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       ABSTRACT
Oceans and large water bodies have the potential to generate a large amount of green 
and renewable energy by harvesting the ocean surface properties like wind waves and 
tidal waves using Wave Energy Converter (WEC) devices. Although the oceans have 
this potential, very little ocean energy is harvested because of improper planning and 
implementation challenges. Besides this, monitoring ocean waves is of immense importance 
as several ocean-related calamities could be prevented. Also, the ocean serves as the 
maritime transportation route. Therefore, a need exists for remote and continuous monitoring 
of ocean waves and preparing strategies for different situations. Remote sensing technology 
could be utilized for a large scale low-cost opportunity for monitoring entire ocean bodies and 
extracting several important ocean surface features like wave height, wave time period, and 
drift velocities that can be used to estimate the ideal locations for power generation and find 
locations for turbulent waters so that maritime transportation hazards could be prevented. 
To process this large volume of data, Big Data Analytics techniques have been used to 
distribute the workload to worker nodes, facilitating a fast calculation of the reanalyzed 
remote sensing data. The experiment was conducted on Indian Coastline. The findings from 
the experiment show that a total of 1.86 GWh energy can be harvested from the ocean 
waves of the Indian Coastline, and locations of turbulent waters can be predicted in real-time 
to optimize maritime transportation routes.

INTRODUCTION

All renewable energy sources from the ocean are referred to 
as “ocean energy.” Wave, tidal, and ocean thermal energy are 
the three basic categories of ocean energy. The development 
of all marine renewable resources is still in its initial stages 
(Melikoglu 2018).

The energy contained within ocean waves is converted 
into electricity and used to generate wave energy as 
renewable energy (Khatri & Wang 2020). Various wave 
energy systems are being developed and tested to transform 
wave energy into electricity. The potential energy provided 
by the height difference between high and low tides is 

harvested by tidal range technology. Technologies that 
capture the kinetic energy of currents moving in and out of 
tidal zones are known as tidal streams or current technologies 
(such as seashores or coastal regions) (Wang et al. 2018). 

Ocean surface observation is a necessary part of studying 
environmental and hydrological aspects with respect to 
marine renewable energy sources. Recent improvements 
in satellite-based optical remote sensing have booted up 
a new age in the field of surface water sensing (Shen et 
al. 2018). The phenomena also observe the current state 
and challenges of the ocean geothermal field, including 
problems with spatiotemporal scale, integration with 
spaceborne hydrological data, elevation data, cloud, and 
vegetation obscuration, and the increasing need to map and 
examine surface water physics on a global scale. Sensor 
resolutions have always been contradictory in the past. 
To address this inconsistency, techniques such as pixel 
unmixing and reconstruction, and spatiotemporal fusion, 
have been developed. Ocean surface water dynamics are 
now being predicted using remote sensing techniques and 
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in-situ oceanographic data. Recent research has also shown 
that oceanographic surface physics may be predicted simply 
using optical remote sensing pictures, which provides useful 
information for hydrological studies in unmeasured areas. 
Cloud and vegetation obscuration has been a problem for 
optical sensors. Combining synthetic aperture radar data with 
other data is an efficient way to overcome this issue (Liang 
et al. 2019). Cloud/terrain shadows were also removed using 
digital elevation model data. The advancement of big data 
and cloud computing techniques has made it easier to meet 
the growing need for high-resolution monitoring of global 
and regional marine dynamics (Guillou et al. 2020).

With the growing amount of remote sensing ocean 
surface data, the processing capacity needs to be improved, 
giving rise to Big Data Analytics techniques. This replaces 
the requirement for developing more powerful computers 
by integrating multiple low-powered devices connected via 
the Internet to efficiently distribute the workload among 
them. The field of marine science is fast moving into the 
digital era (Amaro & Pina 2017). Escalating the opportunity 
and efficiency of ocean observations, as well as automated 
sampling and smart sensors integrated phenomenon, has 
resulted in rapid growth in the dataset size. Big data techniques 
help reduce the time requirement and cost of processing these 
large-scale data. This opens up new possibilities for studying 
and understanding the ocean through more complicated and 
multidisciplinary studies and inventive methods of marine 
resource management (Lytra et al. 2017).

