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ABSTRACT
Biochar was prepared from the peanut shell. Then, it was mixed with the clay mineral kaolinite and 
stirred under the magnetic stirrer. The biochar derived from peanut shell supported with clay mineral 
kaolinite (B@K) was obtained. Adsorption experiments of dye Acid Orange 7 by B@K were conducted. 
The characteristics of B@K were determined by the elemental analyzer, specific surface area 
meter, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared 
spectroscopy, X-ray photoelectron spectrometer and the model axis-HS. The experimental results 
showed that a large number of oxygen-containing functional groups appear on the surface of B@K, 
which is beneficial for binding dye ions. The adsorption process fits well with the pseudo-second-order 
kinetic model. It indicated that the adsorption process was both physical adsorption and chemical 
adsorption. Chemical adsorption is the main adsorption process. Langmuir isotherm model can better 
describe the adsorption isothermal process of B@K on dye Acid Orange 7. The adsorption process is 
monolayer adsorption process.   

INTRODUCTION

With the development of the printing and dyeing industry, a 
large number of dyes in China will be applied to many plants 
every year (Hu et al. 2017a). Therefore, it also produces a 
large amount of dye wastewater into the environment. The 
printing and dyeing wastewater is one of the most difficult 
to be treated among the industrial wastewaters at present. 
The printing and dyeing wastewater has large water volume, 
high organic matter content, complex composition, difficult 
to be degraded, and so on (Hu et al. 2017b, Qiu et al. 2018). 
Moreover, dye wastewater concentration in a water body 
usually remains low, which will cause the destruction of the 
water system for the decreasing of the water transmittance 
by the dye wastewater (Hu et al. 2017c). Additionally, the 
products of dye wastewater degraded are mainly carcino-
genic aromatic compounds. Effective treatment of this kind 
of wastewater will be very urgent (Rafatullah et al. 2010, 
Louis et al. 2018).

At present, the treatment methods of dye wastewater 
mainly include physico-chemical and biological methods (Hu 
et al. 2013). Among these methods, adsorption using acti-
vated carbon as an adsorbent is a commonly used treatment 
method for removing organic dyes in water. However, the 
high cost of activated carbon limits its application widely. 
Therefore, research on adsorbent containing lower costs and 

higher efficiency treatment is widely concerned by many 
researchers (Lu et al. 2012). 

As a new type of efficient and inexpensive adsorbent, 
biochar is a better material. Biochar is a highly aromatized 
structure, and carboxyl group, phenolic hydroxyl group, 
carbonyl group and acid anhydride appear on the surface of 
biochar. Because of these structural characteristics, biochar is 
a good adsorption material. Raw materials for the preparation 
of biochar are very extensive (Kennedy et al. 2007, Wu 2007, 
Ling et al. 2011, Pardieu et al. 2016, Lefebvre et al. 2017). 
At present, the agricultural waste, the forestry waste and the 
industrial organic waste were applied into the preparation of 
biochar, and the biochar derived from these materials own 
good adsorption ability (Nautiyal et al. 2016, Khataee et al. 
2018). Crop resources are abundant in China. Every year, a 
large amount of peanut shell was burned. It not only wastes 
of resources but also pollution of air. It is an urgent problem 
to develop clean and efficient technology and utilize these 
agricultural waste resources (Maria et al. 2018).

To improve the adsorption characteristics of biochar, 
it is usually modified by a clay mineral. In this study, the 
preparation of biochar from peanut shell supported with 
clay mineral kaolinite was explored. The biochar@kaolinite 
(B@K) was obtained. Then, the adsorption ability of B@K 
to remove dye Acid Orange 7 from aqueous solution was 
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tested. Additionally, the other goals of the study are: (1) 
study on the characteristics of B@K; (2) the adsorption ki-
netics and adsorption isotherms were discussed in details; 
(3) the adsorption mechanism was explored.

MATERIALS AND METHODS

Dyes and Chemicals: The dye Acid Orange 7 was chosen 
as an object in this experiment. It was purchased from 
Shanghai Chemical Co. Ltd. in China. Its molecular formula 
is C16H11O4N2SNa. The chemical structure of the dye Acid 
Orange 7 is shown in Fig. 1. 

