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       ABSTRACT
In this study, waste tires were used to develop activated carbon for the adsorption of Cr(VI) 
from aqueous solutions, and an artificial neural network (ANN) model was applied to predict 
the adsorption efficiency of waste-tire activated carbon (WTAC). SEM and FTIR were used 
to characterize the developed WTAC. A three-layer ANN with different training algorithms 
and hidden layers with different numbers of neurons was developed using 79 data sets 
gathered from batch adsorption experiments with different initial Cr(VI) ion concentrations, 
contact periods, temperatures, and doses. Conjugate gradient backpropagation of Powell-
Beale restarts (traincgb) was found to be the best training algorithm among all the training 
algorithms, with an RMSE of 5.894 and an R2 of 0.985. The ANN topology had 4, 8, and 4 
neurons in the input, hidden, and output layers. The correlation coefficient of the ANN models 
of Cr(VI) ion adsorption efficiency is 0.977.

INTRODUCTION

Heavy metal water contamination is a major issue everywhere 
in the world (Dodbiba et al. 2015, Veglio & Beolchini 1997). 
Chromium is also significant in water contamination because 
tons of chromite ore is generated annually worldwide. Ferro 
chromite is created through the direct decrease of the ore, 
whereas Cr metal is created through the aluminothermic 
process, chrome alum solutions, or electrolysis of CrO3. The 
production of chromate, electroplating, leather tanning, metal 
polishing, and chromate preparation are only a few industries 
that make substantial use of chromium and its derivatives 
(Kowalski 1994). Chromium predominantly appears in two 
oxidation states in aqueous solutions: trivalent chromium and 
hexavalent chromium. The hexavalent form of chromium is 
hazardous, can cause cancer, and can also mutate DNA. For 
instance, lung cancer has been associated with Cr2O7

2- (El-
Sikaily et al. 2007, Li 2008).

One of the main factors contributing to the importance 
of chromium (III) and chromium (VI) to the environment is 
their stability in their native habitats. Due to its high water 
solubility, mobility, and simplicity of reduction, Cr(VI) is 
100 times more dangerous than Cr (III) (Gómez & Callao 
2006). The fundamental causes of Cr(VI) toxicological 
effects are its oxidizing capabilities and the subsequent 
formation of free radicals during its intracellular reduction to 

Cr (III) (Das  2004). The World Health Organization (WHO 
2020) recommends a chromium (VI) wastewater toxicity 
limit of 0.05 mg.L-1 with a combined maximum permitted 
discharge of 2.0 mg.L-1 (WHO 2020).

Chromium may be removed from wastewater produced 
in various industrial settings using several methods. Here 
are a few instances that exist. Some examples of these 
processes are reduction followed by chemical precipitation 
(Zhou 1993), ion exchange (Tiravanti et al. 1997), reduction; 
electrochemical precipitation (Kongsricharoern & Polprasert 
1996); solvent extraction (Meegoda 2000); membrane 
separation (Chakravarti et al. 2000); evaporation (Aksu 
1996); and foam separation (Jiao & Ding 2009). At low 
quantities, conventional approaches to chromium removal, 
such as those outlined above, are either prohibitively 
expensive or ineffective due to the element’s solubility in 
water. In light of this, adsorption ought to be considered a 
workable alternative. As an adsorbent, commercial activated 
carbon, also known as CAC, is utilized to remove Cr 
(Selomulya et al. 1999), Cd (Kannan & Rengasamy 2005), 
Cu, Zn (Monser & Adhoum 2002) and Ni (Basso et al. 2002) 
from wastewater. However, commercial activated carbon 
intended exclusively for eliminating heavy metals can be 
fairly expensive. In the search for adsorbents that are both 
effective and economical, a great number of investigations 
have been carried out. In this research, a wide variety of 
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absorbents, such as starch xanthate (Religa et al. 2011), 
chitosan (Ngah et al. 2005),  sawdust from Pinus sylvestris 
(Taty-Costodes et al. 2003), bagasse sugar (Gupta 2003), 
bentonite (Bereket et al. 1997), and old car tires (Rowley et 
al. 1984) were investigated. 

