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	        ABSTRACT
Land Use and Land Cover (LULC) classification is critical for monitoring and managing 
natural resources and urban development. This study focuses on LULC classification 
for change detection analysis of remotely sensed data using a machine learning-based 
Random Forest classifier. The research aims to provide a detailed analysis of LULC changes 
between 2010 and 2020. The Random Forest classifier is chosen for its robustness and high 
accuracy in handling complex datasets. The classifier achieved a classification accuracy of 
86.56% for the 2010 data and 88.42% for the 2020 data, demonstrating an improvement in 
classification performance over the decade. The results indicate significant LULC changes, 
highlighting areas of urban expansion, deforestation, and agricultural transformation. These 
findings highlight the importance of continuous monitoring and provide valuable insights for 
policymakers and environmental managers. The study demonstrates the effectiveness of 
using advanced machine-learning techniques for accurate LULC classification and change 
detection in remotely sensed data.

INTRODUCTION

Land Use and Land Cover (LULC) classification is a crucial aspect of 
environmental monitoring and management, providing insights into the spatial 
distribution and temporal dynamics of the Earth’s surface (Mahendra et al. 2023a). 
The classification and subsequent change detection of LULC are fundamental for 
understanding ecological dynamics, urban planning, and resource management 
(Kumar et al. 2008). Traditionally, LULC mapping relied on manual interpretation 
of satellite images, which was both time-consuming and prone to human error. 
With advancements in remote sensing technology, it is now possible to acquire 
high-resolution, multi-temporal satellite imagery, facilitating more efficient and 
accurate LULC classification (Ganesha et al. 2020).

In recent years, the integration of machine learning techniques with remote 
sensing technologies has emerged as a powerful collaboration, offering 
unprecedented capabilities for analyzing vast amounts of spatial data (Hosseiny 
et al. 2022, Mahendra et al. 2023d). This research delves into the application of a 
machine learning-based random forest classifier for the classification and change 
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detection of remotely sensed data. Remote sensing, with its 
ability to capture information from a distance, provides an 
invaluable tool for monitoring changes in the Earth’s surface 
over time (Li et al. 2013). Leveraging the efficiency and 
versatility of machine learning algorithms, particularly the 
random forest classifier, holds the promise of enhancing the 
accuracy and automation of such analyses (Pande  2022, 
Jayabaskaran & Das 2023, Jensen et al. 2001).

The classification of remotely sensed data is a fundamental 
step in extracting meaningful information about land cover 
and land use (Belgiu & Drăguţ 2016). Traditional methods 
often face challenges in handling the complexity and 
variability present in large-scale datasets (Lu & Weng 
2007). This research seeks to address these challenges by 
exploring the random forest (RF) classifier’s ability to handle 
high-dimensional data, nonlinear relationships, and complex 
interactions between spectral bands. By employing this 
machine learning approach, we aim to improve the precision 
and efficiency of land cover classification, leading to more 
reliable assessments of the Earth’s surface characteristics.

Change detection, a critical component of land 
monitoring, involves identifying alterations in land cover 
over time (Firoz et al. 2016 Mahendra et al. 2023b). As 
environmental dynamics accelerate, timely and accurate 
detection of changes becomes paramount for informed 
decision-making (Vivekananda et al. 2021). The random 
forest classifier, known for its adaptability and robustness, 
presents an innovative solution for change detection in 
remotely sensed imagery (Gislason et al. 2004 Mahendra 
et al. 2023c). Through a systematic analysis of temporal 
datasets, this research aims to evaluate the random forest 
classifier’s performance in detecting and characterizing 
land cover changes, contributing to our understanding of 
environmental transformations on both regional and global 
scales (Mahendra & Mallikarjunaswamy 2022).

