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ABSTRACT

In this study, an alternative approach was applied for the characterization of the subsurface geological 
conditions to estimate the hydrological parameters in the absence of subsurface soil data. The study 
revealed that the hydrological parameters, estimated from the Transient Electromagnetic (TEM) 
and Electrical Resistivity Tomography (ERT), were significantly correlated with in situ data. Overall 
estimated infiltration rate (below 20 inches/h) predicted fine-grained soil was also associated with in 
situ data. A high correlation among the bulk electrical resistivity, porosity, and the resistivity of the pore 
fluid thereby confirmed the relevance of Archie’s law used in this study. Furthermore, results showed 
that both TEM and ERT are vital tools for hydrological parameter estimation. 

INTRODUCTION 

Soil water infiltration is a significant part of the hydrological 
cycle (Todd & Mays 1980). It depends on the distribution of 
subsurface soil texture and structure, which maintains soil 
moisture conditions. Infiltration in unconsolidated soils is 
proportional to grain size and distribution (Cui et al. 2017). 
While the infiltration in the clayey soil is slow because of 
the small grain size and high resistance to water movement. 
The spatial variability of soil structure is determined by soil 
profile observations and soil properties measurements such 
as bulk density and porosity. The tools available for the 
investigation of water movement in the soil are limited to 
a specific point measurement and are destructive, whereas 
the geophysical methods are usually non-invasive. They 
disturb neither the structure nor the water dynamics of the 
soil (Michot et al. 2003).  

Infiltration rate can be measured using in-situ methods 
such as the double-ring method (Shaari et al. 2016, Fatehnia 
et al. 2016) and laboratory experiments (Morbidelli et al. 
2015). However, it is difficult to carry out experiments in 

high-relief areas due to slope steepness and logistic handling. 
Alternatively, geophysical methods are cost and time-effec-
tive methods for the proper assessment of subsurface soil 
parameters. As the soil’s electrical conductivity varies due 
to the presence of pore water, saltwater, and temperature, 
electrical resistivity methods will be helpful to estimate sub-
surface hydrological factors such as hydraulic conductivity, 
porosity, and permeability (Anees et al. 2017). 

In previous studies, electrical resistivity techniques 
have been used for different purposes such as groundwater 
developments (Kumar et al. 2016, Afshar et al. 2015), wa-
ter distribution in landfills (Dumont et al. 2016), landslide 
investigation (Perrone et al. 2014), monitoring of seasonal 
water content variations (Chrétien et al. 2014, Brunet et al. 
2010), porosity or hydraulic conductivity estimation (Chou 
et al. 2016, Niwas & Celik 2012, Ghose & Slob 2006) and 
infiltration estimation (Crosbie et al. 2014). Some of these 
studies used a variety of electrical resistivity techniques, such 
as electrical resistivity tomography (ERT), vertical electri-
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cal sounding (VES), and time-domain-induced polarization 
(TDIP). Transient electromagnetic (TEM) is a geophysical 
method often used for subsurface hydrogeological mapping 
(Danielsen et al. 2003, Al-Garni & El-Kaliouby 2011). In the 
case of shallow depth investigations (up to a depth of 100 m), 
the instrumental setup of TEM is short and easy as compared to 
the other resistivity methods, which make it useful for a survey, 
especially in hilly terrain (Danielsen et al. 2003, Flores et al. 
2013). TEM is the right technique for an accurate determina-
tion of the bulk resistivity of the subsurface geological units. 
In some situations, such as rough topography or limited space, 
lying down transmitter loops become difficult. In such cases, 
resistivity imaging techniques come to the rescue. Resistivity 
imaging is also given preference in those areas where the 
distribution of resistivity is multi-dimensional. 

Electrical resistivity methods have been used to estimate 
the infiltration rate from empirical relationships (Noell et 
al. 2011, Chou et al. 2016). However, none of the studies 
have related the electrical resistivity and infiltration rate to 
flooding, which developed the motivation to conduct this 
study. The conventional methods to estimate the infiltration 
rate are based on the point or one-dimensional measurement. 
Whereas, in flood-related studies, two to three-dimensional 
measurements are required for accurate results. During 
flooding, the infiltration rate becomes slow as the large load 
of suspended particles quickly forms a clogging layer (Chen 
et al. 2013). Because of this, a shallow depth investigation 
should be enough to conduct infiltration rate measurement. 
Therefore, this study has two main purposes. The first is to 
estimate or identify soil-related parameters for empirical 
equations to estimate subsurface hydrological parameters. 
The second is the use of ERT and TEM to estimate the 
two-dimensional subsurface infiltration rate. 