The adsorption mechanism is very complicated, which 
makes it hard to model and simulate with traditional 
mathematical models. This is because a wider range of 
sorption process factors interacts, leading to nonlinear 
relationships. To ensure that every control measure is 
managed in the most effective manner possible, it is required 
to build a suitable model to achieve effective operation 
and design. A high-quality representative model may be of 
considerable assistance in optimizing the input parameters. 
ANNs have been applied to the fields of wastewater treatment 
(Chen & Kim 2006, Gontarski et al. 2000, Pai 2007, Qiao 
et al. 2020, Sahoo & Ray 2006), membrane processes 

(Fagundes-Klen 2007, Guadix et al. 2010, Libotean 2009, 
Prakash et al. 2008), and biosorption (Sadrzadeh et al. 2009, 
Yetilmezsoy & Demirel 2008) for prediction and simulation 
because of their reliability, robustness, and prominent 
features in picking up the non-linearity relation of variables 
in intricate systems. Heavy metal adsorption efficiency from 
water can be predicted using ANNs. However, the available 
data is scant (Kashaninejad et al. 2009). Therefore, this 
research aimed to find the best ANN structure and associated 
parameters for predicting the removal efficiency of activated 
carbon from waste tires of Cr(VI) ions in an aqueous solution.

MATERIALS AND METHODS

Materials 

Analytical grade reagents were used in the study and 
purchased from Uma Scientific, Prayagraj. Stock Solutions 
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Fig. 1: SEM micrograph (a, b) before adsorption; (c, d) after adsorption. 
The sample's Fourier transform infrared (FTIR) was collected over a wide spectral range between 
4000 and 400 cm-1 to collect high-resolution information. The critical features of FTIR spectra of 
the sample are shown in Fig. 2. The 3415.02 cm -1 peaks denoted the presence of a hydroxyl group, 
which might be carbon black surface groups or groups generated from the hydroxylation of oxides 
(Manchón-Vizuete 2005).  

Fig. 1: SEM micrograph (a, b) before adsorption; (c, d) after adsorption.
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and other solutions were prepared using a double-distillation 
unit. A stock solution of Cr(VI) was prepared using 144 
mg Potassium dichromate (K2Cr2O7) dissolved in 100 mL 
distilled water which gives 500 mg.L-1 Cr(VI). The artificial 
wastewater with the required Cr(VI) concentration used in 
the tests was made from a stock solution. Waste tires used 
during the study were sourced from a near tire repair shop. 
Fetched tires were cut into 10-12 mm pieces, and the dirt 
was cleaned by shocking in diluted HCl for 24 h, followed 
by two to three rinses with distilled water, and drying in a hot 
air oven at 100°C for 4 h. After cleaning and drying, waste 
tires were carbonized at 400°C for 4 h. Chemical and heat 
treatments of carbonized waste tires prepared the activated 
carbon. A weight ratio of 1:2 of carbonized tires to H2SO4 
was initially poured into a 250 mL crucible to perform the 
chemical treatments. The mixture was then left to react for 
4 h while being stirred intermittently throughout the reaction 
duration. After that, the items. After that, the mixture was 
heated at 400°C for one hour, and then, once the mixture had 
cooled, it was stored in a glass container.

Adsorbent Media Characterization

Scanning electron microscopy (SEM) was used to investigate 
the difference in surface morphology between the WTAC 
before and after the adsorption of the Cr(VI) ions. Fig. 1 
(a-b) show the results of SEM imaging before adsorption 
at a different level of magnification, and Fig. 2 (c-d) shows 
the results after adsorption at different magnification. The 
irregular surface and presence of pores before adsorption 
could be assumed to be active sites for chromium uptake.

The sample’s Fourier transform infrared (FTIR) was 
collected over a wide spectral range between 4000 and  

400 cm-1 to collect high-resolution information. The critical 
features of FTIR spectra of the sample are shown in Fig. 2. 
The 3415.02 cm -1 peaks denoted the presence of a hydroxyl 
group, which might be carbon black surface groups or groups 
generated from the hydroxylation of oxides (Manchón-
Vizuete 2005) chemical and combined (thermal and chemical 
or vice versa. 

