  

The maximum removal efficiencies for the parameters 
COD, BOD, TSS, TKN, Phosphorus, pH, and alkalinity using 
anaerobic SBR treatment are tabulated as shown in Table 5.

However, the maximum removal efficiencies of COD, 
BOD, TSS, TKN, and Phosphorus achieved were 80%, 
81%, 73%, 81%, and 69% respectively for slaughterhouse 

Table 4: COD values of Influent Feed to the Aerobic Reactor.

S.No. Dilution Factor COD Influent in Reactor (mg.L-1) Total Days

1 Five Times 845 72 days

2 Four Times 1050 48 days

3 Three Times 1412 96 days

4 Two Times 2115 96 days

5 Without Dilution (Raw Wastewater) 4120 96 days

Table 5: Maximum removal efficiencies attained in anaerobic SBR for the studied parameters.

S.No Pollutants Influent (mg.L-1) Effluent (mg.L-1) Removal Efficiency (%age)

1 pH 6.25 7.85 --

2 Alkalinity 1153 188 83%

3 COD 6250 1000 84%

4 BOD 2815 563 80%

5 TKN 1064 410 61%

6 TSS 4235 551 87%

7 Phosphorus 258 83 68%

Table 6: Maximum removal efficiencies attained in SBR for the studied parameters by aerobic SBR treatment after DAF unit.

S.No Pollutants Influent (mg/L) Effluent (mg/L) Removal Efficiency (% age)

1 pH 6.52 7.25 --

2 Alkalinity 953 160 83%

3 COD 4120 830 80%

4 BOD 2395 460 81%

5 TKN 769 204 73%

6 TSS 2164 410 81%

7 Phosphorus 258 78 69%
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wastewater using aerobic SBR treatment after the DAF unit 
are shown below in Table 6.

The results of anaerobic-aerobic SBR using raw wastewa-
ter and employing a DAF unit were compared with Central 
Pollution Control Board (CPCB), INDIA effluent discharge 
standards as shown below in Table 7.

Graphs were plotted (Fig. 2 to Fig. 8) to show the var-
iation of influent and effluent Chemical Oxygen Demand, 
Biochemical oxygen Demand, Total Kjeldahl Nitrogen, Total 
Suspended Solids, and Phosphorus removal efficiencies 
with time. In initial the wastewater was used for feeding to 
the reactor was keeping 10 times diluted and HRT was 24 
h. The Influent parameters concentration of the wastewater 
sample when dilution keeping 10 times were 510 mg.L-1, 273 
mg.L-1, 93 mg.L-1, 350 mg.L-1, and 20 mg.L-1 respectively 
and the maximum removal efficiencies at this concentration 

were 79%, 68%, 59%, 50%, and 42% respectively at steady-
state condition. 

The influent, effluent, and removal efficiency in terms 
of Chemical Oxygen Demand (COD) for the anaerobic-aer-
obic SBR with time is shown in Fig. 2 It is quite evident 
that, initially, when the concentration of wastewater was 10 
times diluted (510 mg.L-1), and keeping HRT as 24 h, the 
removal of COD was 78%. When the steady-state condition 
was attained after 16 weeks, the dilution of the sample and 
HRT of the sample were gradually changed, until no dilu-
tion wastewater was fed to the reactor and the HRT was 8 
h, and the highest COD removal efficiency was 84 percent 
after 72 weeks.

In the same manner, the BOD influent was 273 mg.L-1 
at 10 times dilutionand24 h HRT. After 16 weeks, the re-
moval efficiency of the slaughterhouse wastewater after the 
anaerobic-aerobic process was 77%. Once the steady-state 
condition was reached, we gradually changed the dilution 
and HRT of the sample to 5 times and HRT to 18 h. After 
28 weeks, the removal was 78% as shown in Fig. 3. Finally, 
after 72 weeks of feeding wastewater to the reactor without 
dilution and holding the HRT at 8 h, the maximum removal 
efficiency was obtained at 80%.

The influent and effluent Total Suspended Solids (TSS) 
concentration and removal efficiency for treated wastewater 
are shown in Fig. 4 In which the initial concentration of 
TSS was (350 mg.L-1) at 10 times dilution and the HRT 

 
Fig. 2: Influent, effluent, and removal efficiency of COD with time. 
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Fig. 2: Influent, effluent, and removal efficiency of COD with time.

Table 7: Effluent discharge standards prescribed by the Central Pollution 
Control Board of India.

S.No. Pollutants CPCB Discharge Values (mg.L-1)

1 pH 6.50 to 8.50

2 COD 250

3 BOD 30

4 TKN 25

5 TSS 50

6 Phosphorus 1.0
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The influent and effluent Total Suspended Solids (TSS) concentration and removal efficiency for treated 

wastewater are shown in Fig. 4 In which the initial concentration of TSS was (350 mg.L-1) at 10 times 

dilution and the HRT was 24 h. After 16 weeks, the removal efficiency of anaerobic-aerobic SBR was 

achieved at 50%, and the dilution of the sample and HRT of the rector were gradually changed, with a 

dilution of the sample 5 times, 4 times, 3 times, 2 times, and without dilution being used, and the HRT 

being reduced to 18 hours, 12 h, and 8 h for the system. The removal efficiencies of the system for TSS 

was 63% after 28 weeks, at a dilution of 5 times. The concentration of the sample was (850 mg.L-1). In the 

end, the maximum removal efficiency of the TSS was 87% when the concentration without dilution of 

sample was (4235 mg.L-1) at HRT of 8 h after 72 weeks of reactor run. 