The integration of machine learning algorithms into the 
realm of remote sensing not only promises advancements 
in accuracy and efficiency but also opens avenues for 
scalable and automated analyses (Mahendra et al. 2019). 
By exploring the potential of the random forest classifier in 
this context, we aspire to contribute to the ongoing discourse 
on the optimization of land cover classification and change 
detection methodologies (Tiwari et al. 2024). This research 
aligns with the broader objective of harnessing technology to 
address environmental challenges and facilitate sustainable 
land management practices, ultimately fostering a deeper 
understanding of our planet’s ever-evolving landscape. The 
outcomes of this research contribute valuable insights into 
the effectiveness of machine learning-based random forest 
classifiers for remotely sensed data analysis. The findings 

have implications for a range of applications, including 
environmental monitoring, land-use planning, and natural 
resource management. Eventually, this research enhances our 
ability to harness the power of machine learning for accurate 
classification and change detection in remotely sensed 
datasets, facilitating a more comprehensive understanding 
of dynamic land cover patterns.

RELATED WORKS

The use of remotely sensed data in environmental monitoring 
and analysis has been widely explored in the literature. 
Numerous studies have investigated the application of 
various classification techniques to interpret and classify 
remote sensing data. Notable works include Davis & 
Townshend (2002) and Mahendra et al. (2023c), who 
employed Support Vector Machines (SVM) for land cover 
classification, and Voulgaris & Magoulas (2008), who 
utilized k-Nearest Neighbors (k-NN) for similar purposes. 

A range of studies have demonstrated the effectiveness 
of random forest classifiers in analyzing remotely sensed 
data. Piramanayagam et al. (2016) achieved an 86.3% overall 
accuracy in land cover classification using this method, 
while Mellor et al. (2014) obtained a 73% accuracy in forest 
classification. Gislason et al. (2004) further highlighted the 
potential of random forests in handling multisource data, and 
Belgiu & Drăguţ (2016) emphasized their ability to handle 
high data dimensionality and multicollinearity. Mosin et al. 
(2019) presented tree detection and classification in forestry 
applications using machine learning. A system with finely 
tuned filters will make possible robust species classification 
at a cost much lower than hyperspectral imaging. Boukir 
& Mellor (2017) used random forests for remote sensing 
classification. Targeting lower-margin training samples is 
a strategy for inducing diversity in ensemble classifiers and 
achieving better classifier performance for difficult or rare 
classes.

Pal (2005) developed a random forest classifier remote 
sensing image classification.  The number of user-defined 
parameters required by random forest classifiers is less than the 
number required for SVMs. Zerrouki et al. (2019) presented 
LULC Change Detection analysis using a machine learning-
based algorithm. The proposed detection scheme succeeds in 
effectively identifying land cover changes. Sheykhmousa et 
al. (2013) compared the Random forest- and support vector 
machine-based multi-temporal classifications. Tian et al. 
(2016) used the random forest classifier to achieve accurate 
classification in the Ertix River in northern Xinjiang, China.

The Random Forest (RF) classifier has proven to be 
a robust and versatile machine learning algorithm for 
remote sensing applications. Studies such as Nguyen et al. 
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(2018) have demonstrated the effectiveness of RF in land 
cover mapping, showcasing its ability to handle diverse 
spectral information and improve classification accuracy. 
Additionally, Shihab et al. (2020) applied RF to detect 
changes in land cover over time, showcasing its utility in 
change detection analyses. Several studies have combined 
classification and change detection methodologies to monitor 
environmental changes over time. Abdi (2020) conducted 
a comprehensive analysis using a combination of machine 
learning classifiers and change detection algorithms to assess 
land cover changes in a specific region. Their work highlights 
the importance of integrating classification techniques 
with change detection methods for a more comprehensive 
understanding of dynamic environmental processes.

While the existing literature provides valuable insights 
into the application of machine learning-based classifiers 
for remote sensing, there is still a need for research that 
specifically focuses on the integration of Random Forest 
classifiers for both classification and change detection tasks. 
This research aims to address this gap by presenting a detailed 
analysis of the performance of Random Forest in classifying 
remotely sensed data and detecting temporal changes, 
contributing to the advancement of effective environmental 
monitoring techniques.