The main aim of this study was to characterize the spatial 
variability of soil structure in the hilly terrain of Kelantan State, 
Malaysia, using both TEM and ERT. The specific objectives 
were (i) to carry out in-situ subsurface resistivity distribution in 
terms of lateral and vertical variations in the resistivity values, 
(ii) to estimate soil parameters from empirical relationships 
in a data-sparse environment, and (iii) to develop multilayer 
regression models for the study area to know the accuracy of 
the estimated soil parameters and (iv) to validate the TEM and 
the ERT outputs with borehole and in situ data. The alternative 
approach of this study in the absence of soil parameter data 
will be helpful to estimate the multi-dimensional infiltration 
rate for flood vulnerability and risk analysis.

MATERIALS AND METHODS

Location and Details of the Study Area

 The location of the study area is in Kelantan State, the 

north-eastern part of Peninsular Malaysia. It lies between 
Latitudes 4°33’N and 6°14’ N, longitudes 101°19’E and 
102°39’E with an area of approximately 15000 km2. The 
elevation ranges from 0 to 2.2 km above mean sea level. 
The slope varies from 0 to 89 degrees. Sungai Kelantan is 
the main river, which divides approximately 107 km into 
Sungai Galas and Sungai Lebir (Fig. 1). 

The climate is tropical, and humid with an average 
temperature range from 20 °C to 30 °C. The average annual 
rainfall is 3017 mm, and the average daily wind speed is 1.50 
m.s-1. The regional geology of Kelantan consists of sedimen-
tary and metasedimentary rocks in the central zone, while 
granite is situated on the eastern and western borders of the 
Boundary Range and Main Range respectively (Heng et al. 
2006). According to the Department of Agriculture, Malay-
sia, there are 21 soil series in the catchment. But the area is 
dominated by three such as steep land (63.9%) followed by 
Durian-Munchong-Bungor (14.3%) and Rengam-Jerangau 
(5.4%). The eastern and western mountain ranges have a 
granitic soil cover that is composed of fine to coarse sand 
and clay. The minimum depth of soil cover is a meter on 
steep land, while the depths increase up to 18 m downstream. 
A fine sandy loam soil up to a few meters is found on the 
steep slope of the basin. At mid and downstream, a clay 
layer of an average depth of 4 m is situated. Also, there is a 
layer of fine to medium-grained sand in a few places. The 
depth of the clay layer decreases near the sea downstream 
while the depth of the fine to medium-grained sand layer  
increases.

Data Acquisition 

Electrical resistivities were measured through thirteen 
profiles of TEM and nine profiles of ERT surveys that cov-
ered upstream, midstream, and downstream of the study 
area. Survey locations were mostly on the river bank to 
know the infiltration rate, which is essential in floodplain 
hydrological modeling. TEM data were collected using 
a terra team Monex GeoScope instrument with a current 
of 5 A and 12 V batteries. The stacking time was set to 3 
minutes with a 50 Hz noise filter to remove interference 
from the power lines. TEM profiles were in the form of 
loops. Each loop was 20 m × 10 m in dimension, which 
have eight 5 m × 5 m small loops to get high-resolution data  
(Fig. 2).

ERT data were collected through a 100 m profile at nine 
locations using the ABEM Terrameter system. The system 
had an automatic switch box and an array of 41 metal stake 
electrodes at 2.5 m electrode spacing. The Wenner-Schlum-
berger electrode spacing was used that allows measurements 
up to a depth of 40 m depth was used.
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in the resistivity values, (ii) to estimate soil parameters from empirical relationships in a data-
sparse environment, and (iii) to develop multilayer regression models for the study area to know 
the accuracy of the estimated soil parameters and (iv) to validate the TEM and the ERT outputs 
with borehole and in situ data. The alternative approach of this study in the absence of soil 
parameter data will be helpful to estimate the multi-dimensional infiltration rate for flood 
vulnerability and risk analysis. 

MATERIALS AND METHODS 

Location and Details of the Study Area 

 The location of the study area is in Kelantan State, the north-eastern part of Peninsular Malaysia. 
It lies between Latitudes 4°33’N and 6°14’ N, longitudes 101°19’E and 102°39’E with an area of 
approximately 15000 km2. The elevation ranges from 0 to 2.2 km above mean sea level. The slope 
varies from 0 to 89 degrees. Sungai Kelantan is the main river, which divides approximately 107 
km into Sungai Galas and Sungai Lebir (Fig. 1).  

