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       ABSTRACT
Generally, in India, determining the chlorine and coagulant dosage in a WTP depends on the 
proficiency of operators, which may lead to overdosing or underdosing of coagulants and 
chlorine. Nevertheless, the determination of both coagulant and chlorine dosages frequently 
changes as inlet water quality varies which demands extensive laboratory analyses, leading 
to prolonged experimentation periods in water treatment plants. So objective of the study is 
to develop the precise relationship between coagulant dose and chlorine dose in a water 
treatment plant by using an artificial neural network (ANN). As a result, ANN models were 
developed to predict chlorine dose using coagulant dose by comparing the performance 
of the number of ANN models. It has been found that radial basis function neural networks 
(RBFNN) and generalized regression neural networks (GRNN) modeling provide better 
prediction. In RBFNN and GRNN modeling, the spread factor is varied from 0.1 to 15 to 
establish a stable and accurate model with high predictive accuracy. It is observed that the 
RBFNN model showed good prediction (R2 = 0.999). The application of a soft computing 
model for defining doses of coagulant and chlorine that are inextricably linked at a Water 
treatment plant (WTP) will be highly beneficial for WTP Managers.

INTRODUCTION

In WTP, there are various treatment processes but the most 
important nonlinear and complex treatment processes are 
coagulation and disinfection because they ensure safe and 
clear water. Generally, chlorine is the most commonly used 
disinfectant, and aluminum sulfate (alum) is a coagulant 
due to its ease of application, monitoring, low cost, and 
effectiveness. The effectiveness of the chlorination and 
coagulation process mainly depends upon three major 
parameters, namely turbidity of water, pH of water, and 
applied dosages (Bello et al. 2014, Bowden et al. 2006). 
Traditionally, optimum coagulant doses are determined 
using jar tests. However, jar tests are conducted periodically, 
which means that they are reactive rather than proactive, 
whereas coagulant doses need to change continuously 
with turbidity (Bobadilla et al. 2019, Chan Moon 2017). In 
India, generally, in WTP coagulant dose is kept constant 
for specific periods due to a time delay of the jar test, which 
leads to the production of a dose or overdose of coagulant 

sometimes. Chlorine emerges as the dominant disinfectant 
due to its ease of application and monitoring, low cost, and 
strong bactericidal capabilities. The efficacy of chlorination 
is heavily dependent on three key parameters: water turbidity, 
pH levels, and the amount of chlorine applied (Constans et 
al. 2003, Librantz et al. 2018).

Turbidity plays a vital role in both coagulation and 
disinfection processes, facilitating particle settlement and 
acting as a shield against microbes (Kennedy et al. 2018). 
However, the relationship between turbidity, chlorination, 
and coagulation demonstrates nonlinear behavior, proving 
challenging to capture through linear mathematical models 
(Kim & Kim 2014). Hence, there arises a necessity to devise 
prediction models for residual chlorine utilizing Artificial 
Neural Networks (ANNs).

Traditionally, in India, determining chlorine dosage 
in a WTP relies on operators’ expertise, while coagulant 
dosage is assessed through jar tests (Haghiri et al. 2017). 
However, the determination of both coagulant and chlorine 
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dosages typically involves labor-intensive laboratory 
analyses, leading to prolonged experimental times in field 
water treatment plants (Kejiang et al. 2013). Consequently, 
there is a pressing need to develop predictive models for 
chlorine dosage based on coagulant dosage at WTPs. Such 
models would streamline the dosage determination process, 
enhancing efficiency and ensuring optimal water treatment 
outcomes.

In this study, many ANN models for the establishment of 
the relationship between the Coagulant and Chlorine Dose 
are developed. It is necessary to test and compare various 
ANN and training algorithms to develop a network that 
can perform satisfactorily in a reasonable amount of time 
(Jayaweera & Aziz 2018). Each model is trained many times, 
and the best performance is evaluated.

