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ABSTRACT

Understanding the changing patterns and trend of vegetation is essential for its socio-environmental 
values. Normalized difference vegetation index (NDVI), a satellite based data obtained from Moderate 
Resolutions Imaging Spectro-radiometer (MODIS) were analysed. The data have a characteristic 
resolution of 250 × 250 m2 and a 16-day composite period.  They were ordered separately for each 
sample plot from east, centre and west of Nepal, for 15 years period, 2000 to 2015. MODIS, Land 
Surface Temperature (LST) data were used to identify unreliable NDVI values and hence eliminated. 
Also, the unusually fluctuating NDVI values during the rainy season were removed. A cubic spline 
function (for seasonal patterns), linear regression model (for NDVI trend) and generalized estimating 
equations (GEE for comparison of the changing trends)  were the models used. The results showed 
a patterned annual seasonal vegetation and significant trends during the 15 years. Seasonal growth 
showed a peak in rainy season and trough in the winter season, with slight temporal variation among 
the areas with a characteristic shift of seasonal greening (start of greening) and browning (end of 
greening) from east to west of Nepal. The NDVI trend was significantly rising in eastern and western 
suburban areas while the central urban city had a significant decline. The temporal shift of start and end 
of the season from east to west can be of value to agriculturalists.  

INTRODUCTION

The global climate has been changing and so is the trend of 
vegetation throughout the world. On one hand, vegetation 
is one of the prone factors to climate change while on the 
other hand, the vegetation helps to curb the effects of climate 
change effects. Moreover, changes in vegetation constantly 
help to change the climate factors at local or regional level 
(Meng et al. 2019, Zhu et al. 2016). Both increasing (Li et 
al. 2011, Liu et al. 2019) or decreasing patterns of vegetation 
have been observed in Asia. Apart from being geo giants of 
Asia, China and India represent as ‘greening leaders’ (Dunne 
2019). Nepal, a small landlocked country between China 
and India, owns agriculture and forest as a major national 
economic resource and essentially needs to be aware of the 
changing trends of vegetation in the country. 

The climate-changing factors, for instance, temperature 
and rainfall are mostly correlated with vegetation (Liu 2017, 
Anbazhagan & Paramasivam 2016, Kaufmann et al 2003). 
The changes in terrestrial vegetation can modify regional 
and global climate at diurnal, seasonal and long term 
(Bounoua et al. 2000). The Australian Government Bureau 

of Meteorology (BoM 2014) suggests that the ability to link 
events in the natural world to a cycle that predicts seasonal 
changes is essential in the successful development of any 
community. These natural barometers are not uniform across 
the land but instead use the reaction of plants and animals to 
gauge what is happening in the environment. The cropping 
intensity (yield, the timing of plantation and harvest etc.) 
response to climate can help the understanding of proper 
growth, development and net production, which is practically 
influenced by previous year’s knowledge in most of the 
developing countries (Cooper et al. 1997). To understand 
the climate and seasonal effect to vegetation and crops, its 
start and end are required to appropriately fix the calendar 
of vegetation or other crops cycles. This start or end of crop 
seasons would change by time and space, the knowledge of 
which can eventually yield better.

The spatio-temporal characteristics of remote sensing 
data are considered to be the primary advantage in environ-
mental studies. MODIS is a sensor, fitted aboard the Terra 
and Aqua satellites by the National Aeronautics and Space 
Administration (NASA). It monitors environmental changes 
due to vegetation, temperature, droughts and flood on Earth 
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(NASA 2015). The Normalized Difference Vegetation In-
dex (NDVI) is a data product from MODIS which is much 
common (NASA 2015, Eckert et al. 2014, Suepa et al. 2016) 
and more reliable (Yin et al. 2012) than other data types and 
much useful for local (Zhang et al. 2013), regional (Piao et 
al. 2011) or global scale (Liu 2017) study purpose. NDVI is 
a type of vegetation index which is dependent on the spectral 
behaviour of vegetation that characteristically absorbs in the 
red and blue wavelengths, reflects in the green wavelength, 
strongly reflects in the near-infrared (NIR) wavelength. 
Based on this principle, the data for vegetation index is cal-
culated by the given equation (Ozyabuz et al. 2015).

