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	       ABSTRACT
Air quality is a vital concern globally, and Sri Lanka, according to WHO statistics, faces 
challenges in achieving optimal air quality levels. To address this, we introduced an innovative 
IoT-based Air Pollution Monitoring (APM) Box. This solution incorporates readily available 
Commercial Off-The-Shelf (COTS) sensors, specifically MQ-7 and MQ-131, for measuring 
concentrations of Carbon Monoxide (CO) and Ozone (O3) ,Arduino and "ThingSpeak" 
platform. Yet, those COTS sensors are not factory-calibrated. Therefore, we implemented 
machine learning algorithms, including linear regression and deep neural network models, to 
enhance the accuracy of CO and O3 concentration measurements from these non-calibrated 
sensors. Our findings indicate promising correlations when dealing with MQ-7 and MQ-131 
measurements after removing outliers. 

INTRODUCTION

Over time, the Earth's atmosphere has undergone changes, 
influenced by both natural events and human activities. 
Unfortunately, these alterations have led to an increase in 
air pollution, impacting humans and plant life negatively. 
The concerning shift is gradually making the Earth's 
atmosphere less conducive to the well-being of both humans 
and other living organisms (Choudhary & Garg, 2013). 
Addressing these challenges is crucial for a more optimistic 
environmental future.

As air pollution is a common problem that affects almost 
all the countries in the world, continuously measuring 
air pollutants keeps track of the well-being of the public, 
animals and plants, etc. Usually, economically well-
established countries are concerned with measuring air 
quality to obtain sustainable goals with highly accurate 
real-time or conventional air quality monitoring systems. 
In Sri Lanka, air quality is mostly monitored by the Central 
Environmental Authority (CEA) and the National Building 
Research Organization (NBRO) using conventional chemical 
methods and the Mobile Ambient Air Quality Monitoring 
Lab (MAAQML).

It is possible to reduce air pollution by studying the 
changes in the composition of different types of gasses in the 

air and taking appropriate measurements using conventional 
air quality measuring equipment (Yi et al. 2015). However, 
due to their high cost, low and middle-income countries 
tend to use cost-effective sensors to measure air pollution 
and implement IoT devices (Yi et al. 2015). The air quality 
of a particular area can be monitored using sensors (gaseous 
and meteorological) and Arduino/Raspberry Pi (Malleswari 
& Mohana 2022). In research works carried out by Bathiya 
et al. (2016), Dhingra et al. (2019), Kennedy et al. (2018), 
Malhotra et al. (2020), Perumal et al. (2021), and Poonam et 
al. (2017), The authors presented recently developed systems 
to monitor air pollution using Arduino and Wireless Sensor 
Network (WSN) Technology. Here, we try to use the COTS 
sensors (Karagulian et al. 2019) in the market to measure the 
composition of the air accurately.

Si et al. (2020), have evaluated and calibrated low-cost 
particle sensors in ambient conditions using machine learning 
algorithms. In 2017, machine learning-based calibration 
methods have been used for COTS temperature sensors. Non-
linear calibration models can be used for those non-linear 
relations shown between the reference instrument and the 
sensor (Yamamoto et al. 2017). Research works (Chen et al. 
2018, Kumar & Sahu 2021, Okafor et al. 2020, Zimmerman 
et al. 2018) showcase the recently developed ML calibration 
approaches for COTS sensors for air quality monitoring. 
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While the most affordable sensors currently available in 
the market can measure air composition, they often suffer 
from quality and accuracy issues. As a result, accurate 
measurements remain challenging without appropriate 
calibration. Therefore, we tried to calibrate these sensors 
using machine learning methods, hoping to provide a cost-
effective and easily approachable way to use low-cost sensors 
in air quality measurements.

MATERIALS AND METHODS

APM box was implemented with COTS sensors (MQ-7, 
MQ-131, DHT11) and controlling components as per the 
three-level architecture, such as the application layer, control 
layer (Arduino), and sensor layer (COTS sensors) (Fig. 2). 
Block diagram of the overall system is in Fig. 4. Components 
are mounted in a non-transparent plastic box with PVC pipe 

arms that includes a fan for enabling airflow from inside to 
outside (Fig.  1). It was designed to provide consistent airflow 
similar to the outside of the air quality measuring box. A9G 
Module was used to implement the GPRS connection using 
AT commands (Bogdanov & Mitrev 2021). The Real-Time 
Clock (RTC) module was used to record date and time for the 
best practice of recording data as the A9G module provides 
the current time obtained from the telecommunication 
network, and it is not very reliable due to the failures of the 
mobile network connection and module resets.