MATERIALS AND METHODS 

For Coagulant and chlorine dose neural network (CCDNN) 
modeling, 1849 data samples of input variables (Turbidity of 
the outlet water, residual chlorine, and coagulant dose) and 
target variable (chlorine dose) were collected from WTP. 
The variables examined in this study are inextricably linked 
to the coagulation and chlorination processes. Data were 
collected from the WTP laboratory for four years for inlet 
and outlet water quality daily (2012-2016). MATLAB version 
16 was used to develop ANN models. ANN models such as 
RBFNN, FFNN, CFNN, and GRNN have been developed 
with a trial run that allows modification of the input variables, 
hidden nodes, training function, and the spread factor (SF). 
It is always a difficult task to create an optimal number of 
hidden nodes in ANN applications (Reilly et al. 2018, Salim 
& Noureddine 2015, Loc et al. 2020). The optimum number 
of nodes in each layer is not possible precisely and easily. 
In this study, information from both input and output nodes 
is used for building hidden neurons in a hidden layer. The 
training and test data are divided between 75:30 and 80:20, 
respectively, during the development of the ANN models. 
Diverse training functions, such as Bayesian Regularization 
(BR), Levenberg-Marquartz (LM), Resilient Back Propagation 
(RP), BFGS Quasi-Newton (BFG), One-Step Secant (OSS) 
Conjugated Gradient Back Propagation (CGB), Cluster-
Powell (CGF), and Gradient Back Propagation (VLRB) are 
used. It was reported that the RBFNN and the GRNN models 
have the best test performance, respectively, with SF of 1 and 
0.1 (Heddam et al. 2011). Thus, RBFNN and GRNN models 
ranging from 0.1 to 15 have been tested in this study. Standard 
statistics (JK), a standard deviation (L), skewness (M1), 
kurtosis (M2), and error statistics like regression coefficient 
(R), mean square error (MSE) and mean absolute error are 
used to quantify the percentage performance of these ANN 

models (MAE) (Alka & Dnyaneshwar 2019). For its highest R 
and lowest MSE and MAE values, the best-performing ANN  
model is chosen. In addition, standard statistics, time series 
plots, and scatterplots are checked for the mapping with 
the observed series. For the best model in each category, 
GUIs for chlorine prediction and coagulant dosage were 
developed.

RESULTS AND DISCUSSION

Neural Network Model for Coagulant and Chlorine 
Dose 1

Sixteen models are developed for the coagulant and chlorine 
dose neural network 1 (CCDNN1) model. To establish the 
optimal networks, coagulant dose as the input parameter and 
chlorine dose as the output parameter are examined with 
various training functions and ANN. Based on numerous 
performance criteria, the behavior of ANNs is evaluated 
which is shown in Table 1. 

For ANN prediction with FFNN and CFNN, different 
training functions were tried with varying hidden nodes from 
15 to 90 (Alka & Dnyaneshwar 2019), and for RBFNN and 
GRNN, the value of SF varied from 0.1 to 20 during training 
to achieve the best-performing network. It is observed 
during the training period that minimum MSE = 0.019 and 
minimum MAE = 0.078 whereas maximum value of R2 = 
0.753 is found. Similarly, standard statistics σ = 0.137 to 
0.873, ɣ1 = -2.058 to 0.635, and ɣ2 = 1.978 to 15.718. During 
training, it is observed that as SF value decreases in GRNN 
and RBFNN models, the values of R increase and values of 
MSE decrease. On the other hand, predictions are highly 
comparable RBFNN 1 model with SF = 0.1. 

Similarly, it is observed during the testing period the 
minimum MSE = 0.014 and minimum MAE = 0.068, 
whereas the maximum value of R2 = 0.715 is found. 
Similarly, standard statistics such as σ = 0.12 to 0.608, ɣ1 = 
-2.461 to-0.762, and ɣ2 = 3.184 to 12.287.