STUDY AREA 

Mysuru district, located in the southern part of the Indian 
state of Karnataka, is renowned for its rich historical and 
cultural significance. The district serves as the cultural 
capital of Karnataka and is steeped in the grandeur of its 
royal heritage. The city of Mysuru, also known as the ‘City 
of Palaces,’ is home to the iconic Mysuru Palace, a splendid 

architectural masterpiece that attracts tourists from around 
the world. The palace, built in Indo-Saracenic style, stands 
as a testament to the opulence and grandeur of the Wadiyar 
dynasty, which ruled the region for centuries. Apart from 
the palace, Mysuru is known for its vibrant Dasara festival, 
celebrated with grandeur, featuring a procession of decorated 
elephants, cultural events, and a spectacular illumination of 
the palace.

The district is not just a historical and cultural hub but 
also boasts a diverse geographical landscape. Nestled in the 
Deccan Plateau, Mysuru is surrounded by lush greenery, 
picturesque hills, and serene lakes. The Chamundi Hills, 
with the Chamundeshwari Temple perched on top, provide 
a panoramic view of the city. Mysuru is also home to the 
enchanting Brindavan Gardens, known for its musical 
fountain and beautifully landscaped terraces. Additionally, 
the district is recognized for its educational institutions, 
including the historic Mysore University, contributing to 
the intellectual and academic development of the region. 
With its blend of cultural heritage, natural beauty, and 
educational excellence, Mysuru district stands as a unique 
and vibrant destination in the heart of South India. The map 
of the Mysuru district is shown in Fig. 1.

MATERIALS AND METHODS

Linear Imaging Self-Scanning Sensor-III (LISS-III) is a 
satellite sensor data used in this work. This sensor is designed 
for remote sensing applications, particularly in the field of 
Earth observation. Developed by the Indian Space Research 
Organization (ISRO), LISS-III is part of the payload onboard 
the Indian Remote Sensing (IRS) satellites. This sensor 
operates in the visible and near-infrared spectral bands, 
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capturing high-resolution imagery with a spatial resolution 
ranging from 23.5 meters to 5.8 meters, depending on the 
specific satellite and its orbital parameters. The multi-
spectral capabilities of LISS-III enable it to provide valuable 
data for a variety of applications, including agriculture 
monitoring, land use planning, disaster management, and 
environmental studies.

One notable aspect of LISS-III is its ability to acquire 
imagery in multiple spectral bands, such as blue, green, 
red, and near-infrared. This spectral diversity allows for the 
extraction of valuable information about the Earth’s surface 
and vegetation health. The high spatial resolution of LISS-III 
imagery enhances the level of detail in the captured data, 
making it a valuable tool for precision agriculture, urban 
planning, and natural resource management. Researchers, 
government agencies, and industries leverage LISS-III 
data to make informed decisions and monitor changes in 
the environment over time, contributing to sustainable 
development and effective resource utilization. Table 1 
provides the details of satellite data used in the study. 

Methodology 

LULC classification using RF involves a systematic 
methodology to accurately categorize different land use 
and land cover types based on remote sensing data. The 
first step in the process is data acquisition, where high-
resolution satellite imagery is obtained for the study area. 
These images serve as the input data for the classification 
model. Preprocessing steps, such as radiometric and 
atmospheric correction, are performed to enhance the quality 
of the images and ensure consistency across the dataset. 
Additionally, feature extraction may be employed to identify 
relevant spectral, spatial, and textural characteristics that can 
aid in distinguishing between different land cover classes.