Batch Adsorption Experiments

Adsorption batch tests were conducted in a conical flask on 
a temperature-controlled orbital shaker. Aliquots of treated 
samples were filtered using grade 1 Whatman filter paper 
(pore size 11 μ) after adsorption. Colorimetric analysis using 
a spectrophotometer (LABINDIA UV 30000+) was used 
to determine chromium levels in the samples. The batch 
adsorption was done at different contact periods and with 
different chromium concentrations, times, and temperatures, 
as indicated by the statistics for the factor mentioned in 
Table 2. The following equation was used to calculate the 
adsorption capacities.

 𝑞𝑞𝑒𝑒 =
(𝐶𝐶0−𝐶𝐶𝑡𝑡)𝑉𝑉

𝑚𝑚       …(1)

Where qe represents the adsorption capacity in mg.g-1, 
Co represents the initial Cr concentration, Ct represents the 
Cr concentration at time t, V represents the volume of the 
solution in L, and m represents the mass of the adsorbent (g).

Artificial Neural Networks

Artificial neural networks (ANNs) have significant 
computational modeling power. Because of their adaptive 
structure, they can recognize complicated nonlinear 
relationships. This is especially true when the evident 
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Fig. 2: FTIR spectra of activated carbon. 
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structure of the variable-variable relationship is ambiguous. 
The basic purpose of an ANN model is to solve any problem 
that cannot be solved using more traditional mathematical 
or statistical methodologies. Fig. 3 depicts an ANN’s 
fundamental structure, consisting of three layers: an input 
layer with dependent variables, a hidden layer, and an output 
layer with dependent variables.

As shown in Fig. 3, each layer of a typical ANN consists 
of many strongly connected processing components called 
“neurons” or “nodes.” In addition, all neurons except the 
output layer are linked to the sub-layer neurons by the 
connection strength (w value). The neurons in each layer 
get information from various sources, including the input 

layer’s original data, the hidden layer’s output from other 
nodes in the previous layer, and the output layer’s original 
data. A line, which conveys information from one node to 
the following, represents the connectivity between neurons. 
Data is introduced into the network in the input layer, and 
the input is calculated in the hidden layer and output layer 
by weighing the total output obtained in the previous layer. 
This mechanism is driven by the “weights,” or the degree of 
connectivity between two neurons. However, the inputs are 
transferred to the hidden and output layers using activation 
functions, which then compute the outputs of those layers. 
An activation function is a mathematical term for a nonlinear 
transfer function. Transfer functions that are among the most 

by the statistics for the factor mentioned in Table 2. The following equation was used to calculate 
the adsorption capacities. 
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Fig. 3: ANN fundamental structure. 

As shown in Fig. 3, each layer of a typical ANN consists of many strongly connected processing 
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is driven by the "weights," or the degree of connectivity between two neurons. However, the inputs 

Fig. 3: ANN fundamental structure.

are transferred to the hidden and output layers using activation functions, which then compute the 
outputs of those layers. An activation function is a mathematical term for a nonlinear transfer 
function. Transfer functions that are among the most common include the tangent sigmoid (tansig), 
logarithmic sigmoid (logsig), and linear (purelin). The mathematical descriptions of the logsig and 
tansig transfer functions are provided by equations (2) and (4), respectively, while equation (3) 
explains the purelin transfer function. The tansig transfer function provides the most accurate 
predictions compared to the other transfer functions. 

𝒇𝒇(𝒙𝒙) = 𝒆𝒆𝒙𝒙�𝒆𝒆�𝒙𝒙

𝒆𝒆𝒙𝒙�𝒆𝒆�𝒙𝒙
     …(2) 

𝒇𝒇(𝒙𝒙) = 𝟏𝟏
𝟏𝟏�𝒆𝒆�𝒙𝒙

      …(3) 

𝒇𝒇(𝒙𝒙) = 𝒙𝒙       …(4) 

Fig. 4 illustrates a flow that depicts the flow of information within a neuron. When the input is 
multiplied by its weight, the sum function applies to all inputs of the previous layer, as applied to 
the previous layer (w value). Then the neuron's output is determined by passing this unique value 
through the transfer function. 

 
Fig. 4: Illustration of operation within a neuron. 

Collecting, analyzing, and processing data is the first step in the development of the ANN model, 
followed by training the network, testing the training network, selecting the model (determining 
the optimal structure of the ANN, training functions, training algorithms, and network parameters), 
and simulating and predicting using the training network. All ANN models developed in this study 
followed these steps. 