Prediction accuracy is higher for the RBFNN1 model 
with SF = 0.1 obtained. Further performance measures of 
all models are compared and observed that all the models 
resulted in poor performance, only the RBFNN1 model 
produced a good result (R = 0.72). Fig.1. shows the plot of 
observed and predicted series of best FFNN, CFNN, RBFNN, 
and GRNN models during the testing period.

Neural Network Model for Coagulant and Chlorine 
Dose 2

In the coagulant and chlorine dose neural network 2 
(CCDNN2) model, sixteen models are developed for the 
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Table 1: Performance indices of CCDNN1 models during the testing period.

Type of
ANN Model

SF/Training 
algorithm

Error statistics Standard statistics

R2 MSE MAE x̄
(1.954)

σ
(0.171)

ɣ1
(2.53)

ɣ2
(12.39)

RBFNN1 0.1 0.753 0.018 0.077 1.962 0.120 -2.438 12.287 

1 0.504 0.033 0.113 1.926 0.180 -2.023 15.283

5 0.285 0.040 0.133 1.916 0.200 -2.058 13.280

10 0.443 0.617 0.647 1.890 0.786 0.374 2.183

15 0.421 0.631 0.661 1.913 0.795 0.414 2.147

GRNN1 0.1 0.554 0.534 0.584 1.885 0.731 0.352 2.431

1 0.451 0.611 0.642 1.888 0.782 0.401 2.177

5 0.424 0.633 0.663 1.980 0.796 0.506 2.134

10 0.385 0.660 0.699 1.929 0.812 0.593 2.073

15 0.342 0.684 0.720 1.888 0.827 0.619 2.024

FFNN LM 0.427 0.628 0.651 1.903 0.792 0.392 2.181

BR 0.400 0.648 0.646 1.910 0.803 0.473 2.288

BFG 0.396 0.649 0.672 1.9064 0.805 0.386 2.298

RP 0.384 0.655 0.677 1.8063 0.809 0.475 2.100

CGF 0.398 0.657 0.684 1.8038 0.810 0.406 2.191

CGM 0.302 0.715 0.702 1.921 0.844 0.516 2.171

OSS 0.197 0.763 0.753 1.908 0.873 0.403 2.258

CFNN LM 0.407 0.640 0.654 1.962 0.800 0.463 2.249

BR 0.411 0.638 0.665 1.934 0.799 0.449 2.147

BFG 0.219 0.731 0.742 1.879 0.855 0.6351 1.980

RP 0.237 0.724 0.732 1.914 0.851 0.631 1.978

CGF 0.256 0.717 0.731 1.862 0.847 0.623 1.983

CGM 0.373 0.665 0.689 1.880 0.815 0.586 2.088

OSS 0.405 0.642 0.666 1.985 0.801 0.452 2.165

coagulant and chlorine dose neural network 2 (CCDNN1) 
model. To establish the optimal networks, coagulant dose, 
and residual chlorine as input parameters and chlorine dose 
as output parameters are examined with various training 
functions and ANN. Based on numerous performance 
criteria, the behavior of ANNs is evaluated. It is observed that 
during the training period, MSE = 0.002 to 0.028 and MAE 
= 0.013 to 0.104, whereas R2 varies from 0.197 to 0.978. 
Similarly, standard statistics such as σ = 0.044 to 0.184, ɣ1 = 
-2.713 to -4.286, and ɣ2 = 19.83 to 62.15 Prediction accuracy 
is higher for the RBFNN2 model with SF = 0.1 obtained.

Similarly, it is observed during the testing period that 
minimum MSE = 0.001, and minimum MAE = 0.015, 
whereas the maximum value of R2 =0.97 is found. Similarly, 
standard statistics such as σ = 0.036 to 0.128, ɣ1 = -1.713 to 
-8.717, and ɣ2 = 17.667 to 89.15.  It is seen from the results of 
the training and testing period that the RBFNN2 model with 
SF = 0.1 resulted consistently better than the FFNN, CFNN, 
and GRNN models. Fig. 2 shows the plot of the observed and 

predicted series of best FFNN, CFNN, RBFNN, and GRNN 
models during the testing period.

