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ABSTRACT

To find out the spatial dependence of carbon emissions and its evolution characteristics is the key to 
achieving regional differential emission reduction strategy. In this study, 30 provinces with different 
population sizes and in different stages of development in China, were selected to explore the spatial 
heterogeneity of carbon emissions by exploratory spatial data analysis (ESDA), combined with 
geographically and temporally weighted regression (GTWR). The findings revealed that (1) energy-
related carbon emissions at the province-level in China increased from 1997 to 2016, with an increment 
of 8,893 million tons; (2) there is a significant positive spatial correlation between provincial carbon 
emissions, which showed the characteristics of rising first and then falling; this indicated that provincial 
carbon emissions have obvious spatial dependent characteristics; (3) the tertiary industry ratio had a 
restraining effect on carbon emissions, whereas the other three variables, namely GDP, urbanization 
rate, and energy intensity had a positive effect on carbon emissions of provinces in China; and (4) 
province-scale spatial differences in and distribution patterns of carbon emissions within the same 
countrywide, which will help decision making in terms of carbon trading and ecological compensation 
mechanisms. Therefore, we suggested that in the formulation of reduction policies for carbon emissions, 
policymakers need to adapt to local conditions which accord to the characteristics of the province.   

INTRODUCTION

Global warming largely caused by carbon emissions is a 
serious problem threatening ecosystems and human devel-
opment globally (Villoria-Sáez et al. 2016). In its ‘Intended 
Nationally Determined Contributions’, China, the top carbon 
emitter globally (Guan et al. 2009), has committed to reduc-
ing carbon dioxide emissions per gross domestic product 
(GDP) by 60%-65% from the 2005 level by 2030 (Mi et al. 
2016). As the world’s largest developing country, China is in 
a period of rapid industrialization and urbanization. However, 
the continuous improvement in living standards has inevi-
tably led to continuous increasing carbon emissions (Shan 
et al. 2018, Wang & Zhao 2018). To accomplish the above 
goal, the Chinese government will face enormous pressure 
for the next 10-15 years. Due to China’s vast territory, there 
are significant differences in resource endowments, economic 
development, industrial structure and energy consumption 
structure between regions, and there are spatial linkages. 
Thus, it is necessary to find out spatial dependence of pro-
vincial energy-related carbon emissions in China, and spatial 
heterogeneity of its influencing factors, to formulate emission 
reduction measures in a targeted manner.

Study on carbon emissions in the existing literature 
mainly focuses on four aspects. (1) Applying the inverted 
U-curve to explore the carbon emission pathways, the 
calculation of inflexion points and the applicability of carbon 
emissions to EKC. For instance, Chen et al. (2019) found 
that no matter in the eastern, central and western regions 
in China, the curve relation between carbon emissions and 
economic development does not meet to EKC hypothesis 
of inverted U-curve, but there are different inflexion points. 
Zaidi et al. (2019) took APEC countries as an example, and 
it is found that there is an inverted “U” type relationship 
between carbon emissions and economic globalization, and 
the EKC curve is valid. (2) Using factor decomposition model 
to explore the driving factors and mechanism of carbon 
emissions. For instance, the LMDI method was applied to 
decompose China’s household carbon emissions, and the 
results show that the household consumption structure has 
the characteristics of high carbonization (Cao et al. 2019). 
On the other hand, based on the approaches of LMDI and 
Tapio, the findings of Liang et al. (2019) indicated that the 
decoupling of carbon intensity from per capita income in 
the residential building sector of China’s four megalopoleis, 
namely Beijing, Tianjin, Shanghai and Chongqing have 
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been implemented. (3) Taking carbon emissions per capita 
and carbon emission intensity as indicators, the studies 
analyze the spatial difference, pattern evolution and emission 
reduction path of carbon emissions. For example, Dong et 
al. (2018) analysed the curve relationship between land 
urbanization (LU) and carbon emission intensity (CEI) by 
using the methods of Diff-GMM and Sys-GMM. (4) The 
spatial distribution pattern and difference of carbon emission 
were studied from the perspective of spatial correlation. Yan 
et al. (2017) analysed the regional difference and spatial 
correlation of inter-provincial carbon emission efficiency in 
China, and there is a significant spatial autocorrelation and 
obvious cluster trend of inter-provincial carbon emission 
efficiency. Moreover, by analysing the impact of spatial 
correlation on the geographical and economic matrix, 
Wang & He (2019) verifies that the spatial neighbourhood 
described in the bilateral economic relationship is much 
superior in trapping the spatial dependence of carbon 
emissions. In general, the existing literature has made a lot 
of discussions on carbon emissions and achieved important 
results, which can be used as a reference for energy-related 
carbon emissions research. However, most previous studies 
had seldom considered the spatial dependence of regional 
carbon emissions, but regard regions as independent and 
homogeneous individuals. Energy-related carbon emissions 
are not only influenced by factors such as the industrial 
structure, economic development level, urbanization and 
population size of the region, but also the potential correlation 
between carbon emissions in the surrounding areas. There 
may be obvious spatial dependence on carbon emissions 
between regions, and there is spatial heterogeneity of factors 
affecting carbon emissions. Due to the vast territory and 
uneven distribution of resources in China, there are great 
differences in development among provinces. Thus, it is 
clear that we cannot adopt the policy of cutting at one stroke 
in dealing with carbon emissions problems. 