The second step involves the application of the RF 
algorithm for classification. RF is an ensemble learning 
technique that combines the predictions of multiple decision 
trees to improve overall accuracy and robustness. Training 
data, consisting of labeled samples representing different land 
cover classes, are used to train the RF model. The algorithm 
leverages the spectral signatures and spatial patterns present 
in the training data to build a robust classification model. 
The model is then applied to the entire dataset, classifying 
each pixel or image segment into specific land cover 

categories. Finally, an accuracy assessment is conducted 
using validation data to evaluate the performance of the RF 
classifier and refine the model if necessary. This iterative 
process ensures the generation of reliable and accurate LULC 
maps for informed decision-making in various applications, 
such as environmental monitoring, urban planning, and 
natural resource management. The methodology followed 
in this research work is shown in Fig. 2. 

Data acquisition: The first step in our methodology involves 
acquiring remotely sensed data covering the study area. This 
may include satellite imagery captured at different time 
points. In this work, we have obtained the LISS-III image 
of the study area for the years 2010 and 2020, respectively.  

Pre-Processing: Pre-processing tasks such as atmospheric 
correction, radiometric calibration, and geometric correction 
are performed on both the LISS-III images to enhance the 
quality of the imagery. Atmospheric correction of satellite 
data involves removing the effects of the atmosphere, such 
as scattering and absorption) on the reflected light reaching 
the sensor. This process ensures that the data accurately 
represents surface reflectance by compensating for 
atmospheric distortions. Techniques include using radiative 
transfer models, ground-based measurements, or empirical 
methods. Corrected data is essential for accurate analysis 
in remote sensing applications. Radiometric correction of 
satellite data involves adjusting the pixel values in an image 
to account for sensor-specific errors, atmospheric conditions, 
and illumination differences. This ensures that the observed 
reflectance values represent true ground conditions. The 
process typically includes calibration using known reference 
targets and correcting for atmospheric scattering and 
absorption. It improves the accuracy and consistency of 
the satellite data for further analysis. Geometric correction 
of satellite data involves aligning images to a standard 
coordinate system by correcting distortions due to sensor 
geometry, satellite motion, and Earth’s curvature. This 
process typically uses ground control points (GCPs) to match 
the satellite image to a reference map or coordinate system. 
It ensures accurate spatial representation, making the data 
usable for further analysis and comparison. 

Feature selection and extraction: Next, we focus on 
selecting and extracting relevant features from the remotely 
sensed data.  Feature selection in satellite data typically 
involves parameters like spectral bands, in which the 
selection of specific wavelengths relevant to the study (e.g., 
visible, nir, thermal), spatial resolution is choosing the pixel 
size that balances detail with computational efficiency, 
temporal resolution is selecting data from relevant time 
periods or frequencies of observation, topographic features 
is inclusion of elevation, slope, and aspect to account for 

Table 1: Satellite data.

Satellite Name Spatial resolution 
(meters)

Sensor Used Year of 
Acquisition

Resourcesat-1 24m LISS-III 2010

Resourcesat-1 24m LISS-III 2020
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terrain effects, and radiometric calibration is ensuring the 
data is corrected for sensor and atmospheric influences.

Training data collection: A representative set of training 
data is essential for training the random forest classifier. 
Ground truth data collected through field surveys or existing 
high-quality reference datasets should be used to label 
the training samples. These labeled samples should cover 
the full range of land cover classes present in the study 
area. Care must be taken to ensure an adequate number of 
samples for each class, avoiding bias in the classifier towards 
overrepresented classes.

Random forest classification: The heart of our analysis 
involves the application of a machine learning-based 
RF classifier to the pre-processed and feature-selected 
datasets. The classifier will be trained using the labeled 
training samples, learning the relationships between the 
selected features and the corresponding land cover classes. 
The algorithm’s ability to handle complex and non-linear 
relationships makes it well-suited for classifying remotely 
sensed data. The resulting classification map will provide a 
detailed representation of land cover types in the study area.

