
   2022pp. 1269-1277  Vol. 21
p-ISSN: 0972-6268 
(Print copies up to 2016) No. 3  Nature Environment and Pollution Technology

  An International Quarterly Scientific Journal

Original Research Paper

e-ISSN: 2395-3454

Open Access JournalOriginal Research Paperhttps://doi.org/10.46488/NEPT.2022.v21i03.033

Comprehensive Modeling of Seasonal Variation of Surface Ozone Over Southern 
Tropical City, Bengaluru, India
G. Dhanya*†, T. S. Pranesha*, Kamsali Nagaraja**, D. M. Chate*** and G. Beig****
*Department of Physics, BMS College of Engineering, Bengaluru-560019, India
**Department of Physics, Bangalore University, Bengaluru-560056, India
***Centre for Development of Advanced Computing, Pune-411008, India
****National Institute of Advanced Studies, Bengaluru-560012, India
†Corresponding author: G. Dhanya; gopidhanya85@gmail.com 

ABSTRACT

Surface ozone (O3) is an important pollutant. In this study we investigated the effects of precursor 
gases on the difference in ozone concentration utilizing various statistical methods like Multiple 
Linear Regression (MLR), Principal Component Regression (PCR), Artificial Neural Network (ANN), 
and Principal Component and Artificial Neural Network (PC-ANN) in conjunction with meteorological 
parameters for forecasting. The pollutants ozone (O3), carbon monoxide (CO), nitric oxide (NO), 
nitrogen dioxide (NO2), oxides of nitrogen (NOx), and the meteorological parameters temperature 
(temp), relative humidity (RH), solar radiation (SR), wind speed (WS) and wind direction (WD) observed 
during 2019 are taken as inputs for MLR, PCR, ANN, and PCANN. The mathematical models obtained 
from the numerical analysis showed that O3 concentration was significantly affected by the CO, NO, 
NO2, NOX, temp, RH, SR, WS, and WD factors. PCR model’s regression coefficient was lower than 
the MLR model, but the same for ANN and PCANN models was much better in all the seasons than 
the linear models such as MLR and PCR. The efficiency of all methods is inspected using several 
performance metrics.

INTRODUCTION 

Ozone (O3) is among the main air pollutants often related to 
global environmental degradation. O3 is a secondary contam-
inant arising from complex chemical effects in the atmos-
phere (Seinfeld & Pandis 2006). High concentrations of O3 
are closely connected to meteorological backgrounds. They 
typically arise during hot days, when principal pollutants, 
oxides of nitrogen (NOx) and Non-Methane Hydrocarbons 
(NMHC) react photochemically, followed by intense solar 
radiation and higher temperatures (San José et al. 2005). 
Ozone destruction happens through various mechanisms, 
including the chemical reactions happening in the atmos-
phere and surface deposition. The photochemical loss of 
Ozone occurs by the photolysis of Ozone and its consequent 
reaction. The reaction with the water molecule produces OH 
and HO2 during midday through the generation of an O1D 
molecule. Other ways in which Ozone is eliminated is by 
either dry or wet precipitation (Varotsos et al. 2000). Ozone 
has detrimental effects on both humans as well as plants. The 
analysis of Ozone variations is complicated due to the various 
precursors, and photochemical and meteorological processes 
in the air (Abdul-Wahab et al. 2002). Toh et al.  (2013) have 

shown that meteorological parameters significantly influence 
the effectiveness of the photochemical system linked to the 
creation and depletion of Ozone. Therefore, it is useful to 
establish a relation between these primary pollutants and 
meteorological variables that could be used to determine 
Ozone concentration (Elkamel et al. 2001).

Several models have been used to satisfy both these cri-
teria: the influence of primary pollutants and meteorological 
parameters on Ozone and predicting the pollutant levels. 
Accordingly, these models are sorted into two groupings 
deterministic and the other as statistical.  Deterministic 
models involve high resources and precision data (Azzi et 
al. 1995). Therefore, relying on statistical models is far more 
practical and economical than the deterministic models. Sta-
tistical models are simplistic, and they can be implemented 
in the real data that is available. The statistical models can 
classify output parameter relationships with input parameters 
deprived of cause and effect methodology.