In ANN, the training algorithm is a process for adjusting the parameters of a network until they 
are optimal for a given input-output transformation problem. No universally superior algorithm 
exists because performance varies greatly among problems of varying sizes, complexities, and data 
availability. Thus, 11 training algorithms from 6 different categories were compared and evaluated. 
Table 1 summarizes all the training algorithms and their functions. 

Fig. 4: Illustration of operation within a neuron.
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Performance Assessment Criteria of the ANN Model

The reliability of the created ANN models was evaluated 
in four different methods: mean absolute error (MAE), root 
mean square error (RMSE), coefficient of determination (R2)

The root-mean-squared error (RMSE) was used as 
a measure of the accuracy of the model, and it may be 
computed as follows:

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑ (𝒀𝒀𝒑𝒑𝒑𝒑𝒑𝒑,𝒊𝒊−𝒀𝒀𝒐𝒐𝒐𝒐𝒐𝒐,𝒊𝒊)𝒏𝒏
𝒊𝒊=𝟏𝟏

𝒏𝒏        …(5)

Ypre,i stands for the mode prediction, Yobs,i for the 
associated observed data set, and n for the number of non-
missing data points associated with the mode prediction.

The coefficient of determination (R2) indicates the 
proportion of variance that the model can explain. It can be 
determined as follows:

𝑅𝑅𝟐𝟐 = [ 𝐧𝐧∑ 𝐘𝐘𝐨𝐨𝐨𝐨𝐨𝐨,𝐢𝐢𝐘𝐘𝐩𝐩𝐩𝐩𝐩𝐩,𝐢𝐢𝐧𝐧
𝐢𝐢=𝟏𝟏 −(∑ 𝐘𝐘𝐨𝐨𝐨𝐨𝐨𝐨,𝐢𝐢𝐧𝐧

𝐢𝐢=𝟏𝟏 )(∑ 𝐘𝐘𝐩𝐩𝐩𝐩𝐩𝐩,𝐢𝐢𝐧𝐧
𝐢𝐢=𝟏𝟏 )

√[𝐧𝐧∑ 𝐘𝐘𝟐𝟐𝐨𝐨𝐨𝐨𝐨𝐨,𝐢𝐢𝐧𝐧
𝐢𝐢=𝟏𝟏 −(∑ 𝐘𝐘𝐨𝐨𝐨𝐨𝐨𝐨,𝐢𝐢𝐧𝐧

𝐢𝐢=𝟏𝟏 )𝟐𝟐]×[∑ 𝐘𝐘𝟐𝟐𝐩𝐩𝐩𝐩𝐩𝐩,𝐢𝐢𝐧𝐧
𝐢𝐢=𝟏𝟏 −(∑ 𝐘𝐘𝐩𝐩𝐩𝐩𝐩𝐩,𝐢𝐢𝐧𝐧

𝐢𝐢=𝟏𝟏 )𝟐𝟐]
]
𝟐𝟐

   

 
  …(6)

The statistical performance evaluation criteria, such 
as RMSE and R2, are global statistics that do not provide 
any insight into the error distribution. As a result, other 
performance evaluation criteria, such as mean absolute 
error (MAE), were applied to measure the accuracy of the 
ANN models constructed for this investigation. The MAE 
not only illustrates the distribution of the errors made in the 
forecast, but it also demonstrates the performance index in 
predicting removal efficiency. This is because the MAE 
gives both of these things. The following equation can be 
used to determine MAE:

 𝑀𝑀𝑀𝑀𝑀𝑀 = 𝟏𝟏
𝒏𝒏∑ |𝒀𝒀𝒐𝒐𝒐𝒐𝒐𝒐,𝒊𝒊 − 𝒀𝒀𝒑𝒑𝒑𝒑𝒑𝒑,𝒊𝒊|𝒏𝒏

𝒊𝒊=𝟏𝟏     …(7)

RESULTS AND DISCUSSION

Pre-Processing of Data

Seventy nine data sets in this investigation were gathered 
through batch experiments with varying adsorbent dosages, 
contact times, and initial Cr(VI) ion concentrations. 
Experimental data points were randomly split into training, 
validation, and testing subsets to create an ANN model 
for forecasting the percentage of Cr(VI) ions removed by 
WTAC from aqueous solutions. About 70% of the data went 
to the training set. The remaining 15% and 15% went to the 
validation and testing sets, which got 55, 12, and 12 data 
points, respectively. 

common include the tangent sigmoid (tansig), logarithmic 
sigmoid (logsig), and linear (purelin). The mathematical 
descriptions of the logsig and tansig transfer functions 
are provided by equations (2) and (4), respectively, while 
equation (3) explains the purelin transfer function. The tansig 
transfer function provides the most accurate predictions 
compared to the other transfer functions.