Neural Network Model for Coagulant and Chlorine 
Dose 3

In the coagulant and chlorine dose neural network 3 
(CCDNN3) model, sixteen models were developed. To 
establish the optimal networks, turbidity of the outlet water, 
residual chlorine, and coagulant dose as input parameters and 
chlorine dose as output parameters are examined with FFNN, 
CFNN, RBFNN, and GRNN. The developed models were 
tested to get an appropriate network that provided satisfactory 
performance. The important performance indices of all ANN 
models are displayed in Table 2, indicating standard statistics 
and error statistics during the testing period. From Table 2, 
it has been observed that during the testing period, standard 
statistics, for example, σ (Min) = 0.026, ɣ1 (Max) = 1.032, 
and ɣ2 (Min) = 5.309. Similarly, error statistics such as 
MSE (min) = 0.001 and MAE (min) = 0.009, whereas the 
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training and testing, the RBFNN 3 model exhibited the 
least σ and ɣ2. Most of the best ANN models produced a 
positive kurtosis, where heavier tails are associated with a 
higher peak.

The σ (least) of the RBFNN 3 model suggests that the data 
points tend to be close to the set’s predicted value, whereas 
the σ (Max) of the RBFNN 1 model indicates that data points 
are dispersed throughout a larger range of values.

The results of model simulation indicate that the lower the 
absolute value of ɣ1 (1.032), and the larger the ɣ2 (21.046) 
lies with RBFNN3 models, which indicate higher the 
accuracy of the prediction. Compared to other ANN models 
from Class I, II, and III, the RBFNN3 model performed 
the best with MSE = 0.001 and R = 0.999 over the testing 
period shown in Fig. 4. Time series plots and scatter plots of 
the RBFNN3 model during the testing period are shown in  
Fig. 4.a) and b), respectively. The observed and predicted 
chlorine dose series is seen to closely map indicating the best 
model. Due to better non-linear approximation, the RBFNN 
model showed excellent predictive results.

In most developing countries, the chlorine dose in a WTP 
is usually calculated by the operator’s knowledge, while a 

maximum value of R2 =0.99 is found. In RBFNN and GRNN 
models, as SF increases, prediction efficiency decreases. In 
the RBFNN model, however, there is clear superiority in 
prediction with SF = 0.1.

Fig. 3 shows a comparison of the best CCDNN3 models 
in the test period, where the plot of RBFNN3 almost 
coincides with the plot of observed values. Compared to 
all other ANN models, the RBFNN3 model with SF 0.1 
produced the highest R. It is found that the prediction 
efficiency has increased in RBFNN and GRNN models, 
with a decrease in SF value. Furthermore, compared to all 
other training algorithms, FFNN and CFNN models with BR 
training function produced good predictions. These models, 
however, are less efficient.

RBFNN models, on the other hand, have a noticeable 
advantage in prediction. It also demonstrates that models 
with three inputs perform better than models with various 
input variations to the networks. Tables 2 show a summary 
of standard statistics for the best RBFNN models in Class 
I, II, and III during the training and testing period. Standard 
statistics for all ANN models were evaluated and displayed 
in Table 3 during the training and testing periods. During 
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Table 2: Performance indices of CCDNN3 models during the testing period.