Furthermore, in the existing academic literature, most re-
searchers used GWR (Geographically Weighted Regression) 
method to analyze spatial heterogeneity. Although the GWR 
model considers spatial effects and spatial heterogeneity, it 
still has some shortcomings. For instance, the GWR model 
can only consider regression the cross-section data and does 
not take into account the influence of time effect. GTWR 
(Geographically and Temporally Weighted Regression) can 
overcome the above problems effectively. It introduces the 

time dimension into the model to make the estimation more 
effective, which provides a new method for the test of spatial 
heterogeneity. However, the existing literature rarely stud-
ies the spatial heterogeneity of the factors affecting carbon 
emissions based on this method. To address this gap, taking 
30 provinces in China as the research object, this study used 
exploratory spatial data analysis (ESDA) and GTWR model 
to analyze the spatial heterogeneity of factors affecting en-
ergy-related carbon emissions in China. The results can be 
used as data support for the formulation and implementation 
of energy-related carbon emission reduction policies in China 
and provide a reference for other countries/regions, particu-
larly a developing country, to carry out relevant research at 
the provincial scale.

MATERIALS AND METHODS

Calculation of Carbon Emissions 

The baseline method provided in the 2006 IPCC Guidelines 
National Greenhouse Gas Inventories (Eggleston et al. 2006), 
was used to calculate energy-related provincial carbon 
emissions in China:
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    Where, C represents carbon emissions generated by the consumption of various types of 

fossil energy; n is fossil energy types; ei is the consumption of certain fossil fuels; fi indicates 

the standard coal conversion factor, which is used to convert different types of energy into 

standard coal equivalent; ki is the carbon emission coefficient for different fossil fuels (taken 

from IPCC reference values), and 44/12 indicates the molecular weight ratio of carbon 

dioxide to carbon. The calculated parameters for carbon emissions from different types of 

fossil fuels are given in Table 1. 

Table 1: Calculation parameters of carbon emissions for different types of fossil energy. 

Energy types Raw Coal Coke Crude Oil Gasoline Kerosene Diesel Natural Gas Fuel Oil 

Coefficient of standard 

coal (104tce/104t) 
0.7143 0.9714 1.4286 1.4714 1.4714 1.4571 1.3300 1.4286 

Carbon emission 

coefficient (104t/104tce) 
0.7559 0.8550 0.5857 0.5538 0.5714 0.5921 0.4483 0.6185 
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the main content of ESDA. It aims to study the spatial distribution and correlation of sample 

objects and reveal the visual phenomenon of spatial dependence and spatial heterogeneity of 

sample data. Spatial autocorrelation mainly includes global spatial autocorrelation and local 

spatial autocorrelation. 

