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ABSTRACT

The study of competitive adsorption of heavy metals on soil is important for heavy metals contaminated 
soil remediation. However, there have been few studies on the impact of desorption reagents on heavy 
metal adsorption in soil. Batch adsorption studies were used to investigate the competitive adsorption 
mechanism of two heavy metals, Pb and Zn, on a loess soil in the presence of a new chelating 
surfactant, sodium N-lauroyl ethylenediamine triacetate (LED3A). Results showed that competitive 
adsorption equilibria of Pb and Zn were reached at 3 and 10 h, respectively. The maximum equilibrium 
adsorption capacities were 19.55 and 18.35 g.kg-1, respectively. LED3A affected the competitive 
adsorption kinetics of Pb and Zn by increasing the change in external mass transfer and reducing the 
change in internal mass transfer. LED3A reduced Pb and Zn adsorption capacities onto the soil through 
competitive chelation of the heavy metals. The heavy metal chelating ability of LED3A was higher for Zn 
than for Pb. When its concentration was larger than 5 g.L-1, LED3A showed a significant effect on the 
competitive adsorption of Pb and Zn. In the competitive system, the effect of Pb concentration on the 
Zn adsorption capacity was greater than the effect of Zn concentration on the Pb adsorption capacity. 
LED3A weakened the effect of Pb concentration and enhanced the effect of Zn concentration. LED3A 
showed a significant potential for efficiently leaching remediation of Pb and Zn co-contaminated soil.    

INTRODUCTION 

Heavy metal pollution in soils has become a severe issue 
that is endangering human health and endangering the 
environment (Yuan et al. 2021). The adsorption/desorption 
characteristics of heavy metal ions at the soil-water inter-
face are crucial for understanding the movement and fate 
of heavy metals in the soil. This has major implications for 
studying heavy metal bioavailability and transformation 
in the biological chain (Peng et al. 2018). It also provides 
evidence for the prevention and remediation of heavy metal 
contaminated soils (Qiu et al. 2010, Garridorodriguez et al. 
2014). As a result, numerous research on the adsorption/
desorption of heavy metals on soils have been published in 
recent years (Wang et al 2011, Shi et al. 2013, Peng et al. 
2018, Wang et al. 2020). However, most adsorption/desorp-
tion research has concentrated on diverse soil types, heavy 
metal species, and adsorption/desorption process variables 
(Muhammad et al. 2018). Meanwhile, mechanistic research 
on soil and heavy metal systems, as well as contaminated 
soil and desorbent systems, have made it difficult to explain 
the competitive mechanism for heavy metals between soil 
and desorbent. To research the influence of the desorbent 
on heavy metal adsorption onto the soil, it is important to 

investigate the coexisting system of soil, heavy metals, and 
desorbent. The evident link between soil, heavy metals, 
and desorbents can offer the theoretical foundation needed 
for desorbent-based chemical leaching treatment of heavy 
metal-contaminated soil.

Desorbents, on the other hand, are mostly inorganic 
chemicals (such as acids, alkalis, and salts) and chelating 
agents, as previously stated. Inorganic chemicals, on the 
other hand, cause serious damage to soil structure and are 
not suited for contaminated soil repair (Kou et al. 2006, Gue-
miza et al. 2017). Although chelating agents can effectively 
desorb heavy metals from contaminated soils, it is difficult 
to degrade these agents in the soil environment, resulting 
in secondary pollution (Cao et al. 2013, Kim et al. 2016). 
Therefore, the development of an environmentally friendly 
desorbent that can efficiently desorb heavy metals from soil 
is critical. 