Several statistical methods are proposed for analyzing 
and forecasting concentrations of Ozone. Graphical analysis, 
Multiple Linear Regression (MLR), Principal Component 
Analysis (PCA), and Artificial Neural Networks (ANN) 
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have been used to explain the variability of extensive data 
on air pollution (Abdul-Wahab et al. 2005, Sousa et al. 
2007, Özbay et al. 2011). A commonly used technique for 
achieving a normalized input-output model for a given data 
set is the MLR process. It is used in biology, medicine, 
and environmental studies (Smith & Wachob 2006, Özbay  
et al. 2011). 

The present study addresses the effect of precursor gases 
on the difference in O3 concentration using MLR, PCR, 
ANN, and PCANN laterally with meteorological parame-
ters. The primary objective is to link Ozone concentration 
to meteorological parameters and concentrations of prime 
pollutants, including the precursors.

MATERIALS AND METHODS

Study Area

The measurement site is located on the campus of B.M.S. 
College of Engineering, Basavangudi, a residential location 
in Bengaluru, India. Bengaluru (12.9410o N, 77.5655oE, 
910 m above MSL) one of India’s fastest-growing cities, is 
known as the ‘Silicon Valley of India’ due to information 
technology-based industries. 

Surface O3 concentration is measured continuously using 
a Serinus 10 O3 analyzer based on the absorption of ultravio-
let radiation with a specific wavelength, 254 nm. An Ecotech 
analyzer provides O3 estimates in the range of 0-250 ppbv 
with a 0.5 ppb detection limit. The NO, NO2, and NOX con-
centrations are measured by a Serinus 40 NOX analyzer based 
on the chemiluminescence technique. The lower detectable 
value is 0.40 ppbv with a processing time of 40 s for the NOX 
analyzer. Wind speed, wind direction, ambient temperature, 
relative humidity, and rainfall are recorded using an Auto-
matic Weather Station (AWS) which is also mounted in this  
location.

Statistical Techniques

MLR, PCR, ANN, and PCANN were used to build 
four models. Statistical packages for Social Sciences 
22.0 (SPSS 22.0) were used for MLR and PCR, while 
MATLAB R2019a was used for ANN and PCANN  
research.

Multiple linear regression: One of the most used meth-
odologies for defining the linear relationship among the 
dependent variable and many other independent variables 
is Multiple Linear Regression (MLR). MLR uses a least 
square technique to suit the model, thus reducing the num-
ber of square differences amid experimental and predicted 
concentrations of O3. 

The General MLR equation is given as follows:

 

MLR, PCR, ANN, and PCANN were used to build four models. Statistical packages for Social Sciences 22.0 

(SPSS 22.0) were used for MLR and PCR, while MATLAB R2019a was used for ANN and PCANN research. 

Multiple linear regression: One of the most used methodologies for defining the linear relationship among the 

dependent variable and many other independent variables is Multiple Linear Regression (MLR). MLR uses a least 

square technique to suit the model, thus reducing the number of square differences amid experimental and 

predicted concentrations of O3.  

The General MLR equation is given as follows 

 
 

Where Y would be the dependent variable, bo is a constant, bi is independent variable coefficients, xi is independent 

variables, and  is regression model error. Despite its effectiveness in several applications, MLR can experience 

tremendous difficulty once the independent variables are associated (Mcadams et al. 2000). Multicollinearity, or 

strong association in a regression equation between the independent variables, may make it hard to classify the 

utmost significant contributors to a physical method.  

Principal component regression (PCR): PCR is Principal Component Analysis (PCA) and MLR collective 

method. Principal Components (PCs) produced by PCA are being utilized in MLR by employing an input variable, 

which reduces the multicollinearity and simplifies the model. The selected PCs with extreme PCA loadings 

assured that most of the original parameters were used in these models, making them suitable for usage in MLR 

as independent factors (Gvozdić et al. 2011). 

Principal component analysis (PCA): PCA is a multivariate data technology that is applied in this analysis to 

minimize parameters and to include the most significant important parameter in variations of O3. PCA transforms 

these into a limited number of independent variables named principal components. PCs were extracted in such a 

way whereby its first principal component (PC1) represented the most considerable amount of overall variability 

in the collected data, while the remaining components (PC2, PC3) reported for the rest of the variations (Kovač-

Andrić et al. 2009). 

 PCs are overall, expressed in terms 

 

 PCi is the ith PC, and lmi is the observed loading Xm. 

In PCA, Bartlett's sphericity method is adopted to check whether variables are correlated with each other or not. 