Type of ANN Model SF/
Training algorithm

Error statistics Standard statistics

R2 MSE MAE x̄
(1.954)

σ
(0.171)

ɣ1
(2.53)

ɣ2
(12.39)

RBFNN3 0.1 0.999 0.001 0.009 1.953 0.026 1.032 21.046

1 0.812 0.01 0.047 1.949 0.1 -3.014 20.019

5 0.012 1.069 0.298 1.853 1.005 -10.24 15.45

10 -0.175 0.091 0.272 1.782 0.181 -2.265 12.225

15 -0.237 0.181 0.391 1.771 0.22 -1.608 7.813

GRNN3 0.1 0.477 0.023 0.099 1.91 0.151 -2.324 11.231

1 0.053 0.051 0.199 1.851 0.138 -3.786 28.395

5 0.053 0.051 0.199 1.851 0.138 -3.786 28.395

10 0.246 0.028 0.113 1.894 0.166 -2.539 12.257

15 0.053 0.051 0.199 1.852 0.138 -3.786 28.395

FFNN LM 0.444 0.025 0.1 1.911 0.154 -1.963 10.019

BR 0.271 0.037 0.108 1.867 0.188 -3.107 20.4

BFG 0.392 1.028 0.982 1.889 0.519 -1.922 6.269

RP 0.349 0.046 0.145 1.901 0.184 -1.337 6.873

CGF 0.407 0.033 0.119 1.918 0.166 -1.122 8.197

CGB 0.239 0.063 0.177 1.889 0.192 -1.035 5.309

OSS 0.262 0.037 0.117 1.899 0.186 -2.306 11.735

CFNN LM 0.277 0.125 0.324 1.878 0.193 -2.178 10.786

BR 0.314 0.099 0.287 1.898 0.182 -2.263 12.078

BFG 0.32 0.143 0.344 1.888 0.212 -1.681 8.283

RP 0.249 0.074 0.187 1.889 0.234 -1.003 4.76

CGF 0.433 0.035 0.124 1.896 0.164 -1.133 8.628

CGB 0.378 0.041 0.135 1.898 0.194 -0.51 9.123

OSS 0.376 0.052 0.157 1.882 0.19 -1.136 9.387

Table 3: Standard statistics of RBFNN models during the training and testing period.

ANN Model Training period Testing period

x̄ σ ɣ1 ɣ2 x̄ σ ɣ1 ɣ2

Observed values 1.909 0.2088 2.0978 12.314 1.954 0.171 2.533 12.390

RBFNN1
SF = 0.1

1.910 0.137 -1.967 15.718 1.962 0.120 -2.438 12.287

RBFNN2
SF = 0.1

1.910 0.044 -4.286 62.155 1.954 0.036 -1.713 17.667

RBFNN3
SF = 0.1

1.910 0.026 3.027 98.898 1.953 0.026 2.032 21.046

jar test measures the coagulant dose. Laboratory analysis 
is usually used to determine the coagulant and chlorine 
dosage, which takes a long time in WTP. As a result, at 
WTP, a link between chlorine dose and coagulant dose must 
be established. Operators of WTP will be able to use the 
developed relationship to select the optimum dose.

Similarly, the relation between chlorine dose and 
coagulant dose is quite simplified by various nth degree 

expressions, as shown in eq. 1, 2 and 3.
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Fig. 4b: Scatter plot of RBFNN3 model during the testing period. 
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The σ (least) of the RBFNN 3 model suggests that the data points tend to be close to the 
set's predicted value, whereas the σ (Max) of the RBFNN 1 model indicates that data points 
are dispersed throughout a larger range of values. 

Table 3: Standard statistics of RBFNN models during the training and testing period. 