Novel chelating surfactants (such as sodium N-alkyl 
ethylenediamine triacetate and sodium N-acyl ethylenedi-
amine triacetate) possess both surface activity and chelating 
properties (Wang et al. 2004). These surfactants show supe�-
rior performance due to being water-soluble, non-toxic to 
mammals and aquatic organisms, and biodegradable in the 
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natural environment without causing secondary pollution 
(Diao et al. 2016, Qiao et al. 2016). These surfactants have 
been extensively used in detergents, mineral flotation, phase 
transfer catalysis, emulsion polymerization, and other fields 
(Diao et al. 2016). However, few studies have reported the 
effect of chelating surfactants on the adsorption of heavy met-
als on the soil. To further improve the efficiency of LED3A 
in the remediation of soils contaminated with heavy metals, 
the relationship among chelating surfactant, soil, and heavy 
metals needs to be further clarified. 

Loess soil from Northwest China and two heavy metals, 
Pb and Zn, were chosen as the researched soil and pollut-
ants, respectively, in this study. The competitive adsorption 
of Pb and Zn onto the soil, as well as the influence of a new 
chelating surfactant, sodium N-lauroyl ethylenediamine 
triacetate (LED3A), on the competitive adsorption behavior 
of heavy metals, were studied in a series of studies. The 
findings support LED3A leaching treatment of heavy-metal 
contaminated soils on a theoretical level.

MATERIALS AND METHODS

Reagents

Sodium N-lauroyl ethylenediamine triacetate (LED3A, 
C20H35N2Na3O7) with purity greater than 95.0% was pur-
chased from Yilu Pharmaceutical Technology Co., Ltd. 
(Hangzhou, Zhejiang Province, China). Analytical-grade 
Pb(NO3)2 and Zn(NO3)2 were obtained from Damao Chem-
ical industry Co., Ltd. (Tianjin, China). All other chemicals 
were of analytical grade purity.

Experimental Materials

Experimental Soil was collected from the surface soil (0-20 
cm depth) of the mountain behind Lanzhou Jiaotong Uni-
versity (Lanzhou, Gansu Province, China). After removing 
gravel, branches, and leaves, the soil was naturally air-dried 
(20-30°C) and passed through a 0.3 mm sieve. The soil 
organic matter content was low (5.3 g.kg-1). The soil pH 
was slightly alkaline (pH 8.11) and the carbonate content 
was 11.7 %.

Adsorption Experiments

Soil (0.05 g) was weighed into a series of conical flasks, 
to which 20 mL of the Pb(NO3)2, Zn(NO3)2, and LED3A 
solutions with different concentrations were added. Each 
conical flask also contained 0.01 mol.L-1 NaNO3 to keep a 
constant ionic strength, and 0.1 mL of 100.0 mg.L-1 NaN3 
was added to inhibit microbial growth. The flasks were 
sealed immediately with a stopper and put into a shaker 
(TD6, Changsha pingfan Instrument and Meter Co., Ltd., 

China) at 150 rpm for a certain time at 25°C. At the end of 
the adsorption, the solution was centrifuged at 3500 rpm for 
30 min. The supernatant was filtered by a 0.45 µm membrane 
for heavy metal analysis. The Pb and Zn concentrations were 
measured using a flame atomic absorption spectrophotometer 
(Spectrum AA110/220, Varian, Palo Alto, CA, USA). The 
adsorption capacities of Pb and Zn on the soil were calcu-
lated using Eq. 1:
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where qt is the adsorption capacity of heavy metals at time t 
(g.kg-1), co and ct are the heavy metal concentrations at the 
beginning of adsorption and time t (g.L-1), respectively, V 
is the volume of the heavy metal solution (L), and m is the 
mass of the soil sample (g).

A series of adsorption experiments using this method 
had been used to study the effect of LED3A on the compet-
itive adsorption kinetics of Pb and Zn, the effect of LED3A 
concentration on competitive adsorption of Pb and Zn, the 
competitive adsorption of different concentrations of Pb 
and Zn and the effect of LED3A on its. All treatments were 
performed in triplicate, and the results were presented as 
average values.