Fig. 1: Location of TEM and ERT sites in the study area.
Fig. 1: Location of TEM and ERT sites in the study area.

The climate is tropical, and humid with an average temperature range from 20 °C to 30 °C. 
The average annual rainfall is 3017 mm, and the average daily wind speed is 1.50 m.s-1. The 
regional geology of Kelantan consists of sedimentary and metasedimentary rocks in the central 
zone, while granite is situated on the eastern and western borders of the Boundary Range and Main 
Range respectively (Heng et al. 2006). According to the Department of Agriculture, Malaysia, 
there are 21 soil series in the catchment. But the area is dominated by three such as steep land 
(63.9%) followed by Durian-Munchong-Bungor (14.3%) and Rengam-Jerangau (5.4%). The 
eastern and western mountain ranges have a granitic soil cover that is composed of fine to coarse 
sand and clay. The minimum depth of soil cover is a meter on steep land, while the depths increase 
up to 18 m downstream. A fine sandy loam soil up to a few meters is found on the steep slope of 
the basin. At mid and downstream, a clay layer of an average depth of 4 m is situated. Also, there 
is a layer of fine to medium-grained sand in a few places. The depth of the clay layer decreases 
near the sea downstream while the depth of the fine to medium-grained sand layer increases. 

Data Acquisition  

Electrical resistivities were measured through thirteen profiles of TEM and nine profiles of ERT 
surveys that covered upstream, midstream, and downstream of the study area. Survey locations 
were mostly on the river bank to know the infiltration rate, which is essential in floodplain 
hydrological modeling. TEM data were collected using a terra team Monex GeoScope instrument 
with a current of 5 A and 12 V batteries. The stacking time was set to 3 minutes with a 50 Hz noise 
filter to remove interference from the power lines. TEM profiles were in the form of loops. Each 
loop was 20 m × 10 m in dimension, which have eight 5 m × 5 m small loops to get high-resolution 
data (Fig. 2). 

Fig. 2: TEM profiling with 5m-by-5m loop.

ERT data were collected through a 100 m profile at nine locations using the ABEM Terrameter 
system. The system had an automatic switch box and an array of 41 metal stake electrodes at 2.5 
m electrode spacing. The Wenner-Schlumberger electrode spacing was used that allows 
measurements up to a depth of 40 m depth was used. 

In-situ Soil Sampling 

In-situ soil samples with 20 cm depth were collected at thirteen locations. These samples were 
brought back to the laboratory, air-dried, and sieved through a 2 mm sieve.  A hydrometer test was 
used to calculate the amount of sand, silt, and clay (Bouyoucos 1962). In addition, for results 
validation, the log data was collected from the Department of Mineral and Geoscience, Malaysia. 

Fig. 2: TEM profiling with 5m-by-5m loop.
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In-situ Soil Sampling

In-situ soil samples with 20 cm depth were collected at 
thirteen locations. These samples were brought back to the 
laboratory, air-dried, and sieved through a 2 mm sieve.  A 
hydrometer test was used to calculate the amount of sand, 
silt, and clay (Bouyoucos 1962). In addition, for results 
validation, the log data was collected from the Department 
of Mineral and Geoscience, Malaysia.

Calculation of Porosity

For porosity calculation, the most widely used Archie’s 
equation (Archie 1942) for electrical resistivity was selected, 
which is given as:
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(Choo et al. 2016):
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where k is intrinsic permeability, and d is grain size in a 
meter. Subsurface grain size data of different soil types were 
obtained from the literature. Based on the porosity values 
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The hydraulic conductivity was calculated from the equation 
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(I), the Green-Ampt infiltration model using Darcy’s law was 
selected, which is given as (Green and Ampt 1911):
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where α and β are van Genuchten-Mualem parameters (Van 
Genuchten 1980). The van Genuchten-Mualem parameters 
α and β are needed to calculate the capillary pressure at the 
wetting front (j), which were obtained from previous studies 
(Bohne et al. 1989, Chen et al. 2015).

Table 1: Pore water resistivity values for different ranges of bulk resistivity 
values for this study.

Bulk resistivity (r) (Ωm) Pore water resistivity (rw) (Ωm)

0.5-5 0.49

5-20 4.3

20-100 11.1

100-200 14.9

200-500 20.6

>500 77
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Regression Model and Validation

Linear regression was used to obtain the empirical relation-
ships between bulk resistivity and pore water resistivity, 
bulk resistivity and porosity, and porosity and grain size. 
The borehole data was used to validate the TEM and ERT 
results. Infiltration rate (I) was validated using previous stud-
ies’ results in the same study area (Shaari et al. 2016). They 
used the double ring method (up to 60 cm depth) to observe 
infiltration capacity at seven places in the Kota Bharu District, 
where sites numbers 13 and 11 of this study were located.

