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       ABSTRACT
Research on the impact of alkali contamination on the swelling behavior of red earth in the 
Visakhapatnam region has been notably limited. Therefore, this study aims to investigate 
the effects of alkali (NaOH) contamination on the swelling characteristics of the region’s 
red earth. The red earth of this region was found to be a well-graded sandy soil with 81% 
sand and 18% fines. X-ray diffraction studies showed that this region’s red earth mainly 
consists of quartz, kaolinite, and hematite. The soil is inherently non-swelling. However, the 
free swell tests showed considerable swell under contamination of NaOH solutions of various 
normalities (0.05, 0.1, 1, 2, and 4N). One-dimensional consolidation tests have shown that 
the swell increased with the concentration of the NaOH solution and with the duration of 
the interaction. Red earth exhibited 'an equilibrium swelling' of 5.6, 10, 15, 17, and 20% 
when contaminated with 0.05, 0.1, 1, 2, and 4N NaOH solutions, respectively. XRD studies 
revealed that the red earth sample contaminated with even 0.05N NaOH solution and cured 
for 56 days exhibited the formation of zeolites analcime and natrolite. Silicate minerals like 
paragonite and ussingite were also formed along with the zeolites. N-A-S-H compounds, 
hydrosodalites, and zeolites like super hydrated natrolite, zeolite SSZ16, and zeolite ZK-14 
were formed at higher normalities of NaOH after a curing period of 56 days, which caused 
increased swell. The research demonstrated that the formation of zeolites resulting from the 
alkali contamination led to swelling in the red earth.

INTRODUCTION

Caustic soda (NaOH) is an inorganic pollutant with a 
highly deleterious impact on the soil (Reddy et al. 2017, 
Mulyukov 2008, Jozefaciuk 2002, Mal’tsev 1998). Soils can 
be contaminated by NaOH from the effluents of dyes, paper, 
pulp, aluminum, ceramic industries, etc., during the operation 
and due to the effluents (Imran et al. 2015, Sivapullaiah & 
Manju 2005, Mal’tsev 1998). Non-expansive soils, which 
were stable, became unstable due to alkali contamination 
(Chavali et al. 2020, Sruthi et al. 2019, Vindula et al. 2017, 
Chavali et al. 2017, Vindula et al. 2016). Alkali-related 
contamination led to foundational and structural deformation, 
rendering industrial facilities unusable within one to one 
and a half decades. In the alumina plants, alkali aluminate 
solutions penetrate the backfill soils causing swelling and 
damage to the structures, requiring a vast expenditure of 
material and labor for repairs (Kabanov et al. 1977). Both 
clayey and sandy soils exhibit swelling under contamination 
by alkali aluminate solutions used in alumina production. 
In a three-year case study at Bogoslovskii Aluminum Plant, 

the floor in the alumina shop rose from 29 to 133 mm, with 
cracks exceeding 50 mm. A similar issue was observed at the 
Acha Alumina Complex, where floors were uplifted more 
than 80 mm over two years (Kabanov et al. 1977).

One major factor affecting NaOH-contaminated soil’s 
behavior is its dispersion characteristics. The duration 
of the exposure significantly influenced the behavior of 
the alkali-contaminated red earth. The more kaolinite in 
the soil, the more susceptibility to physical, chemical, 
and mineralogical changes (Sruthi et al. 2019). Chemical 
contamination changes the pore-fluid properties of the soil 
and, ultimately, its settlement characteristics (Meegoda 
& Ratnaweera 1994). The swelling capacity of the alkali-
contaminated soil depends majorly on the soil’s gradation, 
mineralogical composition, and clay content (Chunikhin et al. 
1988). “Chemical swelling” (Sorochan 1974) or “Chemical 
heaving” (Sokolovich 1976) increases with increasing 
content of the mineral alumina (Al2O3) and the number of 
clayey particles (d < 0.005 mm) in the soils (Mal’tsev 1998). 
The process of decomposition of the minerals of the soil 
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under chemical contamination and subsequent formation of 
new minerals is termed “artificial lithification” (Voronkevich 
1992). RE exhibited abnormal swelling on contamination 
with 4N NaOH solution (Vindula et al. 2016, Sivapullaiah 
& Manju 2007). Notably, the heave pressure was 2-3 times 
the swell pressure (Sokolovich 1995).