Preparation of B@K: The peanut shells were washed with 
deionized water, and dried at 80°C for 24 h. The dried pea-
nut shells were crushed and sieved into 80 meshes. 10 g of 
peanut shell powder was taken into a 200 mL reaction vessel 
containing 100 mL of distilled water and kept at 140°C for 
24 h. After cooling, 80 meshes of biochar powder derived 
from peanut shells was obtained. 5 g of biochar power and 
5 g of clay kaolinite were added to the 200 mL of a beaker 
containing 100 mL distilled water and stirred for 30 min on 
a magnetic stirrer. Then, they were dried at 80°C for 24 h 
to obtain the biochar derived from peanut shells supported 
with clay mineral kaolinite (B@K).

Effect of contact time on the removal rate: 0.5 g of B@K 
powder was added into a 250 mL Erlenmeyer flask con-
taining 200 mL of 10 mg/L dye Acid Orange 7, and placed 
in an incubator at 25°C and 150 r/min. The contact time 
was 5, 10, 20, 40, 60, 90, 120, 180, 240, 360 and 480 min.  
The sample was taken from the supernatant, placed in a cen-
trifuge tube and centrifuged at 8000 r/min for 5 min. Then,  
it was measured with a UV-1600 spectrophotometer at  
485 nm.

Effect of the initial concentration of dye on the removal 
rate: 0.5 g of B@K powder was added into a 250 mL Erlen-
meyer flask containing 200 mL of dye Acid Orange 7, and 
placed in an incubator at 25°C and 150 r/min. The contact 
time was 360 min. The initial dye concentration ranged from 
5 to 80 mg/L. The sample was determined with a UV-1600 
spectrophotometer at 485 nm. 

Analytical methods: The value of pH was measured with a 
pH probe according to APHA standard method. The concen-

tration of dye Acid Orange 7 was measured with a UV-1600 
spectrophotometer at 485 nm.

The removal rate of dye Acid Orange 7 was calculated 
as follows:
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Q is the removal rate of dye Acid Orange 7. The elements 
of C, H, O and N were determined by Elemental Analyzer 
(Vario ELIII, Elementar, Germany). BET specific surface 
area was measured by the Specific Surface Area Meter 
(Autosorb-iQ3). The particle microstructure of B@K was 
determined by scanning electron microscopy (JEOL 6500F, 
Japan) and Transmission electron microscopy (JEM-F200, 
Japan) respectively. The functional groups on the surface 
of B@K were determined by Fourier transform infrared 
spectroscopy (Bruker Tensor 27). X-ray photoelectron 
spectrometer (Krato AXIS Ultra DLD, Japan) and the model 
Axis-HS (Kratos Analytical) were used to determine the 
surface composition.

The pseudo-first-order kinetic model and the pseu-
do-second-order kinetic models were applied in this study 
to elaborate the adsorption kinetics. 

The pseudo-first-order rate is given as (Liu et al. 2016):
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Where, qe (mg/g) is the amount of adsorbed solute at equilibrium conditions, qt (mg/g) 
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Where, Ce (mg/L) is the equilibrium concentration in the solution, qe(mg/g) is the 

adsorbate adsorbed at equilibrium, qmax (mg/g) is the maximum adsorption capacity, n 

is the Freundlich constant related to adsorption intensity, KL (L/mg) and KF ((mg/g)1/n) 

are the adsorption constants for Langmuir and Freundlich models respectively. 

Statistical analyses of data: All experiments were repeated in duplicate and the data 

of results were the mean and the standard deviation (SD). The value of the SD was 

calculated by Excel Software. All error estimates given in the text and error bars in 

figures are the standard deviation of means (mean ± SD). All statistical significance 

was noted at α=0.05 unless otherwise stated. 
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Where, Ce (mg/L) is the equilibrium concentration in 
the solution, qe(mg/g) is the adsorbate adsorbed at equilib-
rium, qmax (mg/g) is the maximum adsorption capacity, n is 
the Freundlich constant related to adsorption intensity, KL 
(L/mg) and KF ((mg/g)1/n) are the adsorption constants for 
Langmuir and Freundlich models respectively.