	 NDVI = (NIR – RED)/(NIR + RED)

Various previous studies, showing positive and negative 
trends of vegetation change, have commonly applied linear 
regression model (Kaufmann et al. 2003,  Karnieli et al. 
2010, Zhang et al. 2013). Moreover, a lot of variation does 
exist among their works regarding the methods, data types 
and management (Eckert et al. 2014, Piao et al. 2011, Chan-
dola et al. 2010, Mishra & Chaudhuri 2015). Nonetheless, 
the analysis of the bulk data in smaller temporal and spatial 
sections for understanding the characteristics of vegetation 
(such as phenology, the start of the season (greening) and end 
of the season (browning)) in a particular locality in detail is 
entirely lacking. Also, the knowledge of intra-annual pattern 
together with the annual trend of vegetation in Nepal is still 
rare. Therefore, this study aims to assess the seasonal pattern 
and the trend of vegetation in Nepal from 2000 to 2015. 

MATERIALS AND METHODS	

This study was carried out in three purposively selected 
districts of Nepal, Dhankuta (East), Kathmandu (Center) 
valley and Surkhet (West). All the three are from the same 
geographical area, the hilly region, so that the other influenc-
ing factors would be least in effect, east - Dhankuta (27.15°N, 
87.35°E), centre - Kathmandu (27.59°N, 85.39°E) and west 
- Surkhet (28.62°N, 81.88°E) of Nepal (Fig. 1). Department 
of Forest Resource and Survey (DFRS 2015), Department 
of Hydrology and Meteorology (DHM 2015) and National 
Population and Housing Survey 2011 (NPHS 2012) of the 
government of Nepal have reported that Dhankuta is an 
eastern suburban area of 892 km2 with a population density 
of 183/ km2. It has an annual temperature ranging from 
14.6°C (January) to 24.9°C (April), annual rainfall 1,121 
mm and has an average altitude of 1,192 m. Kathmandu is 
an urban area located in the central region, with the area of 
899 km2 and the population density of 4,416/ km2. Its annual 
temperature ranges from 6.6°C (January) to 16.6°C (May), 
annual rainfall 1,667 mm and has an average altitude of 1,337 
m. Surkhet is a suburban area located in the western region, 

with the area of 2,451 km2 and the population density 143/
km2. The annual temperature of this city ranges from 15.1°C 
(January) to 27.0°C (April), rainfall 1,392 mm (July) and has 
an average altitude of 875 m. The conventional seasons in the 
country were classified as summer, rainy and winter which 
falls from March to May, June to August and December to 
February respectively. 

The NDVI data were downloaded from MODIS’s website 
(ORNL DAAC 2015). Data were specified for a period from 
2000, the starting point of MODIS service, to 2015. The 
NDVI data were observed in every 16-day interval period, 
there were around 23 observations every year, that made a 
total of 345 observations for 15 years. In each of the three 
selected areas, NDVI observation occurred in 6561 grids 
(81×81). The data for all three regions were retrieved by 
the same process. 

The raw data of each NDVI grid were divided by 10000 to 
obtain the values ranging from -1 to +1. The negative values 
up to 0 correspond to water. The values from 0 to 0.1 mean 
soil, rocks or concrete, the snow land and barren land. Low 
positive values (0.2 to 0.4) represent shrubs and grassland. 
The value close to 1 (0.6 and above) means the forest (Wei-
er & Herring 2000). A higher NDVI value represented the 
denser vegetation in the area. 

The seasonal pattern of vegetation in an area does not 
vary much among its nearby grids unless the geography 
and climate features of the area is hugely changed. That is 
why, only the central position grid, out of 6561, is chosen 
for analysing the seasonal pattern of vegetation. However, 
even though the trend of NDVI (that means the change of 
vegetation by time) can vary in the shorter distance too, all 
the grids are not considered for analysis to avoid the special 
correlation of the data. Hence, 49 locations were system-
atically selected to represent the whole study site. Then, 
from each location, four surrounding grids were chosen for 

5 
 

 

Fig. 1: Map of Nepal highlighting the three study areas. 
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analysis and that made 196 grids altogether. The process was 
repeated for all three sites one by one.