(1) Global spatial autocorrelation. It mainly reveals the spatial relevance and difference 

degree of the whole region. Global Moran's Ig is an estimation of global spatial 
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 1. Global spatial autocorrelation. It mainly reveals the 
spatial relevance and difference degree of the whole 
region. Global Moran’s Ig is an estimation of global 
spatial autocorrelation statistics, which is expressed as 
follows: 
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Where, Ig is the coefficient of global spatial autocorrelation, its value range is [-1,1]; the 

positive value indicates that the areas with higher (or lower) carbon emissions are spatially 

significantly agglomerated, and negative values indicate significant spatial differences in 

carbon emissions levels between the region and its surrounding areas. n is the number of 

samples, that is, the total evaluation area. xi and xj are observations of spatial positions i and 

j, respectively;x is the average value of x. wij stands for weight, reflecting the degree of 

influence between the spatial unit of region i and j. 

(2) Local spatial autocorrelation. Global spatial autocorrelation can reveal the spatial 

dependence of provincial carbon emissions, but it cannot measure the local spatial differences. 

Thus, the local spatial autocorrelation to measure the degree and significance of the spatial 

difference between a certain area and its surroundings, and combined with LISA (Local 

Indicators of Spatial Association) clustering map to analyze the local spatial distribution law. 

It is expressed as follows: 

1
2

1

N

i ij j
j

l N

i
i

x x w x x
I

x x

 







       
   


  
 




                                                                      …(3) 

At a given significant level, Il > 0 indicates that carbon emissions of the observed 

provinces are similar to those of neighbouring provinces, that is, high-high or low-low; and 

Il < 0 indicates that carbon emissions of the observed provinces are different from those of 

neighbouring provinces (low-high or high-low). 

GTWR 

Factors affecting carbon emissions (such as population size, urbanization rate, GDP, 

energy structure, energy intensity, and industrial structure, etc.) are both unstable and 

heterogeneous, as well as spatially related. If the traditional regression model is still used to 

estimate its parameters, it is difficult to reflect the spatial heterogeneity between regions. The 

GWR (geographically weighted regression) model, initially developed by Brunsdon et al. 

(1996), which considers the spatial characteristics of the observed variables into the model, 

revealing the spatial non-stationarity and spatial dependence of the studied variables from a 

local perspective. Consequently, it is widely used to solve the spatial heterogeneity between 

units. However, the GWR model can only regress the cross-section data without considering 
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stationarity and spatial dependence of the studied variables 
from a local perspective. Consequently, it is widely used 
to solve the spatial heterogeneity between units. However, 
the GWR model can only regress the cross-section data 
without considering the influence of time factors (Li et 
al. 2019). Thus, it is necessary to embed the time effect 
into the regression model and construct the geographical 
and temporally weighted regression (GTWR), which can 
capture the parameter variation of different spatial units in 
two dimensions of time and space, so as to make up for the 
deficiency of GWR model effectively (Huang et al. 2010, 
Fotheringham et al. 2015). The general formula of GTWR 
model is as follows:
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RESULTS AND ANALYSIS

Energy-Related Carbon Emissions of Provinces

According to equation (1), cumulative carbon emissions 
of each province in China from 1997 to 2016 were listed 
in Table 2.

From 1997 to 2016, the three provinces in China with the 
highest cumulative carbon emissions (Table 2) were Shan-
dong (16061 Mt), Hebei (12730 Mt) and Shanxi (11972 Mt), 
accounting for 23.80% of the cumulative carbon emissions 
in China, which has significantly contributed to national 
carbon emissions. The three cities with the lowest cumula-
tive carbon emissions were Ningxia (2115 Mt), Hainan (716 
Mt) and Qinghai (696 Mt). Their total accumulated carbon 
emissions were 3527 Mt, accounting for only 2.06% of the 
nation’s cumulative carbon emissions over the study period. 
Each province’s carbon emissions tend to be closely related to 
the region’s economy and industrial structure. For example, 
by the end of 2016, the comprehensive energy consumption 
of Shandong, Hebei and Shanxi reached 62356.44×104, 
39912.13×104 and 39146.06×104 t, respectively, accounting 
for 10.76, 6.89, and 6.75% of the total energy consumption 
above the designated size in China.

To reveal the spatial characteristics of energy-related 
carbon emissions at the province scale in China, the 
calculated data of carbon emissions were classified and 

archived. The Natural Breaks Method was used to cluster the 
carbon emissions of each province by ArcGIS10.7, and the 
corresponding spatial distribution is shown in Fig.1.