Statistical analyses of data: All experiments were repeated 
in duplicate and the data of results were the mean and the 
standard deviation (SD). The value of the SD was calculated 
by Excel Software. All error estimates given in the text and 
error bars in figures are the standard deviation of means 
(mean ± SD). All statistical significance was noted at α=0.05 
unless otherwise stated.

RESULTS AND DISCUSSION

Characteristics of B@K: The elements C, H, O and N of 
B@K are 44.21%, 4.18%, 47.16% and 4.45% respectively. 
BET specific surface area of B@K is 6.15 m2/g. The images 
of SEM and TEM are shown in Fig. 2. 

From Fig. 2, it can be concluded that it was a layered 
and irregular structure. The irregular surface of B@K is 
beneficial to adsorb. 

Fig. 3 is the FT-IR spectrum of B@K. There is a strong 
adsorption peak in the range from 3000 cm-1 to 3700 cm-1, 
which may refer to the stretching vibration of a hydroxyl 
radical group. It indicates that a large number of oxygen-con-
taining functional groups appear on the surface of B@K, such 
as carboxyl groups, hydroxyl groups, carbonyl groups and 
so on. The peak at 1645 cm-1 may correspond to stretching 
vibration of a carboxyl group, or an ester group, or an alde-
hyde C = O group. The peaks at 1400 cm-1 and 1060 cm-1 

may correspond to the aromatic group and C-O-C group 
respectively. The peaks at 820 cm-1, 562 cm-1 and 472 cm-1 
may correspond to C-H stretching functional group, -COO- 
bending vibration functional group and Si-O-Si functional 
group (Rebitanim et al. 2013). 

The surface composition and chemical state of B@K 
were further investigated by XPS. The C1s XPS spectra of 
B@K are shown in Fig. 4. The C1s XPS spectra of B@K 

 

 

 

 

 

 

 

 

 

 

Fig. 3: FT-IR spectrum of B@K. 
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Fig. 2: SEM and TEM images of B@K, (a) SEM image, (b) TEM image. 
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can be the major component with peaks at 284.4 eV, which 
may be assigned to C/N-O, C-O or C-C bonds. These results 
suggest that B@K possess considerable amounts of oxygen/
nitrogen containing groups on its surface, which is beneficial 
for binding dye ions (Mohamed et al. 2016).

Effect of contact time on the removal rate: Fig. 5 is the ef-
fect of contact time on the removal rate of dye Acid Orange 7. 

As shown in Fig. 5, the adsorption process of dye Acid 
Orange 7 by B@K can be divided into three stages. At the 
first stage of 5 min, the removal rate of dye Acid Orange 7 is 
very fast. It is because the concentration of dye Acid Orange 
7 on the surface of the B@K is the highest in the initial stage. 
The removal rate increases the action of mass transfer. From 
5 to 360 minutes, the removal rate is faster, and the removal 
rate tends to increase slowly with the increase of contact 
time. When the adsorption process begins, the difference in 
the concentration of dye between the surface of B@K and 
liquid gradually decreases, resulting in a gradual decrease in 

the removal rate. After 360 min, the change of removal rate 
is very slow and the adsorption reaches an equilibrium state.

Effect of initial concentration on the removal rate: The 
effect of initial concentration of dye Acid Orange 7 on the 
removal rate is shown in Fig. 6. It can be seen that as the 
initial concentration of dye Acid Orange 7 increases, the 
amount of adsorption also gradually increases. This is mainly 
due to an increase in the difference in the initial concentration 
of dye Acid Orange 7.

Sorption kinetics: According to the data from Fig. 3, Eqn. 
2 and Eqn. 3, parameters of the pseudo-first-order kinetic 
model and the pseudo-second-order kinetic model for the 
description of dye Acid Orange 7 adsorption onto B@K 
were calculated. They are given in Table 1.

From Table 1, it can be seen that the adsorption process 
fits well with the pseudo-second-order kinetics model ac-
cording to the value of R2 (0.9973 > 0.8622). It also indicates 
that the adsorption process is both physical adsorption and 
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the removal rate. After 360 min, the change of removal rate 
is very slow and the adsorption reaches an equilibrium state.