Kaiser-Meyer-Olkin (KMO) verifies PCA's applicability to the set of data, and the value of KMO’s > 0.5 suggests 

PCA's data suitability. The varimax rotation has been implemented, simplifying the model by making smaller and 

larger loads and ensuring that each component has a maximum association with just one printable factor and is 

minimally associated with some variables (Dominick et al. 2012). 

Artificial neural network (ANN): ANN applications in atmospheric/environmental sciences started in the late 

1990s and were proven effective in model forecasting (Luna et al. 2014). The neuron is an essential building block 

Where Y would be the dependent variable, bo is a con-
stant, bi is independent variable coefficients, xi is independ-
ent variables, and e is regression model error. Despite its 
effectiveness in several applications, MLR can experience 
tremendous difficulty once the independent variables are 
associated (Mcadams et al. 2000). Multicollinearity, or strong 
association in a regression equation between the independent 
variables, may make it hard to classify the utmost significant 
contributors to a physical method. 

Principal component regression (PCR): PCR is Principal 
Component Analysis (PCA) and MLR collective method. 
Principal Components (PCs) produced by PCA are being 
utilized in MLR by employing an input variable, which 
reduces the multicollinearity and simplifies the model. The 
selected PCs with extreme PCA loadings assured that most 
of the original parameters were used in these models, mak-
ing them suitable for usage in MLR as independent factors 
(Gvozdić et al. 2011).

Principal component analysis (PCA): PCA is a multivariate 
data technology that is applied in this analysis to minimize 
parameters and to include the most significant important 
parameter in variations of O3. PCA transforms these into a 
limited number of independent variables named principal 
components. PCs were extracted in such a way whereby its 
first principal component (PC1) represented the most con-
siderable amount of overall variability in the collected data, 
while the remaining components (PC2, PC3) reported for the 
rest of the variations (Kovač-Andrić et al. 2009).

 PCs are overall, expressed in terms

 

MLR, PCR, ANN, and PCANN were used to build four models. Statistical packages for Social Sciences 22.0 

(SPSS 22.0) were used for MLR and PCR, while MATLAB R2019a was used for ANN and PCANN research. 

Multiple linear regression: One of the most used methodologies for defining the linear relationship among the 

dependent variable and many other independent variables is Multiple Linear Regression (MLR). MLR uses a least 

square technique to suit the model, thus reducing the number of square differences amid experimental and 

predicted concentrations of O3.  

The General MLR equation is given as follows 

 
 

Where Y would be the dependent variable, bo is a constant, bi is independent variable coefficients, xi is independent 

variables, and  is regression model error. Despite its effectiveness in several applications, MLR can experience 

tremendous difficulty once the independent variables are associated (Mcadams et al. 2000). Multicollinearity, or 

strong association in a regression equation between the independent variables, may make it hard to classify the 

utmost significant contributors to a physical method.  

Principal component regression (PCR): PCR is Principal Component Analysis (PCA) and MLR collective 

method. Principal Components (PCs) produced by PCA are being utilized in MLR by employing an input variable, 

which reduces the multicollinearity and simplifies the model. The selected PCs with extreme PCA loadings 

assured that most of the original parameters were used in these models, making them suitable for usage in MLR 

as independent factors (Gvozdić et al. 2011). 

Principal component analysis (PCA): PCA is a multivariate data technology that is applied in this analysis to 

minimize parameters and to include the most significant important parameter in variations of O3. PCA transforms 

these into a limited number of independent variables named principal components. PCs were extracted in such a 

way whereby its first principal component (PC1) represented the most considerable amount of overall variability 

in the collected data, while the remaining components (PC2, PC3) reported for the rest of the variations (Kovač-

Andrić et al. 2009). 

 PCs are overall, expressed in terms 

 

 PCi is the ith PC, and lmi is the observed loading Xm. 

In PCA, Bartlett's sphericity method is adopted to check whether variables are correlated with each other or not. 

Kaiser-Meyer-Olkin (KMO) verifies PCA's applicability to the set of data, and the value of KMO’s > 0.5 suggests 

PCA's data suitability. The varimax rotation has been implemented, simplifying the model by making smaller and 

larger loads and ensuring that each component has a maximum association with just one printable factor and is 

minimally associated with some variables (Dominick et al. 2012). 

Artificial neural network (ANN): ANN applications in atmospheric/environmental sciences started in the late 

1990s and were proven effective in model forecasting (Luna et al. 2014). The neuron is an essential building block 

 PCi is the ith PC, and lmi is the observed loading Xm.