From 1997 to 2016, the medium-high and high emission 
areas moved to coastal provinces from inland areas, which 
were related to the urbanization and industrialization of 
coastal provinces. For instance, due to urban infrastructure 
construction, coupled with urbanization and industrialization, 
the socio-economic development in Jiangsu province has 
further accelerated in recently; this has led to an increase 
in fossil energy consumption, which in turn has boosted 
its carbon emissions. In contrast, Liaoning, Jilin and 
Heilongjiang, which are located in northeast China, have 
a lower level with respect to economic development in 
recent years; therefore, there was a downward trend of its 
carbon emissions. Additionally, it is worth pointing out 
that Beijing, as the capital of China, its carbon emissions 
peaked in 2010, reaching 138.61 Mt; then declined by 
29.2% in 2016, at 107.34 Mt. The primary cause for the 
reductions is due to its technological progress, developed 
tertiary industry (e.g. modern service industry and financial 
industry) and emissions reduction policies. Data indicated 
that in 2018, Beijing’s primary industry, secondary industry 
and tertiary industry accounted for 0.4%, 18.6% and 81.0%, 
respectively; among them, the financial industry has become 
the first pillar industry, effectively reducing its consumption 
of fossil energy.

Table 2: Cumulative carbon emissions at the province scale in China during 1997-2016 (Million tons, Mt).

Beijing Tianjin Heibei Shanxi Inner Mongolia Liaoning Jilin Heilongjiang Shanghai Jiangsu

2349 2872 12730 11972 8992 10925 4042 5685 4627 10722 

Zhejiang Anhui Fujian Jiangxi Shandong Henan Hubei Hunan Guangdong Guangxi

6481 5188 3316 2790 16061 9114 5613 4587 8816 2714 

Hainan Chongqing Sichuan Guizhou Yunan Shaanxi Gansu Qinghai Ningxia Xijiang

716 2329 5213 4104 3529 5239 2962 696 2115 4811 
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end of 2016, the comprehensive energy consumption of Shandong, Hebei and Shanxi reached 

62356.44×104, 39912.13×104 and 39146.06×104 t, respectively, accounting for 10.76, 6.89, 

and 6.75% of the total energy consumption above the designated size in China. 

To reveal the spatial characteristics of energy-related carbon emissions at the province 

scale in China, the calculated data of carbon emissions were classified and archived. The 

Natural Breaks Method was used to cluster the carbon emissions of each province by 

ArcGIS10.7, and the corresponding spatial distribution is shown in Fig.1. 

 
Fig.1: The spatial layout of carbon emissions at the province scale in China. 
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Global Spatial Dependence Pattern of Provincial 
Energy-Related Carbon Emissions

This study used ArcGIS10.7 to conduct spatial autocorre-
lation analysis on carbon emissions data of 30 provinces in 
China from 1997 to 2016. The variation curves of Moran’s 
I index and P-value for each year were shown in Fig. 2.

As can be seen from Fig. 2, the Moran’s Ig index from 
1997 to 2016 is positive and all passed the significance test at 
the level of 5%, indicating that the spatial distribution of pro-
vincial carbon emissions in China is not completely random, 
but has significant spatial dependence characteristics. In other 
words, provinces with relatively high carbon emissions tend 
to be adjacent to other provinces with high carbon emissions, 
while provinces with relatively low carbon emissions tend to 
be adjacent to other provinces with low carbon emissions. 
From the perspective of the change process, the spatial 
correlation trend of provincial carbon emissions showed a 
pattern of rising and then decreasing. From 1997 to 2008, the 
Moran’s Ig index showed an upward trend, indicating that the 
spatial dependence of provincial-scale carbon emissions was 
increasing, reaching the highest value of 0.27 in 2008. Since 
2008, Moran’s Ig index has shown a fluctuating downward 
trend, indicating that the spatial concentration effect of pro-
vincial carbon emissions in China is weakening as a whole.

The above changes in the Moran’s Ig index showed that 
the spatial dependence of provincial-scale carbon emissions 
in China mainly occurs at four-time nodes, namely 1997, 
2008, 2009 and 2016. Therefore, the following contents 
mainly focus on these four-time nodes for further analysis.