This article discusses the usage of big data on reanalyzed 
remote sensing statistics to estimate the electricity generation 
capacity of the Indian Coastline. Further, the article discusses 
the optimal locations for harvesting electricity from ocean 
waves and their power generation capacities.

RELATED WORKS 

In the areas of physical, biological, coastal, and satellite 
oceanography, remote sensing has a wide range of 
applications. The acquisition of oceanographic data, 
monitoring of coastal and oceanic dynamics, and analysis of 
numerous processes employing space and airborne sensors 
are all part of oceanographic research (Adhikary et al. 
2021). Remote sensing enables large-scale monitoring of 
oceanographic properties at regular intervals with minimal 
cost. This can be utilized to detect the direction of waves, 
height, speed, time period, and many more ocean surface 
properties with reliable accuracy. This method can also 
observe the water viscosity and physical and chemical 
features. Deep learning and machine learning on remote 
sensing have been widely used for forecasting and predicting 
different properties and phenomena related to ocean surface 

properties. Deep learning-based image segmentation 
techniques on remote sensing data have been used to detect 
coastlines and seashores. Autonomous detection of multiple 
objects on the sea has also been widely implemented with this 
technique (Tiwari et al. 2021). The technique has further been 
used for automatic ocean eddy detection. The coastal risk 
has been estimated using remote sensing and GIS techniques. 
Heat captured by oceans and their global impact has been 
estimated with this approach.

The large volume of oceanographic data has been widely 
studied with different significant data approaches. IoT 
frameworks consisting of self-powered sensors have been 
implemented for ocean surface feature extraction, and big 
data on these have fetched reliable results much faster than 
the traditional method (Man et al. 2020, Vo et al. 2021). 
The Big Data Ocean project has studied several tactics for 
offshore grid-based optimization techniques leveraging 
wave energy and has been optimized by big data analytics 
techniques (Khare et al. 2020). Remote sensing techniques 
can be utilized to detect the temperatures of ocean bodies. 
Likewise, large-scale integration of this technique with the 
application of big data have been used to simulate ocean 
surface temperature for planning foreign trade through sea 
route. The technique has been further used for forecasting 
several maritime parameters based on satellites, buoy, 
GPS, drone and other components to build early warning 
systems for ocean-based natural calamities (Román-Rivera &  
Ellis 2019).

Limitations of the State of the Art and Motivation for 
the Experiment

The oceans around the world have a large potential for energy 
generation. Estimation of the potential reserves of energy is 
crucial to prepare strategies to extract electricity from ocean 
waves. Several approaches have been performed to estimate 
both the theoretical and practical limits of energy production 
(Hernández-Fontes et al. 2020). However, most of them have 
lesser accuracy as most were based on in-situ observations 
and other approximation techniques (Srisuwan et al. 2020). 
Table 1 summarizes all recent works and the limitations this 
article has attempted to solve. These limitations motivated 
us to use reanalyzed remote sensing technology and observe 
the entire coastline at regular intervals, estimate the energy 
production capacity purely based on the ocean waves, and 
find strategic locations of high turbulence.

MATERIALS AND METHODS

The mechanism to estimate the oceanic power generation 
capacity of the Indian coastline has been summarized in  
Fig. 1 and discussed further in the following text.
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Study Location and Data Availability

The experiment has been conducted on Global Ocean 
Waves Analysis and Forecast statistics published by the 
Marine Copernicus program. Remote sensing data have been 
processed by the agency to track several important ocean 

surface features (Dalphinet et al. 2020). The study location 
was selected as Indian Coastline is significantly long and 
shares three geographically important water bodies: The 
Bay of Bengal, the Indian Ocean, and the Arabian Sea. The 
coordinates of the study location include 6º to 24º N and 67º 
E to 98º E. The date ranges were from 8th August 2021 to 

Table 1: Limitations of previously conducted related studies.