In PCA, Bartlett’s sphericity method is adopted to check 
whether variables are correlated with each other or not. Kai-
ser-Meyer-Olkin (KMO) verifies PCA’s applicability to the 
set of data, and the value of KMO’s > 0.5 suggests PCA’s 
data suitability. The varimax rotation has been implemented, 
simplifying the model by making smaller and larger loads and 
ensuring that each component has a maximum association 
with just one printable factor and is minimally associated 
with some variables (Dominick et al. 2012).

Artificial neural network (ANN): ANN applications in 
atmospheric/environmental sciences started in the late 1990s 
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and were proven effective in model forecasting (Luna et al. 
2014). The neuron is an essential building block for any ANN 
architecture. This network has three layers, namely input 
mode, hidden mode, and output mode. The input neurons 
encrypt information from an outside world, all the neurons 
in the previous layer receive signals from the hidden neu-
rons, while the output neurons transmit back useful data to 
the outside world. The output value is obtained by applying 
a mapping function such as Sigmoid, Tangential, and linear 
hyperbolic. Maier & Dandy (2000) have explained in detail 
the application of ANN in environmental modeling.

Principal component and artificial neural network (PC-
ANN): PCANN is a combination of PCA and ANN.  PCs 
created from PCA are used instead of original variables as 
input variables. The accuracy of individual forecasts can be 
enhanced by combining predictions from various models 
(Zhang 2003). Even though such models are of rather com-
plex architecture, they could be more useful in predicting 
the levels of Ozone.

Performance Indicators

Various performance indicators were evaluated towards 
assessing the errors and accuracies of the models developed. 

Normalized Absolute Error (NAE)

NAE summates the expected and calculated value difference 
separated by a summation of the observed values (Elbayoumi 
et al. 2014).
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Table 1: Correlation of O3 concentration with models during the different seasons for MLR. 

 

Season Method R R2 Adjusted R2 Equation of Model 
Winter MLR 0.963 0.926 0.915 O3=((2.433*Temp) -(1.029*WD)+(0.051*SR)+(241.964)) 
Summer MLR 0.950 0.903 0.889 O3=((-1.884*NO2) +(4.543*Temp)+(0.029*SR)-(48.529)) 
Monsoon MLR 0.977 0.954 0.950 O3=((-1.367*NO2) +(1.906*Temp) -(8.838)) 

where n indicates sample size, Pi has Predicted Ozone 
concentration; Oi is a concentration of detected Ozone; P  
is expected concentration of Ozone; O is average of the 
concentration of Ozone.

RESULTS AND DISCUSSION

For the present study dataset of the year 2019 has been used 
for training and then these data were segregated into distinct 
seasons for model validation. The entire set of data was 
checked for normalization before being utilized in different 
models. In this study, four models for different seasons, 
winter, summer, monsoon, and post-monsoon, were used to 
estimate Ozone concentration using precursors and meteor-
ological parameters.

MLR

Regression-based methods were adopted to predict the im-
pacts of identified variables on O3 differences (Abdul-Wahab 
et al. 2005). Stepwise multiple linear regression modeling 
was used in this study to determine the predictive equation 
designed for the concentration of Ozone as a result of the 
different parameters that are being measured. CO, NO, NO2, 
NOX, Temperature (temp), Relative Humidity (RH), Solar 
Radiation (SR), Wind Speed (WS), and Wind Direction (WD) 
are the independent predictors while Ozone is the dependent 
or response variable that has been used in this study. The 
method automatically chooses the most important parameters 
and excludes those that are of the least significance.

As Variance Inflation Factor (VIF) fell under 5, multicol-
linearity problems were excluded. Autocorrelation has been 
assessed using the Durbin Watson test and the autocorrelation 
values are 1.78, 1.71, 0.92, and 1.13 for winter, summer, 
monsoon, and post-monsoon for the current data. The model 
description is presented in Table 1, which provides many 
correlations R, R2, adjusted R2, and best fit model solution.  
MLR model developed was evaluated by the coefficient of 
determination (R2) used to measure the capability of the 
designated parameters to elucidate the O3 concentration 
variations (Abdul-Wahab et al. 2005). The findings showed 
how MLR showed success with R2 at 0.933, 0.90, 0.95, and 
0.90 during winter, summer, monsoon, and post-monsoon. 
For winter, the table’s variables describe more than 93% 
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of the variance in Ozone concentration. NO2 appears to be 
the primary source of Ozone during summer. Among these 
meteorological parameters, temperature and solar radiation 
make significant contributions to high Ozone concentrations. 
The variation in NO2 and temperature explains the change 
in Ozone up to 95% for monsoon. However, post-monsoon, 
it accounts for 90% depending on the variable, as shown in 
the table. 