Considerable work was done on the swelling nature 
of alkali-contaminated red earth in regions other than 
Visakhapatnam (Ma et al. 2022, Chavali et al. 2020, Wang 
et al. 2020, Liu et al. 2019, Sruthi et al. 2019, Ashfaq et al. 
2019, Vidula et al. 2017, Chavali et al. 2017). However, such 
studies in the Visakhapatnam region are very limited. The RE 
in the Visakhapatnam region was well-graded sandy soil with a 
sand content of 81% and fines of 18%. The soil predominantly 
consists of quartz, kaolinite, and hematite (Fig. 2).

Many industries, like HPCL, Hindustan Zinc Ltd., 
Coromandel Fertilisers Ltd., Vizag Steel Plant, etc., were 
established in Visakhapatnam due to the proximity to the 
natural harbor and seaport, among other reasons. Hence, 
there is a high probability of alkali contamination in this 
region (Satyanarayana et al. 2021). Also, as Visakhapatnam 
is the fastest-growing city in Andhra Pradesh, more and more 
industrial development is on the cards in the coming decade. 
Therefore, studying the impacts of alkali contamination on 
the soil in this region is significant.

The objectives of the research are to analyze the swell 
properties and mineralogical changes of the red earth in 
the Visakhapatnam region, contaminated with various 
concentrations of NaOH solution (0.05, 0.1, 1, 2, and 4N).

MATERIALS AND METHODS

Materials

Red earth (RE), which is found abundantly in the 
Visakhapatnam region, was collected by open excavation 
from a depth of 1m from the ground level from the open land 
opposite Visvesvaraya Bhavan of (Lat. 17.78171705, Long. 
83.37515625) of the Visakhapatnam campus of GITAM 
Deemed to be University. The soil composite was prepared 
by coning and quartering. Around 50 kg of sample was 
collected. Approximately 50 kg of samples were gathered, 
air-dried, sieved through a 425-micron IS sieve, and then 
stored in an airtight container.

Based on the research works of Sruthi et al. (2019), 
Reddy et al. (2017), Sruthi & Reddy (2017a), Sruthi & 
Reddy (2017b), Vindula et al. (2017), Chavali et al. (2017), 
Vindula et al. (2016), Reddy & Sivapullaiah (2010a), Reddy 
& Sivapullaiah (2010b), Sivapullaiah & Manju (2007), and 
Sivapullaiah & Manju (2005), 0.1, 1, 2, 4 normalities of 
Sodium Hydroxide (NaOH) or caustic soda were selected 

as the alkali contaminants. As no research was done on the 
impacts of 0.05N NaOH, this normality was also included in 
the study. Sodium hydroxide solutions were prepared using 
certified ACS-grade sodium hydroxide pellets (CAS: 1310-
73-2) with a minimum percent purity of 97.0%, purchased 
from Fisher Chemical™. These pellets have a density of 
2.1 g.cm³-, a molar mass of 39.9971 g.mol-1, and a water 
solubility of 111 g.100 mL-1 at 20°C.

Methods

Free swell tests: Free swell tests were carried out to 
determine the swell potential of the contaminated samples 
according to IS 2720: Part 40: 1977 (Reaffirmed Year: 2021) 
- Methods of test for soils: Part 40 Determination of free 
swell index of soils. The free swell index was calculated as 
the percentage increase in the original volume. These tests 
indicate the possible damage to structures constructed atop 
due to swelling.
Consolidation tests: One-dimensional consolidation 
(standard oedometer) tests were conducted under seating 
load according to IS 2720: Part 15: 1965 (Reaffirmed Year: 
2021) - Methods of Test for Soils - Part XV: Determination 
of Consolidation Properties. These tests provide insights into 
settlement and swelling characteristics, which help design 
the ground improvement and remediation methods.