 𝒇𝒇(𝒙𝒙) = 𝒆𝒆𝒙𝒙−𝒆𝒆−𝒙𝒙
𝒆𝒆𝒙𝒙+𝒆𝒆−𝒙𝒙     …(2)  …(2)

 𝒇𝒇(𝒙𝒙) = 𝟏𝟏
𝟏𝟏+𝒆𝒆−𝒙𝒙      …(3) 

 

 …(3)

 𝒇𝒇(𝒙𝒙) = 𝒙𝒙      …(4)

Fig. 4 illustrates a flow that depicts the flow of 
information within a neuron. When the input is multiplied 
by its weight, the sum function applies to all inputs of the 
previous layer, as applied to the previous layer (w value). 
Then the neuron’s output is determined by passing this 
unique value through the transfer function.

Collecting, analyzing, and processing data is the first step 
in the development of the ANN model, followed by training 
the network, testing the training network, selecting the model 
(determining the optimal structure of the ANN, training 
functions, training algorithms, and network parameters), and 
simulating and predicting using the training network. All 
ANN models developed in this study followed these steps.

In ANN, the training algorithm is a process for adjusting 
the parameters of a network until they are optimal for a 
given input-output transformation problem. No universally 
superior algorithm exists because performance varies 
greatly among problems of varying sizes, complexities, 
and data availability. Thus, 11 training algorithms from 6 
different categories were compared and evaluated. Table 1 
summarizes all the training algorithms and their functions.

Table 1: ANN training algorithms.

Training algorithm function

Levenberg-Marquardt (LM) trainlm

Gradient descent(GD) with a variable learning rate traingdm

traingda

traingdx

Resilient backpropagation(RP) trainrp

Conjugated gradient descent(CG) traincgb

traincgp

trainscg

Quasi-Newton algorithm trainoss

trainbfg

Bayesian regularization trainbr

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1486 Gaurav Meena and Nekram Rawal

Vol. 22, No. 3, 2023 • Nature Environment and Pollution Technology  This publication is licensed under a Creative 
Commons Attribution 4.0 International License

This publication is licensed under a Creative 
Commons Attribution 4.0 International License

The neural network can recognize patterns present in 
the data by using the training data, which is the largest set, 
to adjust the network weights. The testing data is employed 
to assess the network’s quality. The trained network’s 
performance and generalizability are checked one last time 
using validation data. Table 2 presents the essential statistical 
information regarding the variables used in the investigation.

Before training the network, input and output variables 
were normalized to fall between 0.1 and 0.9 to avoid 
numerical overflows caused by extreme weight values. Here 
is the equation for normalization:

 𝑋𝑋𝑖𝑖 =
(𝒙𝒙−𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎)

(𝒙𝒙𝒎𝒎𝒎𝒎𝒙𝒙−𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎)
+ 0.1   …(8)

Where xmax and xmin represent the maximum and 
minimum possible values in the database, respectively, and 
Xi represents the value of x after it has been normalized.

ANN Architecture Design

The architecture of the AAN considerably affects the overall 
performance of ANN models. To develop the most effective 
architecture for an ANN model, the network architecture 
design must consider two essential characteristics: layering 
and transfer function. With these parameters, the best training 
algorithm and number of neurons to use in the hidden layer 
can be chosen. 

The most effective training algorithm can be identified 
by analyzing and comparing several different training 
algorithms. The training algorithms used a three-layer ANN 
with a linear transfer function (purelin) in the output layer, a 
tangent sigmoid function (tansig) in the hidden layer, and 10 
neurons in each layer. Table 3 displays the results of ANN 
model evaluations using each available training algorithm. 
As shown in Table 3, the RMSE values obtained by the 
traincgb were the lowest, and the R2 values were the highest, 
coming in at 5.894 and 0.9885, respectively. Because of this, 
it was selected as the most effective algorithm for training. 
This algorithm was followed by the training and traincg 
functions, which had RMSE of 6.039 and 6.110, respectively. 
When utilized as a training algorithm, alternative algorithms 
like trainln, traincgf, and traingda produced more errors than 
the traincgb.

