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	       ABSTRACT
Since industrial and human activities have been developed, water quality intensely degrades 
in ‎Hilla River, Iraq. Using remote sensing technology provides data for assessing and 
monitoring water ‎quality in surface water bodies. Thus, in this study, Landsat 8 satellite 
images (2016 to 2021) were statistically tested for developing ‎linear models capable of 
estimating water quality parameters in the river based on field data, including turbidity ‎‎(turb), 
electric conductivity (EC), hydrogen ions (pH), total suspended solids (TSS), chloride ‎ions 
(Cl), sulfate ions (SO4), Alkalinity (ALK), total hardness (TH), calcium (Ca), ‎potassium (K), 
sodium (Na), magnesium (Mg), and total dissolved solids (TDS). The ‎results showed that 
seven parameters have a significant relationship with the spectral bands ratio (p-value 
‎less than 0.05). Some of them (TDS, SO4, and ALK) are positively correlated with bands 
‎ratio (Band10/Band3, Band10/Band3 and Band10/Band4, and Band3/Band7), respectively. 
Others (Mg, Ca, TH and pH) ‎are inversely correlated with (Band4/Band7, Band1/Band4, 
Band1/Band4, and Band1/Band2), respectively.‎ However, K, Na, TDS, Cl, EC and turb have 
an insignificant correlation with any band ratio.

INTRODUCTION

Surface water bodies are used for many purposes involving 
drinking water ‎sources, ‎recreation, transportation, and 
aesthetics. With several uses, these water forms are ‎subjected 
to ‎natural and human activities that can impact water quality. 
As a result, ‎mechanisms to help ‎protection of surface water, 
maintain present water quality, or prevent ‎surface water 
deterioration ‎seem to be critical. Water quality can be 
assessed according to its ‎chemical, physical, and biological 
‎characteristics ‎ (Al-Zubaidi 2012, Issa et al. 2013). Water 
quality indicators, ‎involving biological, chemical, and 
physical characteristics, have been ‎usually measured by 
‎taking samples in the field and then studying them in the 
laboratory. Though in-‎situ ‎measurement offers excellent 
accuracy, it is a labor-intensive and time-consuming 
‎operation, ‎making a simultaneous water quality database on 
a regional scale geographically ‎and temporally ‎impractical 
‎(Goetz et al. 2008, Kibena et al. 2014). Remote sensing 
(RS) methods ‎have become helpful instruments to attain this 
objective due to the ‎improvements in space ‎science, greater 
usage of computer applications, and improved ‎computational 
power in recent ‎periods. Remote sensing methods provide 
more effective and ‎effectual observing and ‎identification of 
large-scale areas and water bodies that suffer from ‎qualitative 

‎issues ‎(Al-Masaodi & Al-Zubaidi 2021, Alparslan et al. 2007, 
El-Amier et al. 2017, Hadjimitsis et al. 2010, Markogianni 
et ‎al. 2018)‎.

To explore the relationships between water quality 
indicators and spectral data from satellite ‎images, decision-
makers in water resources may utilize remote sensing data 
to better monitor ‎water bodies (Chabuk 2022). Gholizadeh et 
al. (2016) summarized the characteristics of the main sensor 
‎‎(temporal, spatial, and spectral) utilized for water ‎quality 
monitoring.‎‏ ‏This study also ‎examines the methodologies 
and sensors utilized to assess ‎and ‎quantify the water 
quality ‎parameters such as COD, ‎BOD, dissolved oxygen, 
sea ‎surface salinity, total ‎phosphorus, water temperature, 
turbidity, ‎TSS‎, Secchi ‎disk depth, colored dissolved organic 
‎matter, and ‎chlorophyll-a (chl-a). ‎Japitana & Burce (2019) 
gave a global perspective of the ‎earth’s surface that may 
be utilized to monitor and analyze water quality using 
Landsat 8 ‎and regression analysis to predict pH, dissolved 
oxygen, TDS, TSS, and BOD. The input ‎images were 
radiometrically calibrated utilizing FLAASH and then 
atmospherically adjusted ‎to create surface reflectance 
(SR) bands for comparison. Input data included SR bands 
‎produced by FLAASH and DOS algorithm, water indices, 
band ‎ratios, and PCA images. ‎The input bands’ feature 
vectors were then regressed utilizing the water quality ‎data. 