Local Spatial Dependence Pattern of Provincial 
Energy-Related Carbon Emissions

The global Moran’s Ig index can only explain the overall 

spatial dependence of carbon emissions at the provincial 
scale in China, however, it cannot represent the specific 
structure and spatial correlation of spatial dependence of 
provincial carbon emission. Hence, according to the spa-
tial and temporal distribution characteristics of different  
provinces, representative years (1997, 2008, 2009, 
2016) were selected for comparative study, and LISA  
clustering map of four years were drawn by using ArcGIS 
10.7 (Fig. 3).

As shown in Fig. 3, at a significant level of 5%, the local 
spatial dependence of carbon emissions at the provincial 
scale in China is relatively obvious. There are two significant 
regions in the northwest and central China, suggesting that 
there is a positive spatial effect between provinces, which 
makes the provinces and the surrounding areas show the 
development trend of mutual connection and interaction. 
It is mainly reflected in the small spatial difference, the 
region with high carbon emissions in the region itself and 
surrounding provinces (High-High), mainly concentrated in 
Hebei, Shandong, Henan and Anhui. The reason is that these 
provinces have a good industrial foundation, a developed 
heavy chemical industry and abundant energy resources. The 
rapid progress of industrialization consumes a large amount 
of fossil energy, resulting in strong regional spatial correlation 
and interactive spillover. Moreover, Hebei, Shandong, Henan 
and Anhui have reached significant levels in four periods. The 
spatial difference is large, and the regional carbon emissions 
are higher, but the lower average areas (High-Low) are mainly 
distributed in Xinjiang. Although the spatial difference is 
small, the region itself and the surrounding average lower 
region (Low-Low), all provinces have not passed significant 
tests. In terms of the overall number, the number of High-High 
types of provinces has been increasing since 1997, which is 
consistent with the upward trend of global Moran’s Ig values 

coastal provinces. For instance, due to urban infrastructure construction, coupled with 

urbanization and industrialization, the socio-economic development in Jiangsu province has 

further accelerated in recently; this has led to an increase in fossil energy consumption, which 

in turn has boosted its carbon emissions. In contrast, Liaoning, Jilin and Heilongjiang, which 

are located in northeast China, have a lower level with respect to economic development in 

recent years; therefore, there was a downward trend of its carbon emissions. Additionally, it 

is worth pointing out that Beijing, as the capital of China, its carbon emissions peaked in 

2010, reaching 138.61 Mt; then declined by 29.2% in 2016, at 107.34 Mt. The primary cause 

for the reductions is due to its technological progress, developed tertiary industry (e.g. 

modern service industry and financial industry) and emissions reduction policies. Data 

indicated that in 2018, Beijing's primary industry, secondary industry and tertiary industry 

accounted for 0.4%, 18.6% and 81.0%, respectively; among them, the financial industry has 

become the first pillar industry, effectively reducing its consumption of fossil energy. 
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This study used ArcGIS10.7 to conduct spatial autocorrelation analysis on carbon 

emissions data of 30 provinces in China from 1997 to 2016. The variation curves of Moran's 

I index and P-value for each year were shown in Fig. 2. 
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from 1997 to 2008. Thus, the diffusion effect of carbon 
emissions reduction is gradually increasing.

Spatial Heterogeneity of Influencing Factors of 
Provincial Carbon Emissions

The above ESDA analysis showed that the spatial distribu-
tion of carbon emissions in China is significantly spatially 
dependent. To analyze the distribution of each influencing 
factor more clearly, it is necessary to apply the GTWR model 
for measurement. This study mainly used ArcGIS 10.7 to 
realize the coefficient estimation of GTWR model based on 
the attributes of time and space. The estimation results of the 
regression coefficient calculated by GTWR were listed in 
Table 3, while the coefficient distribution of each influencing 
factor in 1997 and 2016 are shown in Fig. 4.

As can be seen from Table 3, the value of R2 and adjust-
ed R2 of GTWR were 0.995981 and 995956, respectively, 
indicating that the GTWR model can better explain the 
influence of independent variables (influencing factors) on 
dependent variables (carbon emissions), and better explain 
the data with spatio-temporal characteristics. This means 
the GTWR’s coefficients are more in line with real-world 
interpretations. Accordingly, the distribution characteristics 

of each influencing factor in different temporal and spatial 
dimensions are shown in Fig. 4.