X-ray diffraction (XRD) studies: A PANanalytical X-ray 
diffractometer was used to analyze the mineralogical changes 
in the NaOH-contaminated RE samples under various curing 
periods. The samples were grounded in a porcelain crucible, 
and the material passing through a 75-micron sieve was 
sent for XRD analysis. The X-ray tube was energized at a 
voltage of 60 kilovolts (kV) and a current of 55 milliamperes 
(mA) in conjunction with an X’Celerator ultra-fast detector. 
Acetone was employed to meticulously eliminate any 
remnants of prior materials adhered to the mortar and pestle. 
Subsequently, with thorough attention to detail, the powdered 
sample was delicately deposited and gently compacted 
within a rectangular stainless-steel holder. The samples 
were scanned from a 2θ value of 6° to 70° with a step size of 
0.02° using copper k-alpha radiation. Crystal Impact Match! 
Software based on Crystallography Open Database (COD) 
was used for identifying mineralogical changes.

RESULTS AND DISCUSSION

Free Swell Tests

The free swell test results presented in Table 1 show that RE 
exhibited swell even with 0.05N NaOH, and the swell increased 
with the concentration of the NaOH solutions. This observation is 
in confirmation of the findings of Sruthi et al. (2019). Thus, it was 
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preliminarily found that the inherently non-swelling RE exhibited 
swelling on NaOH contamination. Further, consolidation tests 
were carried out to study the swelling behavior.

Consolidation Tests

Percentage swell was calculated using the final swell 
displacements and the original heights of the specimen 
(Chavali et al. 2017). The Red earth exhibited 'an equilibrium' 
swelling of 5.6, 10, 15, 17, and 20% (Fig. 1) when 
contaminated with 0.05, 0.1, 1, 2, and 4N NaOH solutions, 
respectively. The swell with time was impacted by the 
concentration of NaOH solution (Reddy & Sivapullaiah 
2010b). The alkali-silica reaction, which formed an alkali-
silicate gel, was the primary cause of the swell (Sibley & 
Vadgama 1986). 

The higher the concentration of the alkali solution, the 
faster the reaction between the clay fraction of the soil and 
the alkali solution. Hence, relative stabilization occurs in a 
relatively lower period (Kabanov et al. 1977). The higher 
percentage of swell exhibited by RE at higher concentrations 
of NaOH can be attributed to the dissolution of the authigenic 
mineral structure (Vindula et al. 2016) and the formation of 
the zeolites (Chavali et al. 2017, Sivapullaiah & Manju 2007) 
which resulted in more significant heave. The formation of 
zeolites was discussed in the XRD Analysis section. The 
swelling can also be attributed to the changes in pore-fluid 
properties (Meegoda & Ratnaweera 1994). The interaction 
of clayey minerals with alkalis causes mineralogical 

decomposition and highly hydrated formations, resulting 
in the volumetric increase (Sokolovich & Troitskii 1976).  

It is significant to note that compaction does not resist the 
swelling tendency of the foundation soil on interaction with 
NaOH solution. Prolonged chemical interaction between the 
spilled caustic soda solution and the kaolinitic red soil from 
Bangalore (now Bengaluru) district converted the inherently 
non-swelling soil to soil with high swelling potential (Rao 
& Rao 1994).

X-Ray Diffraction (XRD) Analysis

XRD tests were conducted, and the resulting graphs were 
analyzed to identify the new mineral formations influencing 
the RE’s swelling behavior. Microstudies helped understand 
the interaction of the alkali contaminant (NaOH) with the soil 
(RE), which further gives an understanding of geotechnical 
problems like uneven settlements and progressive failures 
(Sivapullaiah & Manju 2007). Fig. 2 depicts the XRD 
analysis of RE and the NaOH-contaminated RE samples. The 
reaction of alkaline contaminants with RE was prolonged. 
Hence, it is difficult to find the damage in the early stages 
(Sruthi & Reddy 2017b). At 25oC, kaolinite continues to react 
with hydroxide ions even after 50 days, and the reaction is 
irreversible. The reaction of kaolinite and high concentrations 
of NaOH solution proceeds incongruently, leading to the 
formation of new minerals, mostly zeolites (Mohnot et al. 
1987). Hence, the XRD results were analyzed after a 56-day 
curing period.