Data Management

First of all, NDVI was plotted with respect to observation day 
as shown in Fig. 2 (a, b and c). Here, n is the total number 
of observations and every dot on each vertical grid line rep-
resents one observation value on the same recording period. 
Therefore, every vertical line on the x-axis displays 15 dots 
of NDVI values corresponding to a particular day in each 
of the 15 years. This plot starts from Julian day 1 and ends 
on day 365. The data structure needs to be further managed 
before going into analysis due to big data gaps (big NDVI gap 
between consecutive 8 day’s series is practically impossible 
in case of vegetation growth) and unreliable values (all data 
of a particular satellite for a particular site would be unusual 
when temperature data is deemed faulty). Those data are 
believed to reduce the value outcome of the result and hence 
eliminated before analysis. From Fig. 2, cross marked points 
are the sparse NDVI data and blue dots are indicated to be 
unreliable values, all are eliminated before analysis. 

The Statistical Methods

First of all, the NDVI data for the central grid were analysed 
to identify the annual seasonal pattern by using a cubic spline 
function. The form of the function is, 
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Where, St is the spline function, α, b and c k are the parameters in the model. k is the 

location of knot. t denotes time in Julian day, that is, specified day of the year. t1 < t2 < 

... < tp are specified knots and (t – tk) + means that (t – tk) is positive for (t > tk) and zero 

	 …(1)

Where, St is the spline function, α, b and c k are the 
parameters in the model. k is the location of knot. t denotes 
time in Julian day, that is, specified day of the year. t1 < t2 
< ... < tp are specified knots and (t – tk) + means that (t – tk) 
is positive for (t > tk) and zero otherwise.

The data were, then, seasonally adjusted to stabilize the 
mean of the data. The seasonal adjustment was computed by,
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Here, y is the seasonally adjusted NDVI, a  is intercept 
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 Here, Y is a vector of seasonally adjusted NDVI, E(Y) or   is an expected value 

of Y, 1g  is an inverse link function, T is a matrix of observation days and   is a vector 

of regression coefficients. 

 All data analysis and graphical displays were carried out using R Statistical 

Programming version 3.2.1(R Core Team 2015).  
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The NDVI in the east region extended from 4-8.5 (Fig. 2 a), meaning, it consists of 

shrubs as well as the densely wooded forest. The central region showed a narrow 

variation, from 0.65 to 0.90, indicated that vegetation is dominantly the big trees. The 

western region was identified with a range from 0.4 to 0.8 meaning the area equally had 
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Besides, a lot of variations in vegetation response towards the seasonal effects were 
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in Dhankuta (Fig. 2 (a)) showed the growth pattern with a peak in the rainy season and 

	  …(5)

Here, Y is a vector of seasonally adjusted NDVI, E(Y) or 
m is an expected value of Y, g-1  is an inverse link function, T 
is a matrix of observation days and g is a vector of regression 
coefficients.

All data analysis and graphical displays were carried 
out using R Statistical Programming version 3.2.1(R Core 
Team 2015). 

RESULTS 

Seasonal Pattern from Cubic Spline Function

Based on trial and error, eight knots (blue plus sign at the 
bottom of Fig. 2 a, b and c) were fixed at the position of 15, 
40, 70, 120, 150, 200, 230 and 350 days of the year, to fit 
cubic spline function. The plots of fitted values from cubic 
spline function for east, centre and west areas showed that r 
squared increased from, respectively, 11, 15 and 58, (before) 
to 86, 50 and 82 after the data management process.

The NDVI in the east region extended from 4-8.5  
(Fig. 2 a), meaning, it consists of shrubs as well as the densely 
wooded forest. The central region showed a narrow variation, 
from 0.65 to 0.90, indicated that vegetation is dominantly the 
big trees. The western region was identified with a range from 
0.4 to 0.8 meaning the area equally had both shrub and trees. 

Besides, a lot of variations in vegetation response towards 
the seasonal effects were observed. The three seasons in Ne-
pal are broadly classified as, summer: March, day 61 to May, 
day 150, rainy: June, day 151 to August, day 240 and winter: 
December, day 360 to February, day 60. When the data were 
plotted from day 1 to day 365, the NDVI in each selected 
region [Fig. 2 (a-c)] showed the growth pattern with a peak 
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in the rainy season and gradually declined to trough in winter. 
The beginning of the season (greening) in east, centre and 
west took place in days 81, 97, 129 while the end of the sea-
son (browning) occurred on 257, 273, 273 days respectively. 
Here, both greening and browning are earlier in the east than 
the other areas. The result of seasonal patterns of vegetation in  
Kathmandu valley and Surkhet are similar with some differ-
ence in eastern Dhankuta. In former two areas, NDVI peaks 
in the rainy season and declines to trough in the winter season  
[Fig. 2(b) and 2(c)] where the greening is remarkably late 
by 60 to 70 days as compared to the eastern region. These 
graphs clear that start of the season (greening of vegetation) 
had a trend to move from east to the westward area and same 
was the case of browning. 