Nat. Env. & Poll. Tech.
Website: www.neptjournal.com

Received: 17-06-2022
Revised:    21-07-2022
Accepted: 30-07-2022

Key Words:
Linear regression   
Statistical analysis   
Water quality modeling   
Hilla river

mailto:alzubaidih10@gmail.com


2316 Fatimah D. Al-Jassani et al.

Vol. 21, No. 5 (Suppl), 2022 • Nature Environment and Pollution Technology  

All water quality metrics ‎exhibited relatively high R-squared 
magnitudes except TSS and conductivity ‎which had ‎‎60.1 
and 67.7%, respectively. In addition, pH, BOD, TSS, and 
conductivity ‎regression ‎models are extremely significant to 
SR bands calculated utilizing DOS. The ‎findings also revealed 
‎the possibility of employing RS-based water quality models 
for periodic water quality ‎monitoring and evaluation.‎‏ ‏‎ Al-
Bayati et al. (2018) investigated field Spector-radiometers ‎by 
developing relationships between water quality parameters ‎and 
spectral data. The study ‎included 20 stations for sampling on 
Hilla River, Babylon Province, ‎Iraq to measure the ‎physical 
and chemical parameters (pH, TSS, EC, TDS, CL). Landsat 
8 satellite ‎images were ‎employed to be linked with field data 
statistically for only one day of investigation. It has ‎been 
‎found that apposite spectral ranges and bands for water quality 
parameters, EC, and ‎CL ‎associated with a spectra range of 
(0.851-0.87) μm and (2.107-2.294) μm, respectively. ‎Also, 
(TSS ‎and Turb), and TDS at a spectral range of (0.533-0.590) 
μm and (1.566-1.561) ‎μm, respectively. ‎ Abbas et al. (2021) 
utilized Landsat 8 satellite images to estimate total ‎TDS, EC, 
NO3, and pH. These models offer the capability of evaluating 
the water quality ‎parameters dispersal lengthways of the Shatt 
Al-Arab River in the south of Iraq. Results built ‎on R-squared, 
RMSE, SE, and p-value highlighted the feasibility of these 
models for the ‎study area. The four bands (band 2, band 3, 
band 4, and band 5) of Landsat 8 were used ‎to develop the 
water quality models. EC models are estimated for the winter, 
summer, and autumn ‎seasons based on band 5 for winter and 

band 4 for the summer and autumn seasons. For NO3 ‎models, 
it was linked with band 4, band 3, and band 2 for winter, 
spring, and summer, ‎respectively. pH models were developed 
depending on a single band for all seasons (band 4, ‎band 5, 
band 4, and band 5 for winter, spring, summer, and autumn, 
respectively). For the ‎remaining parameter (TDS), it was a too 
complex model in this study. One of them was ‎estimated by 
combining band 3, band 4, and band 5 in terms of band ratios. ‎

Thus, to cover the region of interest in this paper, 
statistical linear models and ‎correlation analyses ‎were 
performed between Landsat 8 images and water quality 
‎measurements for Hilla River at Hilla ‎City, Iraq spatially 
along the river and temporally from ‎‎2016 to 2021 based on 
available data from ‎the Ministry of Water Resources, Iraq.‎

MATERIALS AND METHODS

Study Area and Datasets

Hilla City is located in the center of Iraq on the Hilla River. 
The river is a branch of the ‎Euphrates ‎River, 100 km south of 
Baghdad City. Hilla City is the capital of ‎Babylon Province 
where the ancient ‎city of Babylon is located. It is located 
in a mainly ‎agricultural region that is widely ‎irrigated 
from the river, ‎producing a wide range of crops, fruit, and 
textiles. ‎Fig. 1 shows the present study ‎area. It is situated 
between, Longitude (44º26’55” & 44º31’10”) ‎E and Latitude 
‎‎(32º26’30” & 32º31’33”) N. ‎

 
Fig. 1: Map of the study area.
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Five stations were selected along the Hilla River. Station 
1 (S1): The New Hilla Water ‎Treatment Plant is located in the 
center of Hilla City in the Zuweir district. It was built in 1991 
and ‎produces about 6000 m3.h-1 for Hilla City consumption; 
Station 2 (S2): The Old Al-‎Tayarah Water Treatment Plant 
is located in the Hilla City center of the Al-Tayarah district. 
It ‎was built in 1972 and produces about 1200 m3.h-1 for the 
Hilla City consumption too; ‎Station 3 (S3): Al-Hashmiya 
Water Project with a capacity of 6000 m3 to serve the districts 
‎of Al-Hashmiya, Al-Shuwaili, Al-Qasim and Al-Tali`ah in 
the Province of Babylon; Station ‎‎4 (S4): Al-Atayej Project is 
located in the city center (in the tourist area), and it produces 
900 ‎m3.h-1, and Station 5 (S5): The Annanah Water Project is 
situated on the right bank of the ‎Hilla River near the village 
of Annanah. Samples were collected sparsely by Babylon 
Water ‎Resources Directorate, Iraq at each sampling station 
from January 2016 to June 2021. The ‎collection process 
included taking one or two samples monthly during this 
period. Table ‎‎1 displays the yearly averaged water quality 
parameters magnitudes. ‎

Hilla City is situated between path 168 and row 38 of 
the Landsat 8 satellite. To ‎discover the ‎relations between 

water quality indicators and spectral data from the satellite, 
Landsat 8 ‎senses were ‎downloaded from the United States 
Geological Survey (USGS) website ‎at the same ‎sampling 
time and for the entire study period, covering the sampling 
process ‎spatially and ‎temporally (Fig. 1).