For the MLR model using precursor gases and meteor-
ological parameters, R2 calculated was found to range from 
0.88 to 0.91. MLR model shows that the independent varia-
bles listed in the table explain more than 85 % of the variance 
in Ozone concentration during the different seasons. Fig. 1(a-
d) shows a strong positive correlation between measured and 
modeled Ozone levels with a coefficient of 0.92, 0.89, 0.95, 
and 0.89 for winter summer, monsoon, and post-monsoon 
seasons. Fig. 2(a-d) shows the diurnal variation of observed 
and modeled Ozone for winter, summer, monsoon, and 
post-monsoon seasons. It indicates a strong agreement of 
diurnal variability between observed and predicted values 

for the peak hours. It showed an overestimation for winter, 
summer, and monsoon during the morning and night hours 
while there was an underestimation during morning hours 
for the post-monsoon season.

PCR

The main aim of PCR is to acquire a limited quantity 
of components that would elucidate much of the maxi-
mum variation in the predictor variables. The adequacy of 
data collected for PCA is evaluated by Bartlett’s studies 
and Kaiser-Meyer-Olkin (KMO). Before using PCA for ex-
traction, 10 linear variables, O3, CO, NO, NO2, NOX, temp, 
RH, SR, WS, and WD, were chosen. After PCA extractions, 
three variables were selected as the PCs built on eigenvalue 
greater than unity. PCs obtained in Table 2 obey varimax 
rotation as this maximizes the correlation of the parameters 
to only one factor and minimizes correlations between the 
parameters and the other factors (Dominick et al. 2012). The 
cumulative variances during winter, summer, monsoon, and 
post-monsoon were 96%, 95%, 93%, and 95%, respectively. 

Table 1: Correlation of O3 concentration with models during the different seasons for MLR.

Season Method R R2 Adjusted R2 Equation of Model

Winter MLR 0.963 0.926 0.915 O3=((2.433*Temp) -(1.029*WD)+(0.051*SR)+(241.964))

Summer MLR 0.950 0.903 0.889 O3=((-1.884*NO2) +(4.543*Temp)+(0.029*SR)-(48.529))

Monsoon MLR 0.977 0.954 0.950 O3=((-1.367*NO2) +(1.906*Temp) -(8.838))

Post Monsoon MLR 0.950 0.902 0.888 O3=((-0.096*WD)-(1.34*CO)+(0.009*SR)+(34.508))

Table 2:  Rotated Principal Components loadings during the different seasons. 

Winter Summer Monsoon Post-Monsoon

PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3

NOx 0.991   0.974    0.992   0.971  

NO2 0.965   0.892    0.903   0.942  

CO 0.963   0.979    0.984   0.984  

NO 0.962   0.926    0.925   0.927  

Temperature  0.977   0.964  0.964   0.932   

RH  -0.983   -0.971  -0.957   -0.91   

WS   0.939  0.835  0.975   0.938   

WD 0.881     -0.802 -0.936     0.867

SR  0.621 0.594  0.589 0.701 0.897  0.403 0.835   

Ozone -0.703  0.542  0.819  0.918   0.834   

Eigen value 5.263 2.635 1.744 4.019 3.903 1.619 5.535 3.841  4.405 4.103 1.034

% of Variance 52.626 26.35 17.437 40.188 39.032 16.191 55.346 38.405  44.054 41.034 10.341

Cumulative % 52.626 78.975 96.413 40.188 79.22 95.411 55.346 93.751  44.054 85.088 95.429
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During winter, the first factor represented 52.6% of the total 
change and itemized six variables (NO, NO2, NOx, CO, 
WS, WD) as the crucial variables. While the second factor 
signified 26.3% of the total change and contained loadings of 
temperature and solar radiation, PCA then classified Ozone, 
SR, and WS onto the third factor, which characterized almost 
17.4% of the total change. In summer, we observe on the 
first PC, NO, NO2, NOX, and CO have significant loadings 
with 52.6% of the variation of independent parameters. The 
second PC describes 39% of the discrepancy, and it is pro-
foundly loaded on Ozone, temp, and WS. The third PC was 
heavily ladened on wind direction and solar radiation which 
explains 16.2% changes. 