Data Acquisition

Data collection was done using an APM box that contains 
sensors to measure CO, O3, temperature, and humidity. 
COTS sensors are MQ-7, MQ-131, and DHT11, respectively. 
The air quality box was assembled with an Arduino mega 
microcontroller (Ismailov & Jo`rayev 2022). APM box was 
co-located with the National Building Research Organizational 
(NBRO) Automated Mobile Ambient Air Quality Monitoring 
(MAAQML) System at Colombo Municipal Council (CMC) 
Sri Lanka in Fig. 3 to record parallel readings. Thus, collected 
datasets were fed to the machine learning model to calibrate 
the COTS sensors in the APM box. The data was collected 
for 3 months approximately. 

Data Storing and Transferring 

The collected measurements by APM box were uploaded 
to the “ThingSpeak” (https://thingspeak.com/) databases 
using a GPRS connection and the IoT device. APM box 
is utilized to store a backup of the recorded data in case of 
any emergency, such as communication issues of mobile 
telecommunication networks. 

An Arduino micro SD card module was used to 
store the backup data. The recorded dataset was sent to 
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the “ThingSpeak” platform using its Representational 
State Transfer (REST) based web service using General 
Packet Radio Service (GPRS) of the (A9G Module) with 
5 minutes frequency. This method allowed us to monitor 
the functionality of the A9G module and also get real-time 
measurements for the analysis.

Data Visualization and Analysis

“ThingSpeak” provides real-time data visualization using 
different kinds of graphs and allows users to customize 
the visualization by supporting plugins with user-defined 
calculations. It also provides MATLAB support for data 
analysis. However, we used Google Colaboratory (https://
colab.research.google.com/) and conducted the data 
preprocessing analysis prior to applying ML algorithms. 

 Data cleaning was performed as the first step to eliminate 
possible errors once analysis started using Google Co-lab 
with pandas (https://pandas.pydata.org/) and “NumPy” 
(https://numpy.org/doc/stable/) library support.

Prediction Methods

Linear regression: Linear regression is a simple machine 
learning algorithm, and it is important to predict the 
association of ≥1 independent (predictor) variable with a 
continuous dependent (outcome) variable (Schober & Vetter 
2021).
Simple linear regression: Simple linear regression is 
performed to determine the association between two 
quantitative variables. It can be represented as a straight line, 
as shown in Equation 1.
	 𝑦𝑦 =  𝑚𝑚𝑚𝑚 +  𝑐𝑐  	 …(1)

In this equation, y stands for the outcome variable 

and x for the predictor. The slope and the interception are 
denoted by m and c, respectively.  In sensor calibration, this 
method can be used to fit a linear equation to the NBRO 
measures of the gas and the gas measures of the air quality  
measuring device that is collected in parallel at the  
same time. 

Multiple linear regression: This regression refers to 
a regression model that contains multiple independent 
variables. In sensor calibration, temperature, humidity, and 
wind flow can be used as multiple predictor variables, as 
shown in Equation 2.

	 𝑦𝑦 = 𝑚𝑚0  𝑥𝑥0  +  𝑚𝑚1 𝑥𝑥1  +. . . +𝑚𝑚𝑛𝑛 𝑥𝑥𝑛𝑛 + 𝑐𝑐 	 …(2)

Where xn represents the number of multiple independent 
variables, and y represents the dependent variable.

In this research work, First, we used the simple linear 
regression model to identify the correlation between only 
the NBRO sensor reading and the COTS sensor readings. 
Next, we used temperature and the COTS sensor readings as 
independent variables, while the NBRO sensor readings are 
the dependent variables of a multiple linear regression model.

Feed-forward neural network: A feed-forward neural 
network is a method of ML that does not have any cycle in the 
connections between the nodes. As input is only processed 
in one direction, the feed-forward model is the simplest NN 
model (Fig. 5). The data may go via a number of hidden 
nodes, but it always moves forward and never backward.

In this research, first, we designed a feed-forward neural 
network with an input layer containing one node to represent 
non-calibrated sensor value. The input layer contained 01 
Node and 02 hidden layers, with 64 per layer added next to 
the input layer. Next, another hidden layer was added with 
64 before the output layers that consisted of 01 Node. Each 
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hidden layer has the Rectified Linear Unit (“ReLu”) activation 
as the activation function. Layer weight initializers define the 
approach for setting the initial random weights of Keras layers. 
Then, we set the layer initializer as normal to initialize the 
weights of the hidden layers. Finally, In the output layer, we 
used the linear function as the activation function, as it needs 
to get the calibrated concentration as the output value of the 
NN. There were 8577 total trainable parameters in this model.

As the second approach, we changed the input layer by 
adding two nodes for the non-calibrated sensor reading and 
temperature.