Methodology 

The general structure of this study is displayed in Fig. 2 
which is the conceptual model ‎of ‎the study. In-site water 
quality data from the five sampling stations and the related 
‎images from the ‎Landsat 8 satellites were linked by linear 
models statistically. In-situ data ‎was split into‏ ‏two datasets: 
train ‎and test. The Landsat 8 images were collected 2 ‎level 
2 (surface reflectance) that ‎contains 8 spectral bands (1 to 
7 and 10) (Hereher et al. ‎‎2010, Kontopoulou et al. 2017). 
The GIS analysis was carried out utilizing QGIS ‎software ‎in 
order to display the spatial distribution of the spectral bands 
to be correlated with ‎field ‎data. The boundary of the river was 
digitized to make the polygon shape of the river ‎extract the 
‎river water (El-Zeiny & El-Kafrawy 2017). After extracting 
the surface ‎reflectance of each band from Landsat senses, 
RStudio ‎software was utilized to develop ‎linear models 

Table 1: In-situ water quality parameters employed in this study. 

Sampling 
Station 

Year Water Quality Parameter

k Na TSS TDS SO4 Cl Mg Ca TH ALK EC pH Turb

S1 2016 4.0 84.2 62.7 704.0 297.3 111.8 40.2 87.2 381.7 120.0 1086.5 7.8 15.4

2017 3.0 81.3 25.0 662.0 230.3 107.3 29.8 74.0 314.0 134.0 1015.5 7.8 6.4

2018 3.2 82.6 32.0 685.2 273.8 123.2 34.8 89.8 362.4 138.4 1135.8 7.2 7.0

2019 2.9 48.7 44.7 596.0 250.3 75.3 25.0 105.7 366.3 147.3 949.0 7.4 24.2

2020 3.7 72.0 38.0 630.0 248.0 85.0 33.5 96.5 378.5 108.0 960.0 7.3 10.1

2021 3.3 72.5 36.0 645.0 280.0 87.0 34.0 93.0 371.5 101.0 1019.0 7.9 6.4

S2 2016 3.2 85.5 44.5 707.0 324.8 106.3 36.8 94.0 385.5 113.5 1105.0 7.9 15.1

2017 3.0 67.1 29.6 653.2 247.0 109.6 33.2 76.0 330.6 134.8 1052.6 7.8 11.6

2018 3.4 86.7 44.7 685.3 285.3 120.7 32.0 86.7 347.7 128.7 1139.7 6.9 7.4

2019 2.8 47.3 32.0 605.3 249.7 74.3 24.0 106.0 362.7 146.0 954.0 7.5 15.5

2020 3.2 67.5 37.5 606.0 252.8 82.3 34.0 98.3 385.3 123.5 952.8 7.5 12.5

2021 3.3 71.0 68.7 600.7 254.3 90.0 36.7 80.7 352.0 110.0 996.0 7.6 12.8

S3 2016 6.8 91.0 42.0 758.0 365.0 122.0 41.0 106.0 432.0 112.0 1175.0 8.1 19.0

2019 3.1 66.0 46.0 630.0 244.0 95.0 32.0 101.0 384.0 140.0 1048.0 7.2 2.9

2021 3.4 72.0 42.0 554.0 206.0 91.0 35.0 69.0 314.0 110.0 947.0 7.1 7.1

S4 2016 3.3 85.5 70.0 731.0 317.5 110.0 38.5 89.0 380.0 109.0 1132.5 8.0 12.4

2017 3.0 83.7 61.3 660.7 266.7 109.3 36.3 75.3 341.0 126.7 1036.3 7.7 13.9

2018 2.9 86.0 14.0 630.0 258.0 116.0 35.0 84.0 352.0 120.0 1072.0 6.7 5.2

2021 3.7 69.0 30.0 552.0 217.5 89.5 37.0 68.0 321.0 110.0 937.0 7.7 5.6

S5 2016 3.1 84.0 37.0 690.0 314.0 114.5 37.0 91.0 379.5 118.0 1079.0 7.9 8.4

2017 3.0 79.7 29.3 660.7 242.7 113.7 32.0 79.0 334.7 127.3 1054.7 8.0 3.1

2018 3.2 87.5 30.0 723.0 259.5 142.0 38.0 87.0 372.0 143.0 1174.0 7.4 7.4

2020 4.7 76.0 22.0 544.0 212.0 85.0 39.0 78.0 353.0 116.0 912.0 7.5 27.4
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between the train water quality parameters and the ‎spectral 
bands. Finally, the ‎test dataset was utilized to validate the 
developed model’s robustness.