Spatio-Temporal Variation of Economic Development 
(Lng) on Carbon Emissions

It can be seen from Fig. 4 that GDP has an obvious influence 
on carbon emissions and is positively correlated with carbon 
emissions, indicating that GDP growth is a key factor in 
increasing carbon emissions. The regression coefficients of 
Xinjiang, Qinghai and Liaoning are larger, while the provinc-
es with smaller coefficients are Sichuan, Fujian and Zhejiang. 
This showed that the differences in economic development 
between different provinces in China are quite prominent. 
Therefore, when determining the countermeasures for carbon 
emissions reduction in each province, the implementation 
of policies should be determined according to the specific 
economic development stage of each province. Moreover, 
carbon emissions have increased rapidly in the process of 
economic growth in areas with low economic development 
level in the western areas of China, such as provinces of 
Qinghai and Xinjiang. Therefore, at this stage, the govern-
ment should focus on transforming the economic structure 
and introducing low-energy industries from the developed 
eastern regions to reduce the growth of carbon emissions.

with the upward trend of global Moran's Ig values from 1997 to 2008. Thus, the diffusion 

effect of carbon emissions reduction is gradually increasing. 
 

 
Fig. 3: LISA clustering map of provincial carbon emission in China. 
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Trace of 
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Table 3: Estimation results of regression coefficient calculated by GTWR.

Bandwidth Residual Squares Sigma AICc R2 adjusted R2 Spatio-temporal Distance Ratio Trace of SMatrix

0.114996 6.25916 0.098894 -991.525 0.995981 0.995956 0.273068 67.1389
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Additionally, carbon emissions growth rate in Sichuan, 
Hainan and Guangdong has slowed down in the process of 
economic growth, which requires the government to take 
policy measures to bring it to an inflexion point in terms 
of technological upgrading of energy efficiency and low 
carbonation of the industrial structure. Overall, China’s pro-
vincial GDP growth will exacerbate carbon emissions during 
the study period, while other conditions remain unchanged.

Spatio-Temporal Variation of Population Composition 
(Lnu) on Carbon Emissions

The lnU estimation coefficient reflects the contribution of 
different regional urbanization rates to the carbon emissions 
growth, and the spatial spillover effect of urbanization rates 
in neighbouring provinces. 

As can be seen from Fig. 4, the high-value areas of 
regression coefficient of urbanization rate are concentrated 
in Xinjiang, Qinghai, Gansu, showing a certain gradient dis-
tribution. This indicated that in these western regions where 
industrial-oriented industries are being promoted, most of the 
employed labour force is transferred to the industrial industry 
in the context of increasing urbanization rate, causing an 
increase in the scale of carbon emissions. The low values of 
the regression coefficient of the urbanization rate are concen-
trated in the central region, which has a relatively high degree 
of urbanization. However, due to its advanced economy and 
technology, the improvement of the urbanization rate is not 
the most important reason affecting the carbon emission of 
these regions. However, it should be noted that the increase 
in urbanization rate does not mean that it always promotes 
carbon emission growth. Some scholars believe that there is 
an inverted “U -shaped” relationship between urbanization 
level and carbon emissions (Ehrhardt-Martinez et al. 2002, 
York et al. 2003). This means that the overall development of 
urbanization still plays a role in promoting carbon emissions 
when the inflexion point of urbanization inverted “U” curve is 
not reached; however, when it reaches the inflexion point, the 
urbanization level has a slowing effect on carbon emissions.

Spatio-Temporal Variation of Industrial Structure 
(Lns) on Carbon Emissions

The industrial structure is an important factor that influenc-
ing carbon emissions. The results indicated that the tertiary/
service industry had a reduced effect on carbon emissions in 
most China’s provinces, and there are regional differences in 
the influence of industrial structure on carbon emissions (Fig. 
4). Judging from the regression coefficients, the regression 
coefficient between the tertiary industry ratio and carbon 
emissions showed an increasing trend from west to east of 
China. Among them, the provinces with greater impact on 

carbon emissions from the industrial structure are Hubei, 
Henan, Zhejiang and Fujian in central and eastern China, 
while the provinces with relatively smaller impact are Gansu, 
Qinghai, Xinjiang and Guizhou in northwest China. This 
means that carbon emissions from provinces, located in the 
eastern coastal area, are more vulnerable to the industrial 
structure than in the inland western regions. The reason 
may be related to the differences in the original economic 
structure and the different ideas of industrial development 
in different provinces, which may lead to the more regional 
characteristics of the local industrial structure.