ANN Model Training period Testing period 

x̄ σ ɣ1 ɣ2 x̄ σ ɣ1 ɣ2 

    Observed 
values 

1.909  0.2088  2.0978  12.314  1.954  0.171  2.533  12.390 

RBFNN1 

SF = 0.1 

1.910 0.137 -1.967 15.718 1.962 0.120 -2.438 12.287 

RBFNN2 

SF = 0.1 

1.910 0.044 -4.286 62.155 1.954 0.036 -1.713 17.667 

RBFNN3 

SF = 0.1 

1.910 0.026 3.027 98.898 1.953 0.026 2.032 21.046 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 4: Error statistics of RBFNN models during the testing period. 
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The results of model simulation indicate that the lower the absolute value of ɣ1 (1.032), and 
the larger the ɣ2 (21.046) lies with RBFNN3 models, which indicate higher the accuracy of 
the prediction. Compared to other ANN models from Class I, II, and III, the RBFNN3 model 
performed the best with MSE = 0.001 and R = 0.999 over the testing period shown in Fig. 
4. Time series plots and scatter plots of the RBFNN3 model during the testing period are 
shown in Fig. 4.a) and b), respectively. The observed and predicted chlorine dose series is 
seen to closely map indicating the best model. Due to better non-linear approximation, the 
RBFNN model showed excellent predictive results. 
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Fig. 4b: Scatter plot of RBFNN3 model during the testing period. 
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Development of Graphical User Interface

To transfer the modeling knowledge to the field, GUI software 
has been developed. The developed GUI will provide a useful 
tool to plant operators and managers for deciding the required 
chlorine and coagulant dose. GUIs for predicting chlorine dose 
in WTP were developed using the best model. The GUI was 
developed in MATLAB software. Determination of chlorine 
dose is an essential aspect of WTP. It decides the concentration 
of residual chlorine in the outgoing water of WTP. In India, most 
WTP operators provide higher chlorine doses for maintaining 
a high level of residual chlorine in WDN. The more chlorine  
consumption creates many health problems. Hence, 
there is a need to apply optimum chlorine dose. The GUI  
will be useful for the determination of chlorine dose at  
WTP. 

 1. Run the CCDNN model.

 2. Enter the value of the coagulant dose applied at WTP 
in mg/L

 3. Enter the value of outlet water turbidity (NTU)

 4. Enter the value of desirable residual chlorine at the outlet 
of WTP so that minimum residual chlorine is maintained 
at the end of WDN.

 5. After entering all data, click on the ‘Chlorine Dose’ 
button.

 6. Within a few seconds, the chlorine dose value will be 
displayed in the output window (Fig 5).

Developed GUIs was helpful for WTP operators and 
managers to plan the short-term and long-term activities

CONCLUSION 

Several CCDNN models have been developed to predict 
chlorine dosage, utilizing input parameters such as the outlet 
water’s turbidity, residual chlorine, and coagulant dose 
for ANN modeling. These selected parameters are closely 
associated with chlorination and coagulation processes. As 
the concentration of suspended solids (SF) increases, the 
prediction efficiency of RBFNN and GRNN models decreases. 
However, within the RBFNN model, there is a noticeable 
superiority in prediction when SF ranges from 0.1 to 1. 
Such correlations prove valuable in determining the optimal 
chlorine or coagulant dosage. Additionally, it’s observed 
that the range of chlorine dosage is narrower compared to 
that of the coagulant dosage. The relationship between them 
is established by the CCDNN model, wherein the prediction 
of chlorine dosage based on coagulant dosage demonstrated 
an impressive correlation (R = 0.99) according to RBFNN.
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NOMENCLATURE

Symbol Description

ANN Artificial neural networks

ANFIS Adaptive neural fuzzy inference system

BFGS Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm

BR Bayesian regularization

CFNN Cascade feed forward neural network.

CDNN Coagulant dose neural network

CCDNN Coagulant and chlorine dose neural network

CGB Conjugate gradient back propagation

FFNN Feed forward neural network

GUI Graphical user interface

GRNN Generalized regression neural networks

GD Gradient descent

GDM Gradient descent with momentum

GCF Conjugate gradient back propagation with Fletcher-
Powell

LM Levenberg-Marquardt

MAE Mean absolute error

MSE Mean square error

PCMC Pimpri Chinchwad Municipal Corporation

RBFNN Radial basis function neural network

RP Resilient back propagation

RMSE Root mean square error

R2 Coefficient of determination

SF Spread factor

WTP Water treatment plant

WWTP Wastewater treatment plant

WDN Water distribution network

WQI Water quality index
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