The first PC stated 55.3% of the whole data variability 
for the monsoon results. They are heavily encumbered onto 
Ozone, temp, RH, WS, WD, and SR. The subsequent PC, 
which reported about 38.4% of the total changes, showed 
a distinction of only pollutants, namely CO, NO, NO2 and 
NOX. The rest of the parameters were signified by the re-
maining main components, which successfully accounted for 
less of the total variation. The post-monsoon’s first parameter 
included most of the carefully chosen meteorological varia-
bles with a collected variance of 44%. The second factor was 
constituted by many of the primary sources of pollutants with 
a difference of 41%, although WD exclusively characterized 
the third factor with approximately 10%. Thus, principal 
components obtained from PCA are implemented in the MLR 
model to find the best fit for variations in Ozone.

Table 3 shows the result of the PCR model. The analysis 
indicates that PCR during winter and post-monsoon showed 
optimum performance with R2 values equivalent to 0.69 and 
0.76, correspondingly. Therefore, more than 70% of the O3 
differences throughout winter and post-monsoon were de-
scribed by the selected parameters. A significantly higher R2 
(0.90 and 0.93) was obtained during summer and monsoon, 
which indicated that these selected variables explained higher 
possibilities of O3 variations. During these periods, R2 values 
for the PCR analysis were crucially lower than R2 values for 
the MLR analysis. The use of PCs as MLR inputs could not 
increase the models’ efficiency to clarify the disparities in O3 

concentrations through the different seasons. A scatter plot 
of modeled vs observed shows that the correlation between 
observed and modeled is moderately related for winter and 
post-monsoon, and shows a good correlation between the two 
for summer and monsoon (Fig. 1(a-d). Fig. 2 (a-d) shows the 
model offers strong consistency during peak Ozone hours in 
the summer, winter, and monsoon seasons, overestimating 
Ozone rates in the early morning and night hours. While 
for the post-monsoon season it over and underestimates the 
entire diurnal variation.

ANN

Models of artificial neural networks (ANN) can detect com-
plex non-linear underlying interactions amid responses and 
forecasters and could be accomplished using many successful 
training methods. In this analysis, ANN was developed using 
MATLAB 2019a and used a feedforward backpropagation 
method. It has a layer of input, hidden, and output. There are 
9 input parameters and one output parameter. The 9 input data 
that have been in the investigation are CO, NO, NO2, NOX, 
temp, RH, SR, WS, and WD. The entire data set is divided 
into 70% of training, 15% validation data set, and 15% the 
test data set. The number of neurons and the appropriate 
activation function are two of the major issues encountered 
when building the architecture of the hidden layer. Yang et 
al.  (2005), have explained the number of neurons in the 
hidden layer can be evaluated using the following formula
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nh represents the number of neurons present in the hidden 
layer and ni represents the number of neurons present in the 
input layer. The ideal number of neurons in the hidden layer 
was 19 (ni = 9). The model with 19 neurons was explored, but 
the results were not promising. For better output, the model 
was optimized by using 5,10,15,19 neurons in the hidden 
layer while 10 neurons in the hidden layer only showed better 
results and so this is incorporated in the study. 

For training, validation, and testing, datasets correlation 
coefficients were 0.99, 0.96, and 0.99, respectively for winter. 
The cumulative regression is 0.99. While for summer and 

Table 3: Correlation of O3 concentration with models during the different seasons for PCR.

  Method R R2 Adjusted R2 Equation of Model

Winter PCR 0.810 0.670 0.630 O3=((-0.282*PC2)+(0.057*PC3)+(49.478))

Summer PCR 0.950 0.902 0.887 O3=((-8.13*PC1)+(2.877*PC2)+(0.036*PC3)-(41.728))

Monsoon PCR 0.966 0.934 0.928 O3=(1.434*PC1)-((-0.372*PC2)-11.019))

Post-monsoon PCR 0.871 0.758 0.735 O3=((0.529*PC1)-(0.078*PC2)+(4.445))
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monsoon it is 0.98, 0.99, and 0.99 for training, validation, 
and testing. The overall regression was 0.98. For post-mon-
soon, the training, validation, and testing were found to be 
0.99, and the overall regression was 0.99. The complete 
regression using the ANN model showed closure to unity 
which is stronger than the other models. Fig. 1(a-d) shows 
the scatter plot of observed and predicted Ozone levels for 
different seasons. We observe that the correlation between 
observed and measured Ozone levels during winter, summer, 
monsoon, and post-monsoon is 0.99, 0.97, 0.97, and 0.99. 
ANN model is better when compared to the MLR and PCR 
models. Figure 2a-d displays the diurnal variation of Ozone 
observed and modeled by ANN. There was good agreement 
between the observed and modeled Ozone levels during 
peak hours for winter, monsoon, and post-monsoon seasons. 
While for summer season there is an overestimation during 
the night-time.