Change detection analysis: To detect changes over time, 
a comparative analysis is performed between classification 
results from different time points. The classified maps for 
each time period are compared pixel-wise to identify areas 
of change. Post-classification change detection techniques 
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may be applied, such as image differencing or the calculation 
of vegetation indices for change assessment. This step 
allows for the identification and characterization of land 
cover changes, such as urban expansion, deforestation, or 
agricultural land conversion.

Accuracy assessment and validation: The final step 
involves assessing the accuracy of the classification and 
change detection results. This is done by comparing the 
classified maps with independent validation datasets or 
ground truth data not used during the training phase. 
Accuracy metrics, such as overall accuracy, producer’s 
accuracy, and user’s accuracy, are calculated to quantify 
the reliability of the classification. This step ensures the 
robustness of the analysis and provides insights into the 
effectiveness of the random forest classifier in capturing 
temporal changes in the remotely sensed data.

Random Forest (RF) Classifier 

RF classifier has emerged as a powerful tool for the 
classification and change detection analysis of remotely 
sensed data. In the view of Earth observation, where satellite 
imagery plays a crucial role, the RF algorithm stands out 
for its versatility and robustness. Comprising an ensemble 
of decision trees, RF leverages the principle of bagging 
(bootstrap aggregating) to construct multiple trees, each 
trained on a subset of the data. This diversity in the ensemble 
enhances the model’s generalization capabilities, making it 
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well-suited for handling the complex and high-dimensional 
nature of remote sensing datasets.

In the context of classification, RF excels in distinguishing 
between land cover classes, a fundamental task in remote 
sensing applications. The algorithm’s ability to consider 
a multitude of spectral, spatial, and temporal features 
allows for more accurate and comprehensive classification 
outcomes. Additionally, the RF model provides information 
about feature importance, aiding in the interpretation of the 
classification results and enabling users to understand the key 
factors influencing land cover distinctions. Change detection, 
a critical aspect of monitoring environmental dynamics, 
benefits significantly from the Random Forest classifier. 
By comparing classifications from different time points, RF 
can identify changes in land cover with high precision. The 
ensemble nature of the algorithm enhances its sensitivity to 
subtle alterations in the landscape, making it particularly 
effective for detecting land cover changes caused by natural 
phenomena or human activities.

The RF resistance to overfitting and capacity to handle 
noisy data contribute to its reliability in remote sensing 
analyses. The algorithm accommodates a wide range of 
input data types, such as multispectral or hyperspectral 
imagery, as well as ancillary information like topographic 
and meteorological data. This adaptability makes it a 
versatile choice for various remote sensing applications, 
from monitoring urban expansion to assessing deforestation. 
In summary, the RF classifier has proven to be an invaluable 
tool for classification and change detection analyses of 
remotely sensed data. Its ensemble-based approach, feature 
importance insights, and adaptability to different data 
types contribute to its widespread use in Earth observation 
studies. Whether applied to monitor land cover changes, 
map vegetation types, or assess environmental impacts, the 
RF algorithm stands as a robust and reliable solution in the 

ever-evolving field of remote sensing. The working principle 
of the random forest classifier is shown in Fig. 3. 

Ensemble learning: Random Forest is an ensemble of 
decision trees. Ensemble learning combines the predictions 
of multiple models to improve overall accuracy and 
robustness. In the case of Random Forest, it builds a forest 
of decision trees and merges their outputs to make a more 
informed and reliable prediction.

Decision trees: Each tree in the Random Forest is a 
decision tree. Decision trees split the input data based on 
features, recursively dividing it into subsets until a certain 
condition is met. The decision at each node is made by 
evaluating a feature, and the goal is to make the final decision 
(classification) at the tree’s leaf nodes.

Random feature selection: Randomness is introduced in 
Random Forest through the selection of a random subset of 
features for each decision tree. This helps to decorate the 
trees and avoid overfitting specific features in the dataset. The 
algorithm doesn’t use the entire set of features for each tree, 
which increases the diversity of the trees in the ensemble.