Comparison of TEM and ERT Outputs

Direct comparison of the resistivity values from TEM and 
ERT is not possible because of their different mechanism 
for measuring the resistivity values. TEM produces eddy 
currents while the ERT produces direct currents (Firdaus 
2018). However, a comparison of output patterns of TEM 
and ERT is possibly used in this study.

RESULTS AND DISCUSSION

Results of TEM and ERT Inversion Models

For this study, 20 m depth was selected due to the formation 
of clogging layers since the infiltration depth during flooding 
is low. For TEM, out of 13 places, the upper layer resistivity 
values of 11 locations ranged from 24 Ωm to 80 Ωm, which 
indicates that the upper layers were mostly fine soil, such 
as silt and clay with available water as the absorption water 
(Saarenketo 1998). Whereas, at the other two sites of TEM, 
identification of the upper layers were as clayey soil (160 
Ωm) and clayey sand (460 Ωm) (Eluwole et al. 2018). For 
ERT, the upper layers of 6 locations were mostly a mixture of 
sand and clay. While at the rest of the three locations, silt and 
clay content were dominating. Overall, the average resistivity 
values of the upper layers ranged from 98 Ωm to 1421 Ωm, 
which indicates the presence of loamy soil (Eluwole et al. 
2018). The overall results showed that the prediction of the 
output of both TEM and ERT was sand, silt, and clay content 
in the upper layer of soil.

Porosity (∅)

Results of the hydrometer analysis indicated that an aver-
age of 28% sand, 52% silt, and 20% clay were present at 
20 cm depth, with approximately 6% of organic matter at 
all the locations. Based on these compositions, the study 
area is characterized by silty loam soil (Vaezi et al. 2016). 
The average porosities of the top layers (0 to 5m depth) 
were 0.24 (TEM) and 0.25 (ERT), which indicates the 
presence of silty sands (Das 2013). It shows closer predic-
tion by both the techniques. Also, the variation in porosity 

shows a mixture of clay and fine sand (Geotechdata.info  
2013).

Intrinsic Permeability (k) and Hydraulic Conductivity 
(K)

The results of soil texture classification, ranges of porosity, 
and medium particle diameter (d50) obtained from the liter-
ature are shown in Table 2.

The intrinsic permeability values ranged between 10-

10 to 10-11 m2. It indicates that the soil in the study area is 
semi-permeable (Bear1972), and it is dominant in silt and clay 
content at all the sites. As mentioned above, the study area is 
characterized by silty loam soil, which contains 70% silt and 
clay and 20% sand. It shows the distribution of small grain 
size and slow permeability in the silty loam soil (Shepherd 
1989). TEM and ERT predicted accurate permeability values 
at all the sites except site number 13 in ERT. The top layer at 
site 13 is showing high resistivity values, which predict high 
porosity and hence high permeability (8.54 × 10-11 m2).     

The hydraulic conductivity (K) values ranged from 10-4 
to 10-8 m.s-1, which represents fine sand, silt, loess, and loam 
(Bear 1972, Freeze & Cherry 1979). The K values for TEM 
and ERT up to 5m depth were ranged from 0.12 × 10-5 m/s 
to 8.98 × 10-5 m/s and 0.36 × 10-5 m/s to 8.04 × 10-5 m/s re-
spectively. The average K values up to 20 m depth for TEM 
and ERT were estimated as 3.48 × 10-5 m/s and 5.16 × 10-5 

m/s respectively. These values showed the dominancy of silt 
and clay in subsurface soil, which makes it less permeable. 
These results conformed with the intrinsic permeability. Here 
also, K values at site 13 were high, which showed high sand 
content as compared to other sites.     

Infiltration Rate (I)

The infiltration rate values predicted by TEM and ERT varied 
from 10-4 to 10-6 m/s in all the layers. If the conversion of 
these infiltration values is into inch per hour, then all the 
values lay under 20 inches/h except at site 13, which showed 
the presence of sandy loam to clay content in subsurface soil 
(Brouwer et al. 1988). The average infiltration rate predicted 
by the TEM showed clayey soil, while ERT predicted clay 
loam up to 20 m depth. At site 13, the infiltration rate was 
predicted by TEM showed clayey soil whereas, ERT showed 
a mixture of sand and clay loam. The higher infiltration rate 
predicted by the ERT at this site varied from 5m to 15m 
depth and 0 to 10 m distance. Other parts of this site were 
represented by the clay loam.