 

 
Fig. 4: Influent, effluent, and removal efficiency of TSS with time. 
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was 24 h. After 16 weeks, the removal efficiency of anaer-
obic-aerobic SBR was achieved at 50%, and the dilution of 
the sample and HRT of the rector were gradually changed, 
with a dilution of the sample 5 times, 4 times, 3 times, 2 
times, and without dilution being used, and the HRT be-
ing reduced to 18 hours, 12 h, and 8 h for the system. The 
removal efficiencies of the system for TSS was 63% after 
28 weeks, at a dilution of 5 times. The concentration of the 
sample was (850 mg.L-1). In the end, the maximum removal 
efficiency of the TSS was 87% when the concentration 
without dilution of sample was (4235 mg.L-1) at HRT of 8 
h after 72 weeks of reactor run.

The influent Total Kjeldahl Nitrogen (TKN) was (93 
mg.L-1) at dilution 10 times. The removal efficiency was 
50% when the steady-state condition was reached. The 
dilution of the sample was gradually changed to 5 times, 
4 times, 3 times, and 2 times, and the sample was used 
without dilution. In the end, the maximum removal effi-
ciency of the TKN in the anaerobic-aerobic SBR system 
was 61%, keeping the HRT of the system was 8 h as 
shown in Fig. 5. The removal efficiency of TKN in the 
anaerobic SBR system was reported less as compared with 
the aerobic system. The removal efficiency of TKN did 
not increase throughout the process, and was in the range 
of 50% to 61% in the anaerobic-aerobic SBR system, as 
indicated in the graph.

The phosphorus present in the sample was due to the 
breakdown of the proteins, initially, the concentration was 
(20 mg.L-1) at 10 times dilution, keeping HRT at 24 h. The 
removal efficiency of the phosphorus was only 38%, and the 
removal of phosphorus from the wastewater is very less. As 
the steady-state condition was reached, we gradually changed 
the HRT and dilution of the wastewater to 5 times, 4 times, 
3 times, 2 times, without dilution, and HRT decreased to 
18 h, 12 h, and 8 h. The maximum removal efficiency of 
phosphorus was 68% in the anaerobic-aerobic treatment 
system of SBR after 72 weeks, the removal efficiency and 
the influent and effluent phosphorus variation with time as 
shown in Fig. 6.

In an anaerobic-aerobic system the influent, pH was 
more or less unchanged throughout the experiment but at 
some points when the dilution of the sample changed then 
little bit changes were reported in the pH concentration, 
otherwise the pH remained unchanged as shown in Fig. 7. 
But the pH concentration of the treated effluent increased 
from 6.25 to 7.75. 

Initially, the alkalinity of the wastewater was (1156 
mg.L-1) without dilution sample, and effluent alkalinity was 
obtained after treatment (188 mg.L-1) the maximum removal 
of alkalinity is reported as 83% from the anaerobic-aerobic 
treatment system at HRT 8 h of the reactor the graph as 
shown in Fig. 8  

throughout the process, and was in the range of 50% to 61% in the anaerobic-aerobic SBR system, as 

indicated in the graph. 

 
Fig. 5: Influent, effluent, and removal efficiency of TKN with time. 
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Fig. 6: Influent, effluent, and removal efficiency of phosphorus with time. 
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CONCLUSION 

This study used anaerobic and aerobic sequencing batch 
SBR reactors for slaughterhouse wastewater treatment, 
which proved to be easy to operate, less energy-consuming, 
requiring less space, and extremely efficient when compared 
to other conventional processes. In terms of addressing high 
organic loading and obtaining high removal efficiencies 
under steady-state conditions, an anaerobic-aerobic SBR 

system was found to be a better solution for the treatment of 
slaughterhouse effluent. The maximum removal rates attained 
for Chemical oxygen demand, Biological oxygen demand, 
Total suspended solids, Total Kjeldahl nitrogen, and Phos-
phorus were 84%, 80%, 87%, 61%, and 68% respectively. It 
may also be concluded that the removal efficiency of COD/
BOD in an anaerobic SBR system is better as compared with 
an aerobic SBR system using wastewater after the DAF unit. 
However, removal of TKN and Phosphorus from the waste-
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water is better in aerobic SBR as compared with anaerobic  
SBR. 
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Initially, the alkalinity of the wastewater was (1156 mg.L-1) without dilution sample, and effluent alkalinity 

was obtained after treatment (188 mg.L-1) the maximum removal of alkalinity is reported as 83% from the 

anaerobic-aerobic treatment system at HRT 8 h of the reactor the graph as shown in Fig. 8   
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