Table 1: Free swell index of NaOH-contaminated RE Samples.

Property RE + Water RE + 0.05N NaOH RE + 0.1N NaOH RE + 1N 
NaOH

RE + 2N NaOH RE + 4N 
NaOH

Free Swell Index(%) - ~10 ~12 ~16 ~22 ~28
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XRD pattern (fig. 3) of RE showed the significant 
peaks of quartz (at 4.21, 3.32, and 1.81 [Å]), kaolinite (at 
7.07, 3.54, and 2.27 [Å]), and hematite (at 2.55, 1.67, and 
1.45 [Å]). XRD pattern of RE contaminated with even 
the low concentration of 0.05N NaOH (A56) showed the 
peaks of zeolites like analcime (at 2.34 [Å]) and natrolite 
(at 3.57 [Å]). Peaks of ussingite (at 3.83 and 2.99 [Å]) and 
paragonite (at 2.56, 2.45, and 2.13 [Å]) were also observed. 
There was an apparent reduction in the quartz and kaolinite 
peaks, indicating the reaction of NaOH with silica and 
alumina, which led to the formation of zeolites analcime 
and natrolite. As the RE in the study area is sandy soil, the 
formation of silicate minerals like ussingite and paragonite 
was observed. It is significant to note that even at lower 
concentrations, zeolites were formed for a curing period of 
56 days, indicating the mineralogical changes.

RE contaminated with 1N NaOH (C56) exhibited the 
peaks of analcime (prominent peak at 2.34 [Å]), natrolite 
(major peaks at 3.58 and 2.28 [Å]), sodium aluminosilicate 
hydrate (N-A-S-H) compound (at 2.57 [Å]), ussingite 
(prominent peak at 3.04 [Å]), paragonite (at 9.94, 4.26, 3.24, 
and 1.49 [Å]). No kaolinite peaks were observed, indicating 
the complete reaction of NaOH with the alumina and silica 
of kaolinite. Peaks of quartz were also reduced. On reacting 
with 2N NaOH, RE (D56) had shown the peaks of zeolite 
SSZ16 (at 10.06 [Å]), natrolite (at 4.46, 3.57, and 2.28 [Å]), 
hydrosodalite (at 2.56, and 2.13 [Å]), N-A-S-H compounds 
(at 2.88, and 2.45 [Å]), paragonite (at 4.25, 2.52, 1.93, and 
1.49 [Å]) and ussingite (at 3.03 [Å]). At 4N NaOH, RE (E56) 
exhibited peaks of zeolites ZK-14 (at 5.02, 2.13, and 1.82 
[Å]), analcime (at 5.57, and 2.80 [Å]), natrolite (at 4.46, 
3.58, and 2.28 [Å]), super-hydrated natrolite (at 2.89, and 
2.34 [Å]). Peaks of N-A-S-H compounds (at 7.17, 2.56, and 
2.46 [Å]), ussingite (at 3.77, and 3.00 [Å]), and paragonite 
(at 4.25, 3.19. 2.51, and 1.49 [Å]) were also exhibited. Peaks 
of silica were further reduced, giving rise to new zeolites.

The reaction of Kaolinite and NaOH resulted in the 
formation of sodium aluminosilicate hydrate (N-A-S-H) 
compounds. The amount of N-A-S-H formed depends on 
the clay mineral in the soil, concentration of alkali solution, 
and interaction time. As the normality increased, the 
quantity of N-A-S-H compounds also increased. For RE 

with less kaolinite, like that in the Visakhapatnam region, 
the changes in the properties were predominantly due to the 
formation of N-A-S-H compounds and zeolites (Sivapullaiah 
& Manju 2005). Changes in the surface charge of alkali-
exposed minerals resulted in the formation of new minerals 
(Jozefaciuk 2002). When the alkali attacked the nucleus of 
the soil particle, the behavior of the soil was governed by 
the zeolites (Sruthi et al. 2019). 