Bootstrap sampling: Another source of randomness is 
introduced through bootstrap sampling, also known as 
bagging (Bootstrap Aggregating). Random Forest builds 
each tree on a different subset of the training data, sampled 
with replacement. This means that some instances may be 
repeated in the subset while others may be left out.

Voting or averaging: Once all the decision trees are built, 
predictions are made for each tree. In classification, the final 
prediction is often determined by a majority vote among the 
trees (for binary classification, it’s a simple majority). For 
regression tasks, the predictions are averaged.

Robustness and generalization: The combination of 
multiple trees and the randomness introduced in feature 
selection and data sampling makes Random Forest robust 
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and less prone to overfitting. It can handle noisy data and 
outliers better than individual decision trees.

Feature importance: Random Forest provides a measure 
of feature importance based on how often a feature is used 
to split the data across all trees. This can be valuable in 
understanding the significance of different features in the 
classification process.

Change detection analysis: In the context of change 
detection, random forest can be applied by training the model 
on historical data representing different classes (e.g., land 
cover types) and then using the trained model to classify 
new or updated data. Changes can be detected by comparing 
classifications over different periods.

Overall, the Random Forest classifier’s strength lies in its 
ability to create a robust and accurate model by combining 
multiple decision trees and introducing randomness through 
feature selection and data sampling. This makes it well-suited 
for classification tasks, including change detection analysis 
in various domains.

RESULTS AND DISCUSSION

LULC Classification and Assessment 

The study identified and delineated various land cover 
classes across the study area. The prominent land cover 
classes included built-up areas, water bodies, cultivated land, 
fallow land, scrubland, vegetation, and forest. In the analysis 

of LULC for the year 2010, the classified maps revealed 
distinctive patterns across various categories. The built-up 
areas exhibited a significant expansion, indicating urbani-
zation and infrastructure development. Water bodies were 
identified with precision, reflecting the spatial distribution 
of lakes, rivers, and other aquatic features. Cultivated lands 
showcased a mix of agricultural activities, highlighting the 
regions contributing to food production. Fallow lands, scrub 
lands, and vegetation were discerned, providing insights into 
transitional and natural landscapes. Forest cover was evident, 
emphasizing the importance of preserving biodiversity and 
ecological balance. The comprehensive classification of 
LULC in 2010 laid the foundation for understanding the 
baseline landscape and served as a valuable reference point 
for subsequent years. 

Fast forward to the year 2020, the classified maps 
depicted dynamic changes in LULC, indicative of 
evolving environmental and societal factors. Built-up areas 
exhibited continued expansion, illustrating ongoing urban 
development. Water bodies maintain their distinct presence, 
which is crucial for monitoring aquatic ecosystems and 
water resource management. Cultivated lands showcased 
alterations in land use patterns, reflecting changes in 
agricultural practices. The identification of fallow lands, 
scrub lands, and vegetation highlighted areas undergoing 
transition or ecological restoration efforts. Notably, the forest 
cover exhibited fluctuations, underlining the importance 
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Fig. 4: LULC classified map of the Mysuru district for the year 2010. 

 

Fig. 5: LULC classified map of the Mysuru district for the year 2020. 

 

 

Fig. 4: LULC classified map of the Mysuru district for the year 2010.
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of conservation efforts amidst increasing anthropogenic 
pressures. The comparative analysis between the 2010 and 
2020 classified maps unveiled trends in land use dynamics, 
providing valuable insights for informed decision-making in 
the realms of urban planning, environmental conservation, and 
sustainable resource management. The classified map of the 
Mysuru district for the years 2010 and 2020 is shown in Fig. 
4 and Fig. 5, respectively. The LULC assessment has been 
carried out for both the classified map and the corresponding 
assessment results of both years are shown in Table 2. The 
total geographical area of Mysuru district is 6307 sq. km.