Regression Models

The content of fines in soil has a proportional influence on 
its bulk resistivity. It means that soil with a relatively higher 
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content of fines will have a higher bulk resistivity (Fig. 3b).

The Association of high values of porosity was with 
soils having a small amount of fines content. High porosity 
indicated the dominance of larger sand grains (Fig. 3c and 
3d) (Li & Sherman 2015). Variations of porosity with grain 
size for both TEM and ERT are shown in Fig. 3 (e and f), 
where the porosity tends to decrease for soils with increasing 
grain size and then increases as the grain size decreases. The 
decline in the porosity values could result from an increment 
in the number of clay particles, which gradually filled the 
void spaces (Cameron & Buchan 2017) and separated the 
relatively bigger sand particles, thus, becoming the load-
ing-bearing unit of the soil. 

Validation of TEM and ERT Models

From the available well log data, two well logs (named BH 
1 and BH 2) were found near the two sites and selected for 
comparison. The exact locations of BH 1 (6 m deep) were 
at site 13, whereas BH 2 (17 m deep) was sited 1.7 km from 
site number 11. The comparison of resistivity values from 
TEM and ERT with well-log data was based on the resistivity 
chart proposed by Palacky (1988).

In borehole BH1, the top layer of 1.2 m is made up of 
soft clay with some sand sediments. Below 1.2 m depth, sand 

sediments increase in size with slightly clayey sediments to 
a depth of 4.2 m. Soft clay is again encountered at a depth 
between 4.2 m and 6.0 m, where the drilling terminated. At 
this site, from the TEM measurements, the bulk resistivity 
values were 30.7 Ωm (0 to 5 m depth), 30.7 Ωm (5 to 10 m 
depth), 23.8 Ωm (10 to 15 m depth), and 12.2 Ωm (15 to 20 
m depth). The geological interpretation of these low resistiv-
ity values indicated the presence of clayey soil. At the same 
place and the same depth, the bulk resistivity values from 
ERT measurements were 82.9 Ωm, 38.3 Ωm, 56.8 Ωm, and 
68.7 Ωm (Fig. 4).

In borehole log BH2, the first lithologic unit of this 
layer encountered at the depth of 1.8 m is clay sediment. 
This sediment (considered the second layer) extends to 
about 6 m in depth and is made of clay with some fine 
and medium-grained sand. The third layer (4.6 m deep) 
is of clay with some fine-grained sand, while the fourth 
layer (0.9 m deep) is of fine-grained sand with some clay. 
The fifth layer is encountered at depth of 1.3 m deep is of 
medium-grained sand with some clayey sediments. The 
last geological material encountered at depth of 2.2 m is 
clayey sediments. From the TEM survey, the bulk resistivity 
values for four layers were 23.5 Ωm, 23.6 Ωm, 41.9 Ωm, 
and 41.9 Ωm respectively, which indicated the clayey soil. 
Whereas from the ERT survey, the bulk resistivity values 

Table 2: Identified soil texture classification based on porosity and identified medium grain size based on soil texture classification for this study. van 
Genuchten-Mualem parameters α and β to calculate the capillary pressure at the wetting front (j) for this study. 