In general, except that tertiary industry ratio (S) had an 
inhibitory effect on carbon emissions in Fujian’s cities, the 
other three variables (GDP, urbanization rate, and energy 
consumption per unit of GDP) had a promoting effect 
on carbon emissions. This means that with accelerating 
urbanization and industrialization, the energy consumption 
of China’s provincial areas is continuously increasing. If 
the principle of ‘business as usual ‘is followed, the carbon 
emissions in China’s provincial areas has an increasing trend; 
in contrast, if the proportion of low-carbon industries, such 
as the service industry, is further increased, energy efficiency 
will be further improved through technology, thereby 
reducing energy intensity. The growth of carbon emissions in 
various provinces of China therefore had a certain inhibitory 
effect. In short, the development of the tertiary industry 
should be encouraged, as it can reduce carbon emissions and 
environmental pollution and save the land.

Spatial-Temporal Variation of Energy Intensity (Lne) 
on Carbon Emissions

Energy intensity reflects the contribution of technological 
progress in different regions to their own carbon emissions 
growth. According to the results, the coefficients of energy 
intensity’s impact on provincial carbon emissions in China 
are positively correlated, and there are significant spatial 
differences. This suggested that energy intensity can pro-
mote carbon emissions, and there is a significantly promote 
carbon emissions in different provinces. Compared with 
other factors, energy intensity has the least effect on carbon 
emissions, which is mainly concentrated in the western re-
gions of China such as Xinjiang, Gansu and Qinghai, and is 
gradually increasing to the southeast, according to the data. 
This is mainly because the eastern region of China is rich in 
resources and in a period of rapid industrialization, which 
will inevitably increase its energy intensity, thus increasing 
the pressure on carbon emissions reduction.

In a word, the provinces with higher technical level 
and better economic conditions in eastern China, energy 
intensity has a relatively large impact on the distribution 
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Fig. 4: Spatial distribution of regression coefficients calculated by GTWR model in 1997 and 2016. 
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Fig. 4: Spatial distribution of regression coefficients calculated by GTWR model in 1997 and 2016.

of provincial carbon emissions. On the other hand, in the 
western provinces of China with lower technical level and 
relatively poor economic conditions, energy intensity has 
a relatively small impact on carbon emissions. Hence, to 

achieve carbon emissions reduction targets, the government 
needs to improve energy efficiency by introducing energy 
conservation and emission reduction technologies, according 
to the low carbon development model in different regions. 
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These measures can achieve the dual objectives of controlling 
carbon emissions and reducing carbon intensity.

DISCUSSION AND CONCLUSIONS

Considering the deficiency of past literature study on spatial 
heterogeneity of factors affecting carbon emissions, this 
study introduced geographically and temporally weighted 
regression (GTWR) into the spatial analysis of carbon 
emissions, which provides a new approach to spatial 
heterogeneity testing. Based on the provincial panel data 
of China from 1997 to 2016, 30 provinces with different 
population sizes and in different stages of development 
in China, were selected to analyze the influencing factors 
of carbon emissions by exploratory spatial data analysis 
(ESDA) combined with GTWR method. Thus, the major 
conclusions are summarized herein and put forward targeted 
policy recommendations accordingly.

Energy-related carbon emissions at the province level in 
China had increased by 215.08 % from 1997 to 2016, with 
an increment of 8893 Mt. Provinces such as Anhui, Jiangsu, 
and Hebei have high-level carbon emissions, while Guizhou, 
Qinghai and Hainan on the contrary. These results suggest 
that the government formulate corresponding incentive 
measures or economic incentives to encourage enterprises 
to accelerate the energy-saving technological transformation 
and improve energy efficiency. Therefore, it is necessary to 
unswervingly promote the existing energy conservation and 
emission reduction policies and measures to achieve China’s 
further emission reduction targets, including financial incen-
tives for energy conservation technology transformation, as 
well as the mandatory target of provincial energy intensity 
(Du et al. 2018).