Sources Objective Methods Findings Limitations

(Thirugnana et al. 
2021)

Estimation of Ocean 
Thermal Energy

Temperature, Salinity, 
Dissolved Oxygen, and 
Water Mass Profiling

Strategic locations for energy 
harvesting are depicted

In-situ observations have 
limited scalability

(Wahiduzzaman 
& Yeasmin2020)

Potential energy estimation 
for tropical cyclones

Remote sensing 
and geographically 
weighted regression

Correlations have been found 
between tropical cyclones and 
convective available potential energy

It cannot be used as a 
renewable energy source

(Hoang & Baraille 
2020)

Energy estimation of ocean 
currents

Neural network with 
adaptive filtering

The possibility of oceanic current 
energy estimation with the method 
was confirmed

Simulated environment

(Nguyen & Tona 
2018)

Wave excitation force 
estimation

Kalman filtering 
approach

Up to 94% accuracy In-Situ experiment with 
limited scalability

(Chen et al. 2021) Estimation of oceanic 
current fields using a 
decentralized sensor 
network

Kalman filtering 
and Monte Carlo 
Simulation

The model works well with fast-
varying dynamics

In-Situ observations have 
limited scalability

(Bergamasco et 
al. 2021)

Real-time estimation of 
oceanic current  energy

Point cloud estimation 10x faster processing compared to 
the State of the Art

Limited mobility of 
the setup makes it 
difficult for large-scale 
monitoring

(Choi et al. 2020) Real-time wave height 
estimation from 2D and 3D 
images

CNN and ConvLSTM 84% classification accuracy Camera-based 
monitoring limits large-
scale monitoring

 
Fig. 1: The workflow diagram for the proposed mechanism to estimate oceanic power generation capacities.
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8th November 2021, where 8 snapshots for each day were 
recorded. Each degree latitude and longitude were divided 
into 12 equal parts whose readings were recorded in the 
data. The dataset contained ocean surface features including 
Spectral significant wind wave height, Mean secondary swell 
wave direction, Mean wave direction (Mdir), Mean primary 
swell wave direction, Spectral moments (-1,0) wave period 
(Tm-10), Wave principal direction at spectral peak, Wave 
period at spectral peak/peak period (Tp), Spectral moments 
(0,2) wave period (Tm02), Spectral significant primary swell 
wave height, Mean wind wave direction, Spectral moments 

(0,1) secondary swell wave period, Stokes drift U, Spectral 
moments (0,1) primary swell wave period, Stokes drift V, 
Spectral significant wave height (Hm0), Spectral moments 
(0,1) wind wave period and finally Spectral significant 
secondary swell wave height. Table 2 contains the features 
along with their descriptions.

Big Data Analytics-Based Processing of Reanalyzed 
Remote Sensing Data

The large volume of data associated with the study is 
considerably challenging to process with general-purpose 

Table 2: Wave features and their short description.

Features Description

Spectral significant wind wave height The average height of the highest one-third of all waves measured

Mean secondary swell wave direction Mean direction of waves in the second swell partition

Mean wave direction (Mdir) Mean direction toward which the waves and wind are propagating

Mean primary swell wave direction Direction from which the primary swell is coming

Spectral moments (-1,0) wave period (Tm-10) Turbulence energy spectra in the wavevector and frequency domain between subsequent 
waves

Wave principal direction at spectral peak The direction of the peak of the wave spectrum

Wave period at spectral peak/peak period (Tp) The time difference between the two peaks

Spectral moments (0,2) wave period (Tm02) The spectral moment of the wave at 2nd order

Spectral significant primary swell wave height Height of the primary swell wave for the wave spectrum

Mean wind wave direction The direction of the wind blowing at the ocean/sea surface

Spectral moments (0,1) secondary swell wave period Spectral moment of 1st order for secondary swell waves

Stokes drift U The difference in endpoints of waves after a predefined amount of time

Spectral moments (0,1) primary swell wave period The spectral moment at 1st order for the primary swell wave

Stokes drift V Vertical stokes drift

Spectral significant wave height (Hm0) Wave height of the spectral field

Spectral moments (0,1) wind wave period 1st order spectral moment for a wind wave

Spectral significant secondary swell wave height Wave height of the secondary spectral wave