RESULTS AND DISCUSSION

Competitive Adsorption Kinetics of Pb and Zn, and 
Effect of LED3A

The competitive adsorption kinetic results for Pb and Zn onto 
the loess soil were shown in Fig. 1(a) and the results of the 
curve fitted by the intraparticle diffusion model (b) are shown 
in Fig. 1(b). The adsorption capacities of Pb and Zn rapidly 
increased at an adsorption time within 1 h, increased slowly 
after 1 h, and then gradually leveled off as the adsorption time 
was further extended. During the rapid increase stage, more 
active sites were present on the surface of the soil particles 
along with a larger concentration gradient, resulting in a 
greater mass transfer force. As the adsorption time was ex-
tended, the Pb and Zn concentrations in solution and available 
active sites on the soil particle surfaces decreased gradually, 
causing a corresponding decrease in the mass transfer force. 
The equilibrium adsorption capacity of Pb (19.55 g.kg-1) was 
reached at 3 h, while Zn (18.35 g.kg-1) was reached at 10 h. 
These results indicated that Pb was preferentially adsorbed 
onto the soil in the competitive adsorption process and that 
the soil showed a higher ability to adsorb Pb than Zn.

Many studies on competitive adsorption have suggested 
that the inherent properties of heavy metal ions relate to 
their adsorption order, such as ion radius, electronegativ-
ity, first-order hydrolysis constant, hydrated ion radius, 
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charge-to-radius ratio (Berrin 2012, Zakaria et al. 2017, 
Uddin 2017). The basic physical and chemical properties of 
Pb and Zn were shown in Table 1. In terms of ionic radius, 
the order of competitive adsorption is Zn > Pb (Uddin 2017). 
The electronegativities of Pb and Zn are important parame-
ters determining the order of adsorption. Oxygen atoms on 
the soil surface or within soil particles bind to Pb ions with 
higher electronegativity, forming stronger covalent bonds and 
facilitating Pb adsorption on the soil (Zakaria et al. 2017). 
Furthermore, the specific adsorption of heavy metal ions onto 
the soil is related to their hydrolysis ability (Berrin 2012). An 
increase in the negative logarithm of the first-order hydrolysis 
constant, pK1, can lead to the reduction of the adsorption af-
finity of heavy metals. Therefore, the preferential adsorption 
order of heavy metal ions was inversely proportional to the 
first-order hydrolysis constant, Pb > Zn. Moreover, metal ions 
with a smaller hydrate ion radius are more easily adsorbed 
onto soils by ion exchange (Wang et al. 2015). As Pb had a 
smaller hydrate ion radius than Zn, the former showed stron-
ger adsorption ability. In an adsorption process involving 
electrostatic attraction alone, a larger charge-to-radius ratio 
results in greater bond energy (Wang et al. 2015). Therefore, 
the preferential adsorption order was Zn > Pb. In the present 
study, the preferential adsorption order of Pb and Zn onto the 
loess soil was consistent with their electronegativity, hydrolysis 
constant, and hydrate ion radius.

The effect of LED3A on the competitive adsorption kinet-
ics of Pb and Zn is shown in Fig. 2(a) and the results of the 
curve fitted by the intraparticle diffusion model are shown in 
Fig. 2(b). In the presence of 5 g.L-1 LED3A, the competitive 
adsorption kinetic process of Zn was also divided into rap-
id, slow, and equilibrium stages. However, only two stages 
(rapid and equilibrium) were recognized in the competitive 
adsorption of Pb. The equilibrium adsorption times of Pb 
and Zn were 1 and 6 h, respectively, which were less by 2 