Time Series Trends from Linear Model

The results from the linear regression models of 196 selected 
grids, were plotted separately for 15 years. In Fig. 3, only 
two grid plots were selected to represent increasing and de-
creasing trends from each of the three locations. The green 
horizontal line across the graph explains the NDVI trend 
for 15 years period the annual seasonal fluctuation cycle of 
NDVI, derived from the spline function was added back to 
the plot and shown in the red line. In Fig. 3 to Fig. 5, black 
dots are data points plotted year wise. The cross dots are the 
data eliminated at the time of cubic spline fit. The increas-
ing or decreasing trend (Inc/dec) per decade and respective 
p-values from linear regression show how much vegetation 
has been changed from 2000 to 2015. Here, n represents the 
number of observations in each plot.

In the eastern region [Fig. 3 (a) and (b)], the total increas-
ing trend was in 85.20% area and out of that 69.5% was found 
significant. The decreasing trend was in 14% with 47% being 
significant in the area. Hence, we can say that majority of 
vegetation was tending to rise in this area. The central region 
[Fig. 4 (a) and (b)] has a mixed form of result. The total rise 
was seen in 56.50% area and only 40.70% was significant. 
The decreasing trend was in 40.10% out of which 60.30% 
were significant. The result is almost balanced between 
increasing and decreasing trends. Therefore, the net gain 
or trend seemed to be balanced here. Finally, in the western 
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GEE and Confidence Interval Plot 

All the 196 grids’ data for 15 years, were staked into one, 
separately for every area. The data were then divided into 
three time sections of five years each, they are, 2000-2004, 
2005-2009 and 2010-2015. Finally, to take account of the 
autocorrelation of the data, GEE were fitted to each of five 
years of data in each site. A 95% CI plots were drawn from 
the mean of predicted values from the model to show vegeta-
tion trends in three time sections (Fig. 6). The red horizontal 
line is the level of no change of NDVI and the area above 
it indicates the increasing pattern and below it means the 
vegetation is decreasing state. The colourful vertical lines 
are CI plots of coefficients from the GEE model. 

The results from CI plots are much interesting. The 
changes in vegetation at different time frames were compared 
among the groups using CI plots and the overall temporal 
change were compared among the three study areas. 

East

The eastern area showed significant increasing trends 
of vegetation with the highest rate (0.022 per decade,  
p-value < 0.05) in the first period from 2000-2004 and the 
lowest rate (0.019 per decade, p-value < 0.05) in the latest 
phase, 2010-2015 (Fig. 6, green CI lines). Hence, the eastern 
area has an overall increasing trend but the rate of change is 
gradually declining. The recent trend showed that the mean 
increase in NDVI is 0.019 per decade.  

Centre

The red CI lines (Fig. 6) all lying at or below 0 change line 
indicate that the net change is negative here. In the central 
area, the negative values of NDVI showed that vegetation 
is declining with a faster rate in the latest period (-0.006 per 
decade, p-value < 0.05). 
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Fig. 4: Increasing (a) and decreasing (b) trends in central Kathmandu. 
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Fig. 4: Increasing (a) and decreasing (b) trends in central Kathmandu.
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Fig. 5: Increasing (a) and decreasing (b) trends in Surkhet. 
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Fig. 5: Increasing (a) and decreasing (b) trends in Surkhet.

part [Fig. 5 (a) and (b)], the increase was seen in 81.63% 
of the area and 75% was significant. Also, out of the total 
decreasing trend, 80.76% was significant. 
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The eastern area showed significant increasing trends of vegetation with the highest 

rate (0.022 per decade, p-value<0.05) in the first period from 2000-2004 and the lowest 

rate (0.019 per decade, p-value<0.05) in the latest phase, 2010-2015 (Fig. 6, green CI 

lines). Hence, the eastern area has an overall increasing trend but the rate of change is 

gradually declining. The recent trend showed that the mean increase in NDVI is 0.019 

per decade.   