Performance Analysis 

The Random Forest classifier demonstrated commendable 
accuracy in LULC mapping for both periods. The 
classification accuracy was measured at 86.56% for the 
year 2010 and exhibited improvement to 88.42% in 2020 as 
shown in Table 3. This upward trend in accuracy indicates 
the robustness of the classification model, suggesting its 
efficacy in capturing changes in land cover over time. 
The increase in accuracy from 2010 to 2020 underscores 
the classifier’s ability to adapt and enhance performance, 
likely attributed to improvements in training data and model 
optimization. This increase in classification accuracy reflects 
the effectiveness of the chosen methodology in capturing 
land use and land cover changes over the decade. The higher 
accuracy in 2020 suggests the model’s ability to adapt to the 
evolving landscape, highlighting its robustness in handling 
temporal variations. The other performance parameters such 
as precision, recall, and F1is also calculated for both the 
classified images. Table 3 compares the performance of an 
RF model using satellite images from two different years, 
2010 and 2020, respectively. For 2010 classified data, the 
model achieved a precision of 85%, recall of 84%, and F1 
score of 86%, with an accuracy of 86.56% and a Kappa value 
of 85.86%. While 2020 classified data, the model slightly 
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Fig. 4: LULC classified map of the Mysuru district for the year 2010. 

 

Fig. 5: LULC classified map of the Mysuru district for the year 2020. 

 

 

Fig. 5: LULC classified map of the Mysuru district for the year 2020.

Table 2: Assessment of LULC classes.

Class Name 2010 2020 Change in area 
(sq. km)Area (in sq. 

km)
Area (in 
sq. km)

Built-up 292.24 411.78 119.54

Water bodies 287.55 346.92 59.37

Cultivated land 2986 3751.12 765.12

Fallow land 1096.51 123.26 -973.25

Scrubland 91.6 112.45 20.85

Vegetation 554.4 628.65 74.25

Forest 996.25 932.12 -64.13



9LULC DETECTION USING RANDOM FOREST CLASSIFIER ON REMOTE SENSING DATA

Nature Environment and Pollution Technology • Vol. 24, No. 2, 2025

improved with a precision of 86%, recall of 85%, and F1 
score of 86%, with a higher accuracy of 88.42% and the same 
Kappa value of 85.86%.

Further, the performance of the RF classifier is compared 
with other classification methods, as shown in Table 4. 
Table 4 compares different classifiers used in studies by 
various author, focusing on their performance with 2010 
and 2020 data. The classifiers listed include the Mnlogit 
model, RAVNet, Deep Learning (DL), Support Vector 
Machine (SVM), Multilayer Perceptron Classifier (MLC), 
and Weighted Random Forest (WRF).  The comparison 
results show that our RF provides the highest of 88.42%.

Temporal Changes in LULC

 The comparison of LULC maps for 2010 and 2020 revealed 
significant temporal changes in Mysuru district. Urban 
expansion, agricultural transformations, and alterations 
in natural vegetation were notable trends. The increase in 
classification accuracy facilitated the identification of subtle 
changes, allowing for a more nuanced understanding of 
how human activities and natural processes have influenced 
the landscape over the decade. This insight is crucial for 
informed land management and sustainable development 
planning. The analysis of the classified maps reveals 
significant changes in land use and land cover patterns within 
Mysuru district over the study period. Urban expansion, 
agricultural transitions, and alterations in natural land covers 
are evident. The increase in accuracy not only indicates 
the model’s improved performance but also enhances our 
understanding of the dynamics shaping the landscape. The 
identification of specific land cover changes, such as urban 
encroachment or alterations in vegetation types, can be 
crucial for informed land management and policy decisions.

Urbanization and Agricultural Dynamics

The study identified a substantial increase in urban areas, 
reflecting the rapid pace of urbanization in Mysuru district. 