Effect of initial concentration on the removal rate: The 
effect of initial concentration of dye Acid Orange 7 on the 
removal rate is shown in Fig. 6. It can be seen that as the 
initial concentration of dye Acid Orange 7 increases, the 
amount of adsorption also gradually increases. This is mainly 
due to an increase in the difference in the initial concentration 
of dye Acid Orange 7.

Sorption kinetics: According to the data from Fig. 3, Eqn. 
2 and Eqn. 3, parameters of the pseudo-first-order kinetic 
model and the pseudo-second-order kinetic model for the 
description of dye Acid Orange 7 adsorption onto B@K 
were calculated. They are given in Table 1.

From Table 1, it can be seen that the adsorption process 
fits well with the pseudo-second-order kinetics model ac-
cording to the value of R2 (0.9973 > 0.8622). It also indicates 
that the adsorption process is both physical adsorption and chemical adsorption. Chemical adsorption is the main ad-

sorption process. 

Sorption isotherms: According to the data from Fig. 4, Eqn. 
4 and Eqn. 5, parameters of Langmuir isotherm model and 
Freundlich isotherm model for the description of dye Acid 
Orange 7 adsorption onto B@K are given in Table 2.

From Table 2, the Langmuir isotherm model can better 
describe the adsorption isothermal process of B@K on dye 
Acid Orange 7 according to the value of R2 (0.9836 > 0.9623). 
The adsorption process is monolayer adsorption process. 
As the initial concentration of dye increases, the amount 
of adsorption increases and gradually reaches equilibrium.

CONCLUSIONS

 (1) B@K was a layered and irregular structure. A large 
number of oxygen-containing functional groups 
appeared on the surface of B@K, which is beneficial 

surface of the B@K is the highest in the initial stage. The removal rate increases the 

action of mass transfer. From 5 to 360 minutes, the removal rate is faster, and the 

removal rate tends to increase slowly with the increase of contact time. When the 

adsorption process begins, the difference in the concentration of dye between the 

surface of B@K and liquid gradually decreases, resulting in a gradual decrease in the 

removal rate. After 360 min, the change of removal rate is very slow and the adsorption 

reaches an equilibrium state. 

Effect of initial concentration on the removal rate: The effect of initial concentration 

of dye Acid Orange 7 on the removal rate is shown in Fig. 6. It can be seen that as the 

initial concentration of dye Acid Orange 7 increases, the amount of adsorption also 

gradually increases. This is mainly due to an increase in the difference in the initial 

concentration of dye Acid Orange 7. 

 

 

Fig. 6: Effect of the initial concentration of dye Acid Orange 7 on the removal rate by 
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Sorption kinetics: According to the data from Fig. 3, Eqn. 2 and Eqn. 3, parameters of 

the pseudo-first-order kinetic model and the pseudo-second-order kinetic model for the 

description of dye Acid Orange 7 adsorption onto B@K were calculated. They are given 

in Table 1. 

0 

20 

40 

60 

80 

100 

0 20 40 60 80 100 

C0(mg/L) 

q e
(m

g/
g)

 

Fig. 6: Effect of the initial concentration of dye Acid Orange 7 on the removal rate by B@K.

for binding dye ions. 

 (2) The adsorption process fits well with the pseudo-second-
order kinetics model. It indicates that the adsorption 
process is both physical adsorption and chemical 
adsorption. Chemical adsorption is the main adsorption 
process. 

 (3)  Langmuir isotherm model can better describe the 
adsorption isothermal process of B@K on dye Acid 
Orange 7. The adsorption process is monolayer adsorption 
process. As the initial concentration of dye increases, the  
amount of adsorption increases and gradually reaches 
equilibrium.
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Table 1: Parameters of the pseudo-first-order kinetic model and the pseudo-second-order kinetic model for the description of dye Acid Orange 7  
adsorption onto B@K.

pseudo-first-order kinetic model pseudo-second-order kinetic model

k1
(min)

qe
(mg/g)

R2 k2
(mg/g.min)

qe
(mg/g)

R2

0.4815 13.18 0.8622 0.00292 15.46 0.9973

Table 2: Parameters of the Langmuir isotherm model and Freundlich isotherm model for the description of dye Acid Orange 7 adsorption onto B@K.

Langmuir Freundlich

qm(mg/g) KL R2 KF n R2

101.28 0.0645 0.9836 11.3265 2.1786 0.9623
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