 

Fig. 6: Fifteen years trend of NDVI in the east (a), centre (b) and west (c) areas. 

Centre 

The red CI lines (Fig. 6) all lying at or below 0 change line indicate that the net change 

is negative here. In the central area, the negative values of NDVI showed that vegetation 

is declining with a faster rate in the latest period (-0.006 per decade, p-value<0.05).  

 

West 

Fig. 6: Fifteen years trend of NDVI in the east (a), centre (b) and west  
(c) areas.
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West

In the western area, the vegetation is significantly increasing 
in overall study period similar to in eastern area (Fig. 6, pink 
CI lines). However, this area showed a recent faster rate of 
increment as compared to the earlier periods. The recent five 
years showed that the mean increase rate is 0.014 per decade 
(p-value < 0.05).

DISCUSSION

The seasonal pattern of vegetation, in this study, showed that 
it grew the highest in the rainy season and gradually declined 
to the lowest in the winter season, probably due to defoliation 
and physiological dormancy. Minimum and maximum NDVI 
help us in identifying the intra-annual vegetation change (Liu 
2017). This result is consistent with other studies in tropical 
or temperate vegetation (Suepa et al. 2016, Zang et al. 2016, 
Chen et al. 2014, Evrendilek & Gulbeyaz 2008, Yin et al. 
2016). Also, it is scientifically proved that a relatively cooler 
air temperature reduces the plant physiology including its 
growth (Fitter & Hay 2002). The seasonal fluctuation of 
vegetation may occur due to several climatic factors like the 
temperature, rainfall, humidity and the seasons which this 
study does not explain. The east area is quicker to be affected 
by the seasonal change (both start of greening and browning). 
It might be due to its proximity of the area to the Bay of 
Bengal, where Nepal draws the monsoon from. That is why 
it receives earlier and more precipitation during rainy season 
resulting in a shift of seasonal changes from east to westward 
region. The phonological shift was studied (Suepa et al. 
2016) in Southeast Asia but on the annual (temporal) basis. 
While in our study, the seasonal shift of vegetation pattern 
is intra-annual and spatial type. This result will particularly 
be helpful in the agricultural sector to understand the annual 
climate response of vegetation or crops, especially to under-
stand the existing phenological characteristics of the area.

Actually, the vegetation trends have nothing to do with 
the monsoon and seasons. It reflects the direction of change 
over a period of time. This study identified that the annual 
vegetation trend is considerably rising in east and west areas 
of Nepal while the central Kathmandu showed a declining 
trend. The Global NDVI trend studied during 1982-2012 
showed an increasing trend in many parts of the world  
including India and Southeast China (Liu et al. 2015). Nepal 
lies in between these two blocks and possibly have a similar 
increasing trend overall. But Kathmandu being a growing 
urban area and densely populated city, might have been 
affected by several local environmental factors to show a 
decline of vegetation and hence, detecting the local varia-

tion of vegetation change within a country is unique in this 
study. 	

The method of data management had contributed to 
obtaining much improved result from cubic spline to obtain 
the seasonal patterns and also the method can be applicable 
for analysing other noisy data. Here, the spline function 
along with linear regression and GEE models have been 
successfully used to analyse the seasonal pattern and the 
time series trends of NDVI. 

However, this study is limited to local sites and study does 
not answer the overall factors contributing to these particular 
trends and patterns. This can be further worked out.   

CONCLUSION 

To sum up, this study shows the changes in NDVI in two 
ways. First, the seasonal pattern at a grid level, that clears 
the local level intra-annual change and second, the trend of 
vegetation in 15 years period. Moreover, a comparison of 
rates of changes within specified time segments can be made 
clear by CI plots. Eastern part of Nepal shows a wider range 
of vegetation with faster annual greening and browning than 
the rest of the two areas. The vegetation in Nepal has been 
increasing from 2000 to 2015 in sub-urban areas (Dhankuta 
and Surkhet) while it decreases in the urban region (Kath-
mandu). The study has academic implication in assessing the 
seasonal changes and time-series trends. It can also provide 
important information for urban planners, agriculturalists 
and the environmental experts. The study underpins the focus 
on analysing the potential reason behind this kind of NDVI 
changes in Nepal.
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