PC-ANN

PC-ANN model was used, which was devoid of multicollin-
earity to make the ANN model efficient and straightforward. 
Model construction was initiated by applying PCA analysis 
to the data and then applying ANN on the generated three 
most explaining PCs. As a result, the input layer has 3 neu-
rons, while the number of neurons in the hidden layer is 7 
(2ni +1). The model’s performance was tested again by 5, 7, 
and 9 neurons in the hidden layer. The results displayed best 
with 7 neurons in the hidden layer. The dataset is divided 
into training (70%), validation (15%), and testing datasets 
(15%). The correlation coefficients of PC-ANN-based mod-
eled datasets of training, validation, testing, and overall were 
0.98, 0.99, 0.93, and 0.97 for the winter season. For summer 
and monsoon, the training, validation, testing, and overall 
were 0.99, 0.96, 0.99, and 0.99, respectively. During the 
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post-monsoon season, it was 0.89, 0.99, 0.94, and 0.90 for 
training, validation, testing, and overall results. 

A scatter plot shows a strong correlation between 
modeled and observed Ozone levels for all the seasons and 
is shown in Fig. 1 (a-d). Fig. 2 (a-d) exhibits the diurnal 
variation of modeled and observed Ozone for PC-ANN 
analysis. There is a good agreement between the observed 
and the modeled values for peak hours’ observations and 
overestimation was observed for all seasons during the early 
morning and late evening hours.

Performance Indicators

The performance of each of these models was measured using 
different error terms such as normalized absolute error, root 
mean square error, index of agreement, prediction accuracy, 

and mean biased error. The value of NAE, RMSE, IA, PA, 
and MBE are shown in Table 4 for different seasons.

 For the most accurate model, the NAE value must be 
near zero (Sharma et al. 2016). In the present data, the NAE 
is close to zero, indicating the accuracy of the models. The 
lower RMSE value shows that the model works well, though 
the higher RMSE value does not imply that the model is 
entirely incorrect as peak data take a high RMSE impact 
(Vlachogianni et al. 2011).

RMSE remained highest for MLR and PCR model and 
the smallest for the ANN and PC-ANN model. If IA in the 
model is nearer to one, it means that the forecasted values 
are adjacent to the observed values. It was nearest to 1, sug-
gesting that the ANN-based method represents this model’s 
best alignment with the observed set of data. The MBE 
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results show over and under prediction for the observed and 
predicted value. All these performance indicators suggest 
that ANN and PCANN models were the best compared to 
MLR and PCR-based models for predicting Ozone levels 
for all the seasons. Ozone concentrations predicted by these 
models vary. These variations are attributed to the complex 
set of reactions involving Ozone’s precursor other than the 
ones used in the present study.

CONCLUSION

Surface Ozone simulation was carried out with four statistical 
models. The first concept is built on MLR and the coeffi-
cients of regression for this model are 0.926, 0.903, 0.954, 
and 0.902 during winter, summer, monsoon, and post-mon-
soon. The second concept is the PCR model developed that 
uses factor analysis of principal components as the input 
parameter in multiple linear regression. The third model 
used was ANN which showed regression analysis results of 
training, validation, test, and overall unity. The fourth model 
is PCANN, and their regression coefficient is also close to 
unity. The reliability of all models is tested using various 
performance indicators. The governing equations developed 
from the regression techniques showed that O3 concentration 
was significantly affected by parameters such as CO, NO, 

NO2, NOX, temp, RH, SR, WS, and WD. The PCR model’s 
regression coefficient was less than the MLR model, but the 
same for ANN and PCANN models was much better in all 
the seasons than the linear models such as MLR and PCR.

The present work is preliminary research on Bengaluru 
air pollution that might be used in various data analytical 
approaches to develop a forecasting model. An effective 
forecasting model of ambient air pollution is essential for 
demonstrating it to be a valuable tool for public health pro-
tection to build rigorous pollution control technologies and 
procedures.
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