RESULTS AND DISCUSSION

The data collection phase was continued for approximately 3 

months starting from June 2022, with dynamically parallel to 
NBRO MAAQML at CMC for CO and O3 gasses. As these 
are low-cost, non-factory calibrated COTS sensors, their 
readings include a higher number of outliers than the amount 
that can be expected from calibrated higher-accuracy devices. 
Therefore, we implemented the following procedures before 
utilizing ML algorithms for readings of the low-cost sensors, 
specifically the MQ-7 and MQ-131.

First, the measurements were taken at a similar 
meteorological environment during the same time with all the 
sensors. Next, we compared the sensor values and selected 
the sensors that gave the most similar results to build up 
the APM boxes. This procedure was conducted to identify 
the malfunctioned sensors before locating them in the field. 

direction, the feed-forward model is the simplest NN model (Fig. 5). The data may go via a 

number of hidden nodes, but it always moves forward and never backward. 
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MQ-131 sensors using the direct-taking sensor raw values 
that had been collected for presenting a calibration method to 
take accurate CO and O3 concentrations using ML methods.  
Fig. 7 shows the generalized circuit for MQ sensors which 
was used with the Arduino Mega microcontroller.

The following formula, Equation 3 can be used to derive 
the values of sensor resistance for different gasses using 
MQ Sensors in modules that use an MOS (Metal Oxide 
Semiconductor) sensor. 
	 Using V = I x R (Ohm’s Law) 

	 VRL = [VC/(RS + RL)] x RL

	 RS = [(VC/VRL) – 1] x RL 	 …(3)

Where, VC = Circuit Voltage 

	    VRL = Changing Analog Voltage depending on 
gas Concentration

Fig. 6 shows the “ThingSpeak” visualizing the data 
reading in real time with/without “ThingSpeak” plugins. 
“ThingSpeak” plugins can be used to set custom functions 
to visualization that help to compare the analog readings 
and the values determined by those readings in real-time. 
After collecting the data, data preprocessing was done, and 
the datasets were prepared for applying ML algorithms after 
eliminating the outliers using the IQR method and standard 
deviation method. The results were evaluated using the 
Mean Squared Error (MSE) and Coefficient of determination 
(R-squared value).

MQ Sensors 

Usually, low-cost sensors such as MQ-7 and MQ-131 
are not accurate enough to use in monitoring pollutant 
concentrations as they are not factory-calibrated. Here, we 
have implemented a calibration equation for both MQ-7 and 

Linear Regression on Carbon Monoxide (CO) Data 

Fig. 10 shows the line obtained from the simple linear regression model using the “Scikit-

Learn” library. After fine-tuning the model, the MSE and R-squared values were 0.0012 and 

0.80, respectively. This indicates that the average difference between observed and predicted 

values is much lower and that there is a higher correlation between the MQ-7 readings and the 

NBRO sensor readings. 
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Gas concentrations and analog voltage generated by 
sensors are proportionally variate and can be applied to a 
linear graph to showcase its ideal relation (Karamchandani 
2016). Further, it specifies that the analog voltage increases 
when the gas concentration increases.

Linear Regression on Ozone (O3) Data

A simple Linear regression method was applied to the Ozone 
dataset using the “Scikit-Learn” regression functions. The 
Fig. 8 shows the correlation between the NBRO Ozone data 
and the MQ-131 sensor data. MSE and R-squared values 
were 0.105 and 0.59, respectively. Lower MSE shows a lower 
average squared difference between the MQ-131 readings vs 
NBRO Ozone sensor data. Mid-level of R-squared shows a 
considerable correlation between the accurate readings and 
the low-cost sensor analog reading. 

Using the “Scikit-Learn” regression library, a multiple 
regression model was trained using the particular temperature 
values along with the non-calibrated sensor readings as 
independent variables. Fig. 9 shows the result of the test 
dataset, which provided MSE, MAE, and R-squared values 
as 0.107, 0.260, and 0.625. Respectively. This shows 
that a better correlation can be identified when we use  
independent variables in multiple linear regressions with 
lower errors.

Linear Regression on Carbon Monoxide (CO) Data

Fig. 10 shows the line obtained from the simple linear 
regression model using the “Scikit-Learn” library. After 
fine-tuning the model, the MSE and R-squared values were 
0.0012 and 0.80, respectively. This indicates that the average 
difference between observed and predicted values is much 
lower and that there is a higher correlation between the MQ-7 
readings and the NBRO sensor readings.

Similar to the multiple linear regression model used for 
Ozone with temperature values, we trained multiple linear 
regression models for CO readings. As shown in Fig. 11, the 
model performed well compared to the simple regression 
model with higher co-relation and fewer errors, as shown 
in Table 1.