More aluminous zeolites like analcime are more likely 
to form in alkaline environments (Ming & Boettinger 2001). 
Under high pH, kaolinite was converted to water-sensitive 
analcime. The formation of analcime increased with alkalinity 
(Zhuang et al. 2018). The reaction of NaOH solution with 
kaolinite formed Analcime. Analcime is usually formed 
at lower alkalinity levels (Zhang et al. 2022). Analcime, a 
microporous zeolite, has a high specific surface area, cation 
exchange, catalytic capacity, and high adsorption per surface 
area (Jin et al. 2022, Ma et al. 2015, Atta et al. 2012), and 
hence influences the swelling behavior and the stability of 
the soil. Natrolite is a fibrous small-pore zeolite with a total 
pore volume of 22%. It consists of helical channels of an 
elliptical section allowing water diffusion (Tsai et al. 2021, 
Sabylinskii et al. 2016, Paczwa et al. 2016, Demontis et 
al. 2005, Ibrahim 2004, Line & Kearley 1998, Engelhardt 
& Michel 1987), which resulted in swelling. Swell caused 
due to the formation of sodium aluminosilicate hydrate 
(N-A-S-H) compounds is well documented (Sivapullaiah & 
Manju 2007), (Sivapullaiah & Manju 2005). N-A-S-H gel is 
a precursor reaction product to zeolites (Zhou et al. 2022).

Ussingite is a tectosilicate mineral (Williams & 
Weller 2012) and one of the most agpaitic minerals of 
aluminosilicates. In natural processes, ussingite replaces 
sodalite (Kotel’nikov et al. 2010). Paragonite is a basic 
sodium aluminum silicate that belongs to the mica group. 
It is a rare sodium analog of mica or sodic mica (Gupta 
& Fareeduddin 2013, Chatterjee 1970). Ussingite and 
paragonite might not have contributed to the swell. However, 
their formation, along with the other zeolites, might have 
increased the swell. 

In sample D56 (Table 2), N-A-S-H compounds and 
natrolite zeolite formation increased. Zeolite SSZ16, a small-
pore high-silica zeolite of ABC type, has good adsorption 
capacity (Lobo 1996). Hydrosodalite is another small-pore 
zeolite with decent adsorption and high ion exchange 
capacity (Arasi 2020, Aprea 2014). The formation of these 
zeolites caused the swell in D56.

In sample E56 (Table 2), along with N-A-S-H compounds, 
zeolites analcime, natrolite, super hydrated natrolite, and 
zeolite ZK-14 were also formed. Zeolite ZK-14 is a synthetic 
chabazite with an open pore structure and stacking faults 

Table 2: X-ray diffraction analysis codes for naoh-contaminated re samples 
cured for 56 days.

A56 RE + 0.05N NaOH

B56 RE + 0.1N NaOH

C56 RE + 1N NaOH

D56 RE + 2N NaOH

E56 RE + 4N NaOH
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Fig. 2: XRD Analysis for RE and RE contaminated with 0.05, 1, 2, 

and 4N NaOH solutions for a curing period of 56 days. 
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2012) and one of the most agpaitic minerals of 
aluminosilicates. In natural processes, ussingite replaces 
sodalite (Kotel’nikov et al. 2010). Paragonite is a basic 
sodium aluminum silicate that belongs to the mica group. It 
is a rare sodium analog of mica or sodic mica (Gupta & 
Fareeduddin 2013, Chatterjee 1970). Ussingite and 
paragonite might not have contributed to the swell. However, 
their formation, along with the other zeolites, might have 
increased the swell.  

In sample D56 (Table 2), N-A-S-H compounds and 
natrolite zeolite formation increased. Zeolite SSZ16, a small-
pore high-silica zeolite of ABC type, has good adsorption 
capacity (Lobo 1996). Hydrosodalite is another small-pore 
zeolite with decent adsorption and high ion exchange 
capacity (Arasi 2020, Aprea 2014). The formation of these 
zeolites caused the swell in D56. 