 
Fig. 2: Architecture of Resilient Distributed Datasets (RDD).
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computers. Therefore big data analytics techniques have 
been implemented to distribute the workload across multiple 
server nodes (Qian et al. 2021). The system is controlled 
by a master node which splits the entire task into smaller 
chunks which are then processed by slave nodes and finally 
synchronized by the master node. The entire reanalyzed 
remote sensing dataset has been converted into a time 
series for each location pixel, and this time series has been 
stored with Resilient Distributed Datasets (RDD) method, 
which splits the entire dataset into multiple server nodes 
maintaining the sequence, speed, and fault tolerance (Athira 
& Thomas 2018). RDDs are immutable and, therefore, cannot 
be modified by other RDDs can be created from modifying 
an existing RDD. The architecture of RDD has been shown 
in Fig. 2. RDDs are not directly loaded into the memory 
for execution. First, a set of data is created to map all the 
functions to be executed in each row of the dataset. Therefore, 
because of this mapping, the immutability of RDDs can be 
exploited for faster and lightweight execution.

After this, multiple worker nodes are initiated for the 
execution by distributing the workload by the master node. 
Following this, each row is then separately processed by 
the assigned worker node fetching a limited row at a time 
only when necessary. This reduces the requirement for 
unnecessary ram usage and enables the processing of a very 
large volume of data efficiently without lagging. The data 
within the RDDs are replicated into copies spread across 
multiple worker nodes to make them resilient. This way, no 
data are lost even if there are issues with a few worker nodes, 
as the replicas can be processed if necessary. Following this, 
Map-Reduce-based operations have been performed to map 
each point in the RDD and create a new reduced RDD with 
applied conditions to get the final result. Reduce is performed 
to combine multiple rows of an RDD based on different 
conditions, and the resulting output creates another RDD. 
By this method, a total of 12942771x22 elements have been 
processed. The data are then visualized based on a different 
time to check for the variation of the ocean waves at different 
points of the day and seasonal variation. Following this, the 
ocean wave properties are further calculated to estimate the 
energy generation capacity, as discussed later. The map 
reduction process has been implemented to combine multiple 
rows of the primary RDD according to the equation conditions. 
The work has been conducted on 3 virtual private servers of 
4GB RAM, and 2 CPU cores where one node was used as 
master and two other nodes were used as worker nodes. 

RESULTS AND DISCUSSION

The experimental results show that Indian Coastline 
potentially has a large reserve of energy production capacity 
based on mechanical properties like waves and tides, which 

can be utilized to extract electricity. Fig. 3 shows the ocean 
surface properties of the Indian Coastline that helps in 
estimating the energy generation capacities. The study reveals 
that the spectral significant wind wave height is maximum at 
the conjunction between the Bay of Bengal and the Indian 
Ocean. The wave heights in these areas rise above 0.8 m, 
which can be effectively utilized for energy production. The 
wave directions from the figure show the direction of waves’ 
movement where the waves travel according to the wind 
movements. The waves mostly travel from the southeast and 
far south of the Indian subcontinent and mix with the Bay 
of Bengal. Further, the spectral moment wave time periods 
reveal that the waves at the Indian Ocean at the base of the 
Bay of Bengal are much longer than the waters of the Bay of 
Bengal. This indicates a steady near-laminar flow of water 
waves in this region. However, the wave time periods near the 
Bay of Bengal and the Arabian Sea are much shorter, more 
vigorous, and more turbulent. This observation indicates that 
both the wave height and time period of the wave are higher 
near the conjunction between the Indian Ocean and the Bay 
of Bengal, making it the ideal location for energy harvesting. 
The steadier flow in these regions would ensure ease of 
electricity generation. Similarly, the method can be utilized to 
find locations of high turbulence in real-time where maritime 
transportation could be hazardous. Therefore, routes of lower 
turbulence could be used for safer transportation.

The energy generation capacity has been measured by 
conditionally combining multiple ocean surface properties. 
Theoretically, any wave with kinetic energy can be harvested 
to produce energy in this method, but practically waves 
should be large enough to feasibly harvest the energy. Firstly, 
discussing the theoretical limits, any wave with a height 
greater than zero has been considered. This leaves us with 
10005015x22 elements to filter from. The drift velocity of 
the wave for horizontal (x

x
) and vertical (x

z
) components of 

Lagrangian position (x) and amplitude a and wave number 
k is given by,
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= 𝜔𝜔𝜔𝜔𝑘𝑘𝑘𝑘𝑎𝑎𝑎𝑎2𝑒𝑒𝑒𝑒{2𝑘𝑘𝑘𝑘𝑧𝑧𝑧𝑧}[sin2(𝑘𝑘𝑘𝑘𝑥𝑥𝑥𝑥 − 𝜔𝜔𝜔𝜔𝜕𝜕𝜕𝜕) + cos2(𝑘𝑘𝑘𝑘𝑥𝑥𝑥𝑥 − 𝜔𝜔𝜔𝜔𝜕𝜕𝜕𝜕) 

=  𝜔𝜔𝜔𝜔𝑘𝑘𝑘𝑘𝑎𝑎𝑎𝑎2𝑒𝑒𝑒𝑒{2𝑘𝑘𝑘𝑘𝑧𝑧𝑧𝑧} 

 

  
  ...(2)
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Fig. 3: Visualization of different ocean surface properties for the Indian coastline. The x-axis represents longitude, the y-axis represents latitude,  

and the color bar represents the magnitude of the points.
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Followed by this, for wavelength L, height H, and time 
period T, the energy per unit area is calculated by,

 𝐸𝐸𝐸𝐸 =
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝐻𝐻𝐻𝐻2

8
  ...(3)

Therefore from eqn. and eqn 3, we have the wave energy 
transmission rate or wave power defined by,

 𝑃𝑃𝑃𝑃 =  
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝐻𝐻𝐻𝐻2𝑐𝑐𝑐𝑐

16
(1 +

2𝑘𝑘𝑘𝑘ℎ
sin(ℎ 2𝑘𝑘𝑘𝑘ℎ)) = 𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐𝑔𝑔𝑔𝑔  ...(4)

Where group celerity is given by,

 𝑐𝑐𝑐𝑐𝑔𝑔𝑔𝑔 =
𝑐𝑐𝑐𝑐
2

(1 +
2𝑘𝑘𝑘𝑘ℎ

sin(ℎ 2𝑘𝑘𝑘𝑘ℎ))  ...(5)

The wave heights multiplied by the horizontal width of 
the waves, the drift velocity, and the wave’s time period 
give us the waves’ total volume, and multiplying that with 
water density gives us the total mass of the ocean waves, 
which is found to be 67 MT. With the usage of the big 
data distributed computing framework, the calculation was 
performed within 632 s as computed by 2 worker nodes and 
one master node of specification as described in an earlier 
section. Considering the drift velocity for waves of each 
location, the total power of the waves according to eqn. 4 
has been estimated to be 1.86 GigaWatts (GWh). Although 
this is a theoretical limit, the energy could be logically 
harvested at a large scale if the ocean wave heights are over 
1m. This condition leaves us with 1021415x22 elements, and 
repeating the calculation, we find 1.35 GWh power capacity 
in an ideal scenario. Considering 90% efficiency, 1.21 GWh 
could be effectively harvested. Following this, the waves 
could be harvested cost-effectively in case the waves are very 
large. Considering 2 m wave heights, 80233x22 elements of 
the dataset have been tested, resulting in 0.19 GWh power 
generation capacities with practically efficiency rates, 0.17 
GWh could be harvested.

Comparison With the State-of-the-Art Methods

The proposed ocean wave monitoring and power estimation 
model is better in multiple aspects than the state of the Art 
methods. The work conducted by Thirugnana et al. (2021), 
Nguyen & Tona (2018), and Chen et al. (2021) were in-situ 
observations. These works were conducted locally at the 
study location; therefore, they are immobile models making 
it difficult for large-scale monitoring. However, the proposed 
model uses remote sensing satellite technologies, enabling 
large-scale, low-cost remote, and continuous monitoring.  
Wahiduzzaman & Yeasmin (2020) showed an interesting 
model for the power estimation of tropical cyclones. Still, this 