Deep Neural network for both MQ-7 and MQ-131

We trained a deep neural network with an input layer of 
size 2 for non-calibrated sensor reading and temperature, as 
deep neural networks can be used for regression problems 
with multiple input variables. We observed that the deep 
neural network model performed similarly to the regression 
models with lower MSE and higher R-squared value, as 
shown in Table 2 and Fig. 12. We trained to use a lesser 
number of nodes to avoid the overfitting of the model. 
After fine-tuning, the trained model was performed on 
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Table 1: Regression model performance analysis.

Sensor Independent variables Coefficients Intercept MSE MAE R-Squared

MQ-131 (Ozone) 1. Non-Calibrated  Sensor value 
2. Temperature

1) 0.0356 
2) 0.0647

-3.2620 0.1067 0.2596 0.6254

1. Non-Calibrated Sensor value 1) 0.0393 -1.6626 0.1053 0.2520 0.5895

MQ-7 (Carbon 
Monoxide)

1. Non-Calibrated Sensor value 
2. Temperature

1) 0.0046
2) -0.0019

0.0877 0.0012 0.8010 0.8010

1. Non-Calibrated Sensor value 1) 0.0047 0.0203 0.0013 0.0314 0.7799
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the test datasets of both CO and O3 datasets separately. 
The MSE, MAE, and R-squared were calculated by using 
“Scikit-Learn” library metrics for ML. When there are 
more input variables, it shows an increase in both ML  
models.

MQ-7 (CO) sensor  readings  show a higher 
correlation between the observed and predicted sensor 
readings with a lower MSE, indicating a very lower 
average squared difference of the data. Also, higher 

R-squared values show the correlation between the  
sensors.

It is better to have a lesser number of nodes per hidden 
layer and total trainable parameters with respect to the size of 
the data set typically (Abiodun et al. 2018). The generalization 
of this NN is shown as it performed comparatively better for 
both MQ-7 and MQ-131 senor types with a lesser number 
of nodes (64) per hidden layer and with lesser total trainable 
parameters (8577).

Table 2: Similarities showcased in deep neural network model.

Sensor The input layer of the model MSE MAE R-Squared

MQ-131 (Ozone) 1. Non-Calibrated Sensor value 
2. Temperature

0.1349 0.5265 0.2833

1. Non-Calibrated Sensor value 0.1493 0.2880 0.4181

MQ-7 
(Carbon
Monoxide)

1. Non-Calibrated Sensor value 
2. Temperature

0.0013 0.0303 0.7858

1. Non-Calibrated Sensor value 0.0015 0.0321 0.7572

MQ-7 (CO) sensor readings show a higher correlation between the observed and predicted 

sensor readings with a lower MSE, indicating a very lower average squared difference of the 

data. Also, higher R-squared values show the correlation between the sensors. 

 

It is better to have a lesser number of nodes per hidden layer and total trainable parameters with 
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Fig. 12: Neural network (NN) performance analysis. 

(a) Calibrated CO sensor values with temperature as inputs vs NBRO reference data  
(b) Calibrated Ozone sensor values with temperature as inputs vs NBRO reference data  
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(d) Calibrated Ozone sensor values Vs NBRO reference data  

Fig. 12: Neural network (NN) performance analysis.
(a) Calibrated CO sensor values with temperature as inputs vs NBRO reference data.

(b) Calibrated Ozone sensor values with temperature as inputs vs NBRO reference data.
(c) Calibrated CO sensor values Vs NBRO reference data.

(d) Calibrated Ozone sensor values Vs NBRO reference data. 
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CONCLUSION AND FUTURE WORKS

Here, our main goal was to find an ML method for calibrating 
the low-cost sensors MQ-7 and MQ-131 to monitor air 
pollution accurately using sensor analog readings. We 
observed that both simple linear regression and deep neural 
network models performed better for the calibration. It is 
more cost-effective than the usual conventional criteria 
followed using calibration gas. In this research work, we 
observed that the NN model (64 nodes per layer and 8577 
trainable parameters) is more accurate than the linear 
regression. Also, both ML models performed the calibration 
better when tested with relevant temperature and sensor 
analog values. Therefore, this research can be extended using 
other co-related values such as wind speed, wind direction, 
and humidity as the input layer variables in the NN model. 
Also, getting simultaneous readings using a set of similar 
low-cost non-calibrated sensors in similar environmental 
conditions instead of getting readings with just one single 
sensor module is more convenient for monitoring the effects 
of sensor functionality changes over a longer time period. It 
would help to increase the reliance and reliability of the ML 
algorithm for the calibration of that kind of sensor. 
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