In sample E56 (Table 2), along with N-A-S-H 
compounds, zeolites analcime, natrolite, super hydrated 
natrolite, and zeolite ZK-14 were also formed. Zeolite ZK-
14 is a synthetic chabazite with an open pore structure and 
stacking faults (Silva et al. 2016, Cartlidge et al. 1983) 
contributing to the swell. Super hydrated natrolite formed 
from natrolite by phase transition at 4N NaOH interaction 
caused anomalous anisotropic swelling in RE due to the 
selective sorption of NaOH. Superhydrated natrolite contains 
twice as much water content as that of natrolite. Also, the 
compressibility of the superhydrated natrolite is more than 
that of natrolite (IZA n.d.) (Lee et al. 2002, 2001, Belitsky et 
al. 1992). Hence superhydrated natrolite causes more swell 
and severe heave than those caused by natrolite. 

 
CONCLUSIONS 

 The inherently non-swelling red earth in the 
Visakhapatnam region underwent swelling when 
contaminated with NaOH solution, even at 0.05N.  

 The swell percentage increased with the increase in 
the concentration of NaOH solution and the 
duration of the interaction.  

 Red earth exhibited a maximum swelling of 5.6, 10, 
15, 17, and 20% when contaminated with 0.05, 0.1, 
1, 2, and 4N NaOH solutions, respectively. 

 RE+0.05N sample exhibited the formation of 
zeolites analcime and natrolite, along with silicate 
minerals ussingite and paragonite.  

 The RE+1N sample showed the formation of 
zeolites analcime and natrolite and N-A-S-H 
compounds, which are precursor reaction products 
to zeolites. 

 In the RE+2N sample, the formation of N-A-S-H 
compounds and natrolite zeolite increased. Zeolite 
SSZ16 was formed.  

Fig. 2: XRD analysis for RE and RE contaminated with 0.05, 1, 2, and 4N NaOH solutions for a curing period of 56 days.
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(Silva et al. 2016, Cartlidge et al. 1983) contributing to the 
swell. Super hydrated natrolite formed from natrolite by 
phase transition at 4N NaOH interaction caused anomalous 
anisotropic swelling in RE due to the selective sorption of 
NaOH. Superhydrated natrolite contains twice as much water 
content as that of natrolite. Also, the compressibility of the 
superhydrated natrolite is more than that of natrolite (IZA 
n.d.) (Lee et al. 2002, 2001, Belitsky et al. 1992). Hence 
superhydrated natrolite causes more swell and severe heave 
than those caused by natrolite.

CONCLUSIONS

	 •	 The inherently non-swelling red earth in the 
Visakhapatnam region underwent swelling when 
contaminated with NaOH solution, even at 0.05N. 

	 •	 The swell percentage increased with the increase in the 
concentration of NaOH solution and the duration of the 
interaction. 

	 •	 Red earth exhibited 'an equilibrium' swelling of 5.6, 10, 
15, 17, and 20% when contaminated with 0.05, 0.1, 1, 
2, and 4N NaOH solutions, respectively.

	 •	 RE+0.05N sample exhibited the formation of zeolites 
analcime and natrolite, along with silicate minerals 
ussingite and paragonite. 

	 •	 The RE+1N sample showed the formation of zeolites 
analcime and natrolite and N-A-S-H compounds, which 
are precursor reaction products to zeolites.

	 •	 In the RE+2N sample, the formation of N-A-S-H 
compounds and natrolite zeolite increased. Zeolite 
SSZ16 was formed. 

	 •	 In the RE+4N sample, super hydrated natrolite and 
zeolite ZK-14 were formed. 

	 •	 The formation of the zeolites under the action of various 
normalities of NaOH solution caused a swell in the 
naturally non-swelling red earth in the study area.

The study has yielded pivotal findings, offering 
actionable insights that can be effectively leveraged to 
mitigate soil contamination issues prevalent in industrial 
regions where detrimental alkali discharges and effluents 
are prominent.  
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