After figuring out the best training algorithm for the 
ANN model, the next step is optimal design, which involves 

Table 2: The basic statistics of the ANN model variable.

Input Parameter Unit Min. Max. Avg. Std.

Doges g 0.2 0.8 0.50 0.21

Concentration mg.L-1 10 100 58.86 31.21

Time Min 10 360 175.31 96.99

Temp. oC 30 50 36.83 7.43

Table 3: List of different training algorithms of ANN. 

ANN Algorithms EPOCH RMSE R2

TRINLN 128 8.597 0.967

TRAINBGF 10 6.039 0.984

TRAINCGB 56 5.894 0.985

TRAINCGF 132 6.566 0.981

TRAINCGP 1 6.364 0.982

TRAINGDA 12 6.757 0.980

TRAINGDX 104 8.341 0.969

TRAINLM 8 6.214 0.983

TRAINOSS 39 7.518 0.975

TRAINSCG 62 6.110 0.983

the lowest, and the R2 values were the highest, coming in at 5.894 and 0.9885, respectively. 
Because of this, it was selected as the most effective algorithm for training. This algorithm was 
followed by the training and traincg functions, which had RMSE of 6.039 and 6.110, respectively. 
When utilized as a training algorithm, alternative algorithms like trainln, traincgf, and traingda 
produced more errors than the traincgb. 

Table 3: List of different training algorithms of ANN.  

ANN Algorithms EPOCH RMSE R2 
TRINLN 128 8.597 0.967 

TRAINBGF 10 6.039 0.984 
TRAINCGB 56 5.894 0.985 
TRAINCGF 132 6.566 0.981 
TRAINCGP 1 6.364 0.982 
TRAINGDA 12 6.757 0.980 
TRAINGDX 104 8.341 0.969 
TRAINLM 8 6.214 0.983 
TRAINOSS 39 7.518 0.975 
TRAINSCG 62 6.110 0.983 

After figuring out the best training algorithm for the ANN model, the next step is optimal design, 
which involves choosing the right number of neurons to use in the hidden layer for further analysis. 
It can be done by varying the neurons in the hidden layer. Initially, the hidden layer only used two 
neurons for the guessing process. However, as shown in Fig. 5, the number of neurons in the hidden 
layer gradually increased from two to twenty. 

.  

Fig. 5: Variation of RMSE with neurons. 

Fig. 5 shows that the network output a wide range of RMSE and local minimum/maximum values 
as the number of neurons is enhanced. The lowest RMSE value for the eight hidden neurons was 
attained in every trial. The smallest RMSE value for a neural network architecture with 8 hidden 
neurons was 2.06. As a result, the optimal number of neurons was established to be 8 in hidden 
layers.  

Fig. 5: Variation of RMSE with neurons.
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choosing the right number of neurons to use in the hidden 
layer for further analysis. It can be done by varying the 
neurons in the hidden layer. Initially, the hidden layer only 
used two neurons for the guessing process. However, as 
shown in Fig. 5, the number of neurons in the hidden layer 
gradually increased from two to twenty.

Fig. 5 shows that the network output a wide range of 
RMSE and local minimum/maximum values as the number 
of neurons is enhanced. The lowest RMSE value for the 
eight hidden neurons was attained in every trial. The smallest 
RMSE value for a neural network architecture with 8 hidden 
neurons was 2.06. As a result, the optimal number of neurons 
was established to be 8 in hidden layers. 

Final Selected ANN Model Results

The optimal ANN topology for forecasting Cr(VI) ion 
adsorption efficiency by WTAC was determined to be 4-8-
1 during network architecture design. Table 4 shows the 
performance of the artificial neural network (ANN) model 
and the best ANN parameter combination for this structure. 

In summary, Fig. 6 illustrates the optimal three-layer 
ANN topology, comprising a four-neuron input layer, an 

eight-neuron hidden layer with a tangent sigmoid (tansig) 
transfer function, and a single-neuron output layer.