RESULTS AND DISCUSSION 

Data Exploration ‎ 

Many water quality parameters were measured from 2016 
to 2021 including turbidity ‎magnitude (Turb), ‎(EC), (pH), 
(TSS), (Cl), ‎ (SO4), (ALK), (TH), (Ca), ‎‎(TDS), (Mg), (Na), 
‎and (K). A graphical summary ‎‎(boxplots) of the water quality 
parameters is shown in Figs. 3 and 4. Raw data statistically 
reveals ‎outliers’ existence, however, these outliers will be 
‎kept because they could be related to errors or ‎mistakes 
during sample gatherings such as errors due to ‎ parameter 
measurements, calculations, or ‎any other source that could 
change the measured ‎magnitudes (Al-Zubaidi et al. 2021). 
Fig. 5 highlights the correlation ‎between water ‎quality 
parameters. The best relation between parameters has a 
correlation ‎coefficient ‎close to 1 and a p-value less than 0.05 
such as TDS with EC, TDS with SO4, SO4 with ‎TH, ‎and 
CL with EC. Many parameters have a normal distribution 
in the river. ‎This ‎can be visually noticed in the correlation 
plot, see the histogram plots of the parameters ‎in Fig. 5. ‎The 

Shapiro–Wilk test was utilized to confirm the normality 
quantitatively, see ‎Table 2. The test ‎showed that the w-value 
was close to 1 and the p-value greater than 0.05 ‎for many 
parameters, ‎except for TSS, K, Na, SO4, and Turb.

Linear Models Development and Statistical Analysis

The linear regression model for the water quality parameters 
and the band ratio ‎values of the satellite data are shown in 
Table 3. Statistical results for the 13 water quality ‎parameters 
showed that 7 parameters have a significant relation with band 
ratio (p-value ‎less than 0.05). These parameters were lineally 
regressed with the related band ratio by a ‎linear model. The 
resulting models of the 7 parameters with bands ratio have 
a p-value less than ‎‎0.05. TDS is positively correlated with 
B10/B3 (P = 0.034), SO4 is positively correlated with ‎B10/
B3 and B10/B4 (P = 0.001), Mg is inversely correlated with 
B4/B7 (P = 0.003), Ca is ‎inversely correlated with B1/B4  
(P = 0.038), TH is inversely correlated with B1/B4  
(P = 0.024), ‎ALK is positively correlated with B3/B7  
(P = 0.016), and pH is inversely correlated with ‎B1/B2  
(P = 0.003). The remaining parameters (K, Na, TDS, Cl, EC, 
and Turb)‎‏ ‏have ‎an insignificant correlation with the bands 
ratio (p-value greater than 0.05).‎‏ ‏The MAE and RMAE 
‎show the difference between the measured data and the 

 

Fig. 2: Data processing f lowchart.
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Fig. 3: Boxplots of all water quality parameters used in the study.

 
Fig. 4: Boxplots of the water quality parameters used in the study after excluding EC, TH, SO4, and TDS.

 
Fig. 5: Correlation plot of water quality parameters.
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TH, ALK, and pH) and predicting their ‎seasonal changes. 
To apply the developed models for future predictions, it 
is not ‎essential to obtain high-resolution and commercial 
satellite images since a free satellite image ‎such as the 
Landsat series can be a dependable input image if the 
accurate pre-processing ‎method is employed. In addition, 
MAE and RMAE are effective scales to validate the 
‎regressed model since they depict the difference between 
the model predictions and real ‎data in the same unit of  
measurement‎.
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CONCLUSION 

Remote sensing and GIS techniques in combination with 
in-situ measurements are ‎the most effective, cheaper, 
and more dependable tools for observing water quality 
‎parameters in several surface water bodies (rivers, lakes, 
and reservoirs). The main findings ‎of this study showed 
a significant correlation between in-situ measurements 
and remote ‎sensed-based datasets in Hilla River, Iraq. 
The developed linear models can be utilized in ‎estimating 
water quality parameter parameters (TDS, SO4, Mg, Ca, 
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