From 1997 to 2016, the global Moran’s I index has a 
positive value and showed a trend of rising first and then 
falling, and all passed the 5% significance test. This indicated 
that provincial carbon emissions in China have a significant 
positive spatial correlation, that is, provinces with higher or 
lower carbon emissions tend to be spatially adjacent. More-
over, there is a positive spatial effect between provinces, 
which makes the development trend of mutual relationship 
and interaction between provinces and surrounding areas; 
therefore, carbon emissions are affected by different geo-
graphical locations, according to LISA clustering map of 
local autocorrelation. Also, the regression results of the 
GTWR model indicated that the influencing factors of carbon 
emissions have obvious spatial heterogeneity. The findings 
revealed that tertiary industry ratio had a restraining effect 
on the carbon emissions, whereas the other three variables, 
namely, GDP, urbanization rate and energy intensity had a 
positive effect on carbon emissions of provinces in China. 

These results suggest that in the formulation of reduction pol-
icies for energy-related carbon emissions, policymakers need 
to adapt to local condition according to the characteristics of 
the province. Specifically, for the north-western provinces of 
China with low economic development (e.g. Guizhou, Gansu, 
Qinghai, etc.), the government should focus on improving 
energy efficiency and improving energy consumption struc-
ture; meanwhile, the government should further readjust and 
optimize industrial structures and develop low-carbon indus-
tries such as high-tech and service industries. On the other 
hand, for the economically developed eastern and southern 
coastal provinces (e.g. Shanghai, Zhejiang, Guangdong, and 
Jiangsu, etc.), the government should focus on new technol-
ogies, green energy, and modern services; meanwhile, it will 
build an economic structure transformation and upgrading 
that promotes low-carbon development across provinces, 
thereby forming a reduction path for coordinated economic 
and environmental development. Furthermore, the govern-
ment should strengthen the guidance of low-carbon policy 
in energy-rich areas such as Hebei, Shanxi, etc. The dual 
reduction targets of carbon emissions and energy intensity 
will be incorporated into the local government assessment 
system, and policymakers need to implement the accounta-
bility system for carbon emissions reduction.

Additionally, this study revealed a province-scale spatial 
difference in and distribution pattern of carbon emissions 
within the same countrywide, which will aid decision mak-
ing in terms of carbon trading and ecological compensation 
mechanisms. The results may provide policymakers with 
insight into spatial patterns of carbon emissions among prov-
inces when macro-control policies are formulated. Our study 
suggested that inland provinces’ overall carbon emissions 
levels were lower than those of coastal provinces in China. 
Apart from different provinces being stages of economic 
development, this is likely mainly due to their various natural 
environments and resource. The coastal areas of China are 
economically developed and highly dependent on resources 
from inland areas. Further development in such areas is often 
constrained by carbon emission quotas. Therefore, they have 
the option to buy additional carbon emission credits from 
other regions, since it is more expensive for them to cut 
emissions than it is for inland regions. Some inland areas 
of China, such as Yunnan, Guangxi and Sichuan, etc., are 
mostly located in mountainous areas with rich ecological 
resources, especially in terms of the forest. Forestry ecosys-
tem has carbon storage and sequestration functions making 
these regions large carbon sinks and provide surplus carbon 
emissions quotas for carbon trading if needed. Our results 
can thus provide helpful information and accurate data for 
formulating policies to promote the formation of a beneficial 
interactive spatial pattern of countrywide carbon emissions. 
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Targets can be realized by establishing carbon emission 
trading system as ecological compensation for implementing 
green development strategies to increase ecosystem service 
in inland areas, from which the coastal areas in China can 
purchase carbon emission quotas.

It is worth mentioning here that our studies aimed to 
address a gap in relevant research. To a certain extent, this 
study revealed the spatial heterogeneity of driving factors 
affecting energy-related carbon emissions, which can provide 
data support for the formulation of carbon emission reduction 
strategies. However, the spatial interaction effect between 
driving factors can also affect the spatial differentiation 
pattern of carbon emissions. Hence, efforts to explore the 
correlation between factors by using Geodetector method 
should be seriously considered in future research.
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