This expansion is evident in the conversion of agricultural 
land and natural vegetation to built-up areas. Conversely, 
certain regions experienced agricultural intensification, 
possibly indicating shifts in crop patterns or land management 
practices. The Random Forest classifier proved effective in 
distinguishing between these land cover types, providing 
valuable information for urban planning, agricultural policy, 
and environmental conservation efforts.

Implications for Sustainable Land Management

 The accurate classification of LULC in the Mysuru district 
using the random forest classifier has important implications 
for sustainable land management and urban planning. The 
identification of areas experiencing rapid change allows 
policymakers to target conservation efforts or plan for 
infrastructure development. The observed trends in land 
use and land cover alterations can inform strategies to 
mitigate environmental impacts and promote sustainable 
practices. This study provides a valuable foundation for 
ongoing monitoring efforts and emphasizes the importance 
of regularly updating land cover classifications to capture 
dynamic changes in the landscape.

Challenges and Limitations

 Despite the overall success of the RF classifier, some 
challenges were encountered during the classification 
process. These challenges included the presence of spectral 
confusion in certain land cover classes and the need for 
careful consideration of spectral signatures. Additionally, 
cloud cover and atmospheric conditions in the satellite 
imagery posed constraints, emphasizing the importance 
of preprocessing techniques to mitigate these effects. 
Addressing these challenges is crucial for further improving 
the accuracy and reliability of LULC classifications. The 
resolution of the satellite data used in this study is 23.5m. 
However, classification accuracy can be further improved 
using high-resolution data. 

Table 3: Accuracy assessment results.

Model Satellite Images Precision Recall F1 Accuracy (%) Kappa Value

RF LISS-III 2010 85 84 86 86.56 % 85.86%

LISS-III 2020 86 85 86 88.42 % 86.32%

Table 4: Comparison analysis of different classification methods. 

# RF Hosseiny et al 
(2022) 

 Singh et al. 
(2021) 

Sengan et 
al. (2022) 

Sencaki et 
al. (2023) 

Mandla et 
al. (2021)

Vivekananda 
et al. (2021) 

Classifier 2010 Data 2020 Data Mnlogit 
model

RAVNet DL SVM MLC WRF

Accuracy [%] 86.56 88.42 86 81 73.3 82.83 87.46 85.30

Kappa Value 85.86 86.32 NA NA NA 0.81 0.857 0.87
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Implications and Future Directions

The results of this study have implications for land 
management, environmental monitoring, and urban planning 
in Mysuru district. The high accuracy achieved by the 
Random Forest classifier underscores its suitability for 
mapping and monitoring land cover changes. Future research 
should explore the integration of additional data sources, such 
as multi-sensor satellite imagery or ancillary data, to enhance 
classification accuracy further. Additionally, employing 
advanced machine learning techniques and incorporating 
ground-truth data could contribute to a more comprehensive 
understanding of the dynamic LULC patterns in the region.

CONCLUSIONS 

This research has demonstrated the efficiency of employing 
a machine learning-based random forest classifier for the 
classification and change detection of remotely sensed 
data. The utilization of a robust random forest algorithm 
has allowed for accurate and efficient classification of land 
cover classes, providing a valuable tool for applications such 
as environmental monitoring, urban planning, and resource 
management. The findings of this study show the importance 
of leveraging machine learning techniques, particularly the 
random forest classifier, in the field of remote sensing. The 
classifier achieved a classification accuracy of 86.56% for 
the 2010 data and 88.42% for the 2020 data, demonstrating 
an improvement in classification performance over the 
decade. The achieved high classification accuracy and 
sensitivity to temporal changes highlight the potential of this 
methodology for addressing the challenges associated with 
analyzing large-scale and dynamic environmental datasets. 
Future research could explore additional refinements and 
extensions of this methodology, as well as its application to 
different geographic regions and environmental contexts, 
to further advance the capabilities of machine learning in 
remote sensing applications.
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