A linear relationship between the observed and predicted 
outputs of the final selected ANN model can be seen in 
training, validation, and testing over the full dataset. As 
shown in Fig. 7, the regression plot was obtained for the best 
ANN model 4-8-1. The good accuracy and fitting abilities 
of the ANN model are demonstrated by the large R-value of 
0.977 for the entire data set. The lower R-value of 0.91014 
shown in the testing data may be due to the limited sample 
size used in this investigation. Expected values based on the 
best ANN model 4-8-1 are displayed in Table 4.

An evaluation of the ANN model’s efficacy was 
conducted by contrasting the error function with respect to 
the validation data. The training procedure ends once the 
validation error has decreased to a certain level. The outcome 
is predicted, and ANN validates the experimental data. The 
MSE for the optimized ANN model is shown against the 
epoch number in Fig. 8. Overfitting was avoided, and the 
least-error weights and biases were recovered by stopping 
training after 61 epochs, as shown in Fig. 8. Specifically, the 
little circle at epoch 61 on the graph represents the highest 
validation performance.

Table 4: Artificial Neural network (ANN) model’s performance.

ANN Structure Algorithm Transfer function Assessment Criteria

Hidden Layer Output layer RMSE MAE R2

4-8-1 Treincbg tansing purelin 2.384 1.630 0.977

Final Selected ANN Model Results 

The optimal ANN topology for forecasting Cr(VI) ion adsorption efficiency by WTAC was 
determined to be 4-8-1 during network architecture design. Table 4 shows the performance of the 
artificial neural network (ANN) model and the best ANN parameter combination for this structure.  

Table 4:  Artificial Neural network (ANN) model's performance. 

ANN Structure Algorithm 
Transfer function Assessment Criteria 

Hidden Layer Output layer RMSE MAE R2 
4-8-1 Treincbg tansing purelin 2.384 1.630 0.977 

In summary, Fig. 6 illustrates the optimal three-layer ANN topology, comprising a four-neuron 
input layer, an eight-neuron hidden layer with a tangent sigmoid (tansig) transfer function, and a 
single-neuron output layer. 

Fig. 6:  ANN topology (4-8-1) for Cr(VI) adsorption efficiency. 

A linear relationship between the observed and predicted outputs of the final selected ANN model 
can be seen in training, validation, and testing over the full dataset. As shown in Fig. 7, the 
regression plot was obtained for the best ANN model 4-8-1. The good accuracy and fitting abilities 
of the ANN model are demonstrated by the large R-value of 0.977 for the entire data set. The lower 
R-value of 0.91014 shown in the testing data may be due to the limited sample size used in this 
investigation. Expected values based on the best ANN model 4-8-1 are displayed in Table 4. 

Fig. 6: ANN topology (4-8-1) for Cr(VI) adsorption efficiency.
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Fig. 7: Regression plots of ANN model for Cr(VI) adsorption efficiency.  

An evaluation of the ANN model's efficacy was conducted by contrasting the error function with 
respect to the validation data. The training procedure ends once the validation error has decreased 
to a certain level. The outcome is predicted, and ANN validates the experimental data. The MSE 
for the optimized ANN model is shown against the epoch number in Fig. 8. Overfitting was 
avoided, and the least-error weights and biases were recovered by stopping training after 61 
epochs, as shown in Fig. 8. Specifically, the little circle at epoch 61 on the graph represents the 
highest validation performance. 

Fig. 7: Regression plots of ANN model for Cr(VI) adsorption efficiency. 

 
Fig. 8: MSE plot of ANN performance for train, validation, and test data. 

The validation check, also known as Mu, and the gradient profile of the ANN model are depicted 
in Fig. 9. When the gradient value reached 1.0531. The training was terminated. As shown in Fig. 
9, the mu value for the seventh period was 0.001. Additionally, the varying validation checks show 
no need to evaluate the validity of the data set used in the current investigation. 

.  

Fig. 9:  ANN Training State (Gradient, mu, and validation check profiles). 

Fig. 8: MSE plot of ANN performance for train, validation, and test data.
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Fig. 8: MSE plot of ANN performance for train, validation, and test data. 