and 4 h, respectively, as compared to the equilibrium adsorp-
tion in the absence of LED3A. The equilibrium adsorption 
capacities of Pb and Zn on the soil were 16.99 and 13.38 
g.kg-1, respectively, indicating that Pb had a higher adsorption 
ability than Zn. The adsorption capacities of Pb and Zn in the 
presence of LED3A were reduced by 2.56 and 4.97 g.kg-1, 
respectively, compared with those without LED3A addition. 
This was attributed to the coexistence of competitive adsorp-
tion of Pb and Zn onto the soil, competitive chelation of Pb 
and Zn by LED3A, and soil competing with LED3A for Pb 
and Zn in the LED3A, soil, Pb, and Zn system. LED3A has 
a high ability to chelate Pb and Zn, resulting in attenuated 
adsorption of heavy metal ions on the soil surface and within 
soil particles, which shortened the time to reach equilibrium. 
The reduction in Zn adsorption capacity was greater than 
that in Pb adsorption capacity, indicating that LED3A had a 
stronger ability to competitively chelate Zn than Pb. A similar 
conclusion was made by Qiao et al. (2016) who studied the 
LED3A as an effective washing reagent for lead (Pb)- and 
zinc (Zn)-contaminated soil.

Pseudo-first-order and pseudo-second-order equations 
were used to calculate the date for competitive adsorption 
kinetics, and the calculation formula was as follows (Man�-
irethan et al. 2018):
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where t is the adsorption time (h), qe and qt are the heavy metal adsorption capacities at 
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To explain the mechanism of competitive adsorption 
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the data in Fig. 1(a) and 2(a) was fitted using the intraparticle 
diffusion equation (Eq. 4) (Qiao et al. 2015):
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competitive equilibrium process. The fitting parameters were 
listed in Table 3. The R2 values of linear fitting at each stage 
were greater than 0.99. The fitted apparent rate constant, kd1, 
was always greater than kd2 for the competitive adsorption of 
Pb and Zn in the absence or presence of LED3A, indicating 
that intraparticle pore diffusion was the controlling step for the 
competitive adsorption rate of the heavy metals. However, the 
linear plot of qt vs. t0.5 did not pass the origin throughout the 
competitive adsorption process, indicating that intraparticle 
diffusion was not the only mechanism controlling the competi-
tive adsorption rate. The competitive adsorption of Pb changed 
from a three-stage to two-stage process after LED3A addition, 
suggesting that LED3A reduced the porosity diffusion of Pb 
during competitive adsorption due to competing with soil 
for Pb. Moreover, the a1 and a2 values in the fitting results 
were reduced to different degrees after the LED3A addition, 
indicating that LED3A increased the change in external mass 
transfer and decreased the change in internal mass transfer, 
which shortened the equilibrium time of the competitive ad-
sorption process of Pb and Zn. This occurred because LED3A 
has good solubility and forms soluble chelates LED3A-Pb 
and LED3A-Zn after competitive chelation with Pb and Zn, 
which reduces the competitive adsorption of Pb and Zn on the 
surface of soil particles and within the pores.

Effect of LED3A Concentration on Competitive 
Adsorption of Pb and Zn

The molecular structure of LED3A comprises three carboxyl 
groups and two tertiary amino groups. LED3A can form sta-
ble and soluble chelates with Pb and Zn ions by coordinating 
through oxygen and nitrogen atoms. Furthermore, introduc-
ing a fatty acyl group into the molecular structure means 
that micellization can enhance greatly affect its selectivity 
for chelating heavy metals. The chelation of heavy metals 
(M, namely Pb and Zn) by LED3A is illustrated as follows:
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Zn adsorption than the soil. When the LED3A concentration 
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markedly lower than that of Zn. This was due to the different 
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Competitive adsorption of different concentrations of 
Pb and Zn, and the effect of LED3A

The competitive adsorption capacity of heavy metal ions 
on adsorbents is related to the ion concentration. (Dou et 
al. 2020). The Pb (Zn) concentration was set to 0.05 g.L-1 
and the Zn (Pb) concentration was changed to determine the 
effect of Zn (Pb) concentration on Pb (Zn) adsorption onto 
the soil. As shown in Fig. 4, the adsorption capacity of Pb 
onto the soil was generally not affected by the change in Zn 
concentration, remaining stable at 19.44 g.kg-1. Nevertheless, 
the adsorption capacity of Zn decreased with increasing Pb 
concentration and generally stabilized at 17.6 g.kg-1 with 
a Pb concentration of 0.25 g.L-1, demonstrating obvious 
competitive adsorption.