Texture classification Porosity range Medium grain size (d50) (mm) α β

Minimum Maximum

Sand 0.233 0.268 0.29 14.5 0.626

well graded sand 0.215 0.426 0.36 3.63 0.669

sandy gravel 0.21 0.32 0.22 3.63 0.669

Sandy loam 0.447 0.15 4.4 0.137

Sandy clay loam 0.398 0.400 0.14 5.9 0.324

Loamy sand 0.435 0.444 0.41 5.35 0.249

Loam 0.285 0.470 0.027 5.37 0.118

Silty sand 0.21 0.49 0.18 0.44 0.242

Silt loam 0.494 0.562 0.021 0.379 0.165

Silty or sandy clay 0.201 0.607 0.0067 0.095 0.153

silty/clayey fine sand 0.540 0.549 0.0147 1.5 0.588

Silt 0.515 0.526 0.0038 0.379 0.165

Silty clay 0.333 0.635 0.0024 0.479 0.152

Organic Silty clay 0.575 0.579 0.0024 0.479 0.152

Clayey sandy gravel 0.178 0.187 0.215 2.76 0.539

Clayey sand 0.15 0.37 0.14 2.205 0.588

Clay 0.472 0.475 0.0027 0.479 0.152
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resistivity and porosity for ERT (e) porosity and grain size for TEM (f) porosity and grain size 
for ERT  
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to 5 m depth), 30.7 Ωm (5 to 10 m depth), 23.8 Ωm (10 to 15 m depth), and 12.2 Ωm (15 to 20 m 
depth). The geological interpretation of these low resistivity values indicated the presence of 
clayey soil. At the same place and the same depth, the bulk resistivity values from ERT 
measurements were 82.9 Ωm, 38.3 Ωm, 56.8 Ωm, and 68.7 Ωm (Fig. 4). 

Fig. 4: Validation of TEM and ERT outputs with borehole data at site number 13. 

In borehole log BH2, the first lithologic unit of this layer encountered at the depth of 1.8 m 
is clay sediment. This sediment (considered the second layer) extends to about 6 m in depth and is 
made of clay with some fine and medium-grained sand. The third layer (4.6 m deep) is of clay 
with some fine-grained sand, while the fourth layer (0.9 m deep) is of fine-grained sand with some 
clay. The fifth layer is encountered at depth of 1.3 m deep is of medium-grained sand with some 
clayey sediments. The last geological material encountered at depth of 2.2 m is clayey sediments. 
From the TEM survey, the bulk resistivity values for four layers were 23.5 Ωm, 23.6 Ωm, 41.9 
Ωm, and 41.9 Ωm respectively, which indicated the clayey soil. Whereas from the ERT survey, 
the bulk resistivity values were 1881.3 Ωm, 1503.9 Ωm, 1110.1 Ωm, and 1110.1 Ωm respectively.  

Fig. 4: Validation of TEM and ERT outputs with borehole data at site number 13.
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were 1881.3 Ωm, 1503.9 Ωm, 1110.1 Ωm, and 1110.1 Ωm  
respectively. 

These layers show the medium-grained sand at the top 
while fine-grained sand is below 5m depth. The borehole log 
data shows a mixture of fine and medium-grained sand with 
clay content in almost all layers (Fig. 5).

The observed infiltration capacity varies from 13.20 
mm.h-1 to 206.3 mm.h-1. For the upper layer, the estimat-
ed I at sites 11 and 13 for TEM were 15.09 mm.h-1 and 
61.83 mm.h-1 respectively, while for ERT, the estimated I 
were 12.93 mm.h-1 and 253.95 mm.h-1 for sites 11 and 13 
respectively. It was observed that the estimated I for TEM 
and ERT at both sites lies within the range of the observed 
infiltration capacity (Shaari et al. 2016). It should be noted 
here that sites number 11 and 13 are not exactly at the same 
place as the observed infiltration rate. Therefore, the range of 
the infiltration rate was considered for the validation. Hence, 
it can be concluded that both the techniques overall worked 
well in the estimation of the hydrological parameters. Also, 
because of the different types of currents used in TEM and 
ERT, the estimations were not exactly matched but have some 
range of the hydrological parameters.   

CONCLUSIONS

The results showed that, for TEM, the bulk resistivity was 
less than 80 Ωm, while for the ERT it was 1421 Ωm. This 
range was predicted by the mixture of sand, silt, and clay 
content in which silt and clay were dominating whereas the 

average prediction was clayey soil for TEM and loamy soil 
for ERT. The porosity range by both the techniques showed 
closer estimation with in situ soil sample, which showed 
the presence of silty loam soil. The slow permeability and 
hydraulic conductivity range were observed by both the 
techniques, which also represented silty loam soil in the 
study area. The overall infiltration rate was less than 20 
inches/h, which predicted the presence of fine-grained soil 
in the study area. The differences in the estimated infiltration 
rates at different depths reflect the differences in the recharge 
and precipitation. 

The generated empirical equations serve as predictive 
tools from which bulk resistivity values could be obtained 
from the parameters such as pore water resistivity, porosity, 
and grain size measurements with good correlations obtained 
between these parameters. The relationships between bulk 
resistivity and pore water resistivity and bulk resistivity and 
porosity were found strong for both TEM and ERT based 
on the coefficient of determination. Also, validation results 
were in the range of the previous study, and the borehole data 
confirmed the presence of fine to medium-grained soil in the 
study area. The overall conclusion is that both geo-electrical 
methods worked well and have different capacities in the es-
timation of the hydrological parameter within the study area.
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