The validation check, also known as Mu, and the gradient profile of the ANN model are depicted 
in Fig. 9. When the gradient value reached 1.0531. The training was terminated. As shown in Fig. 
9, the mu value for the seventh period was 0.001. Additionally, the varying validation checks show 
no need to evaluate the validity of the data set used in the current investigation. 

.  

Fig. 9:  ANN Training State (Gradient, mu, and validation check profiles). 
Fig. 9: ANN Training State (Gradient, mu, and validation check profiles).

After projecting the errors for each data point, a 20-bin error histogram is generated and displayed 
in Fig. 10. Fig. 10 shows that the largest error possible was 10.31, and the smallest error possible 
was 0.003. The fact that 4 of the observations had zero or tiny errors and the deviations are 
concentrated closer to the zero error line demonstrates the correctness and reliability of the ANN 
model developed. However, the limited dataset used means that the amount of errors that 
significantly depart from the mean is still manageable. 

 
Fig. 10:  Histogram of error. 

CONCLUSION 

The primary aim of this research was to develop an ANN model for the Cr(VI) ion adsorption 
efficiency of WTAC in batch adsorption tests with four different process parameters (adsorbent 
dosage, initial concentration of Cr(VI) ions, contact time, and temperature). WTAC was developed 
using the carbonization of waste tires at 400 °C, which was subsequently activated using a thermal 
and chemical method. WTAC's FTIR peak at 3415.02 cm indicates the presence of a hydroxyl 
group. 

A three-layer ANN with different training algorithms and hidden layers with different numbers of 
neurons was developed to predict the adsorption efficiency of the Cr(VI) ion. All algorithms were 
evaluated at 10 neurons in a hidden layer. The best training algorithm was determined to be CGB 
of Powell-Beale restarts (traincgb), with RMSE of 5.894 and R2 of 0.985. It was determined that 
8 neurons in the hidden layer are the optimal number for traincgb, with RMSE 2.06. The ANN 
model's correlation coefficient is 0.977, indicating that it accurately predicted experimental data 
and could make a reliable prediction on the adsorption efficiency of the Cr(VI) ion.  

Fig. 10: Histogram of error.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1490 Gaurav Meena and Nekram Rawal

Vol. 22, No. 3, 2023 • Nature Environment and Pollution Technology  This publication is licensed under a Creative 
Commons Attribution 4.0 International License

This publication is licensed under a Creative 
Commons Attribution 4.0 International License

The validation check, also known as Mu, and the gradient 
profile of the ANN model are depicted in Fig. 9. When the 
gradient value reached 1.0531. The training was terminated. 
As shown in Fig. 9, the mu value for the seventh period was 
0.001. Additionally, the varying validation checks show 
no need to evaluate the validity of the data set used in the 
current investigation.

After projecting the errors for each data point, a 20-bin 
error histogram is generated and displayed in Fig. 10. Fig. 
10 shows that the largest error possible was 10.31, and the 
smallest error possible was 0.003. The fact that 4 of the 
observations had zero or tiny errors and the deviations are 
concentrated closer to the zero error line demonstrates the 
correctness and reliability of the ANN model developed. 
However, the limited dataset used means that the amount 
of errors that significantly depart from the mean is still 
manageable.

CONCLUSION

The primary aim of this research was to develop an ANN 
model for the Cr(VI) ion adsorption efficiency of WTAC in 
batch adsorption tests with four different process parameters 
(adsorbent dosage, initial concentration of Cr(VI) ions, 
contact time, and temperature). WTAC was developed 
using the carbonization of waste tires at 400 °C, which was 
subsequently activated using a thermal and chemical method. 
WTAC’s FTIR peak at 3415.02 cm indicates the presence 
of a hydroxyl group.

A three-layer ANN with different training algorithms 
and hidden layers with different numbers of neurons was 
developed to predict the adsorption efficiency of the Cr(VI) 
ion. All algorithms were evaluated at 10 neurons in a hidden 
layer. The best training algorithm was determined to be 
CGB of Powell-Beale restarts (traincgb), with RMSE of 
5.894 and R2 of 0.985. It was determined that 8 neurons in 
the hidden layer are the optimal number for traincgb, with 
RMSE 2.06. The ANN model’s correlation coefficient is 
0.977, indicating that it accurately predicted experimental 
data and could make a reliable prediction on the adsorption 
efficiency of the Cr(VI) ion. 
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