According to the results by Abdelfattah and Wada (1981) 
and Wilcke et al. (1998), the soil particle surface is markedly 

heterogeneous, in which all adsorption sites can be divided 
into groups with high binding energy and low binding ener-
gy. Adsorption firstly occurs at high-energy adsorption sites 
during the initial stage, whereas low energy adsorption sites 
start to adsorb heavy metal ions as the heavy metal con-
centration is further increased (Dong et al. 2010, Gao et al. 
2017). Generally, heavy metal ions adsorbed by electrostatic 
interaction have low binding energies, and heavy metal ions 
adsorbed specifically have high binding energies. The above 
analysis showed that as the Zn concentration increased, it was 
difficult for Zn ions to compete with Pb ions to be adsorbed 
at high energy and low energy adsorption sites. However, 
when the Pb concentration increased, Pb ions competed 
with Zn ions to be adsorbed at low-energy adsorption sites 
and some Zn ions adsorbed at high energy adsorption sites. 
Therefore, in the competitive system, the soil showed a higher 
ability for specific adsorption of Pb relative to that of Zn. 
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The effect of Pb concentration on Zn adsorption capacity 
was greater than that of Zn concentration on Pb adsorption 
capacity, and the increase in Pb concentration inhibited Zn 
adsorption onto the soil.

The effect of LED3A on the competitive adsorption of 
Pb and Zn at different concentrations is described by Eq. 5. 
As shown in Fig. 5, the Dqe values representing the LED3A 
induced change in Pb and Zn adsorption capacities were 
greater than zero, indicating different extents of reduction 
in Pb and Zn adsorption capacities caused by LED3A. In 
general, the Dqe of Pb did not change with increasing Zn 
concentration and remained 7.85 g.kg-1, which suggested 
that the Pb adsorption capacity was not affected by the Zn 
concentration, mainly due to competition between LED3A 
and soil for Pb. In contrast, the Dqe of Zn increased with 
increasing Pb concentration, with the greater reduction in 
Zn adsorption capacity mainly due to competition between 
LED3A and soil for Zn, and Pb competing for Zn adsorption 
sites. When the Pb concentration was >0.15 g.L-1, the Dqe of 
Zn generally remained 2.04 g.kg-1. The Pb concentration for 
the Zn adsorption equilibrium was substantially lower in the 
presence of LED3A than in the absence of LED3A, implying 
that the competition for Zn adsorption sites between LED3A 
and soil was stronger than that of Pb. In the competitive 
LED3A, soil, Pb and Zn system, the Dqe of Pb was greater 
than that of Zn, implying that LED3A increased the influ-
ence of Zn concentration on Pb adsorption capacity while 
decreasing the effect of Pb concentration on Zn adsorption  
capacity.

CONCLUSION

The preferential adsorption order for Pb and Zn was 

connected to their electronegativity, hydrolysis constant, and 
hydrate ion radius, with Loess having a larger competitive 
adsorption capability for Pb than Zn. LED3A shortened the 
equilibrium time of competitive adsorption and reduced Pb 
and Zn adsorption capacities on the soil by 2.56 and 4.97 g.kg-

1, respectively. The competitive adsorption kinetic processes 
could be best described by the pseudo-second-order kinetic 
equation. For Pb, Zn competitive adsorption, intra-particle 
diffusion was the rate control step, but it was not the only 
rate control mechanism. As LED3A concentrations >5 g.L-

1, LED3A showed the greatest effect on the competitive 
adsorption of Pb and Zn. LED3A decreased the effect of Pb 
concentration on Zn adsorption capacity while increasing 
the effect of Zn concentration on Pb adsorption capacity. 
LED3A showed significant potential for chelating a lot of 
heavy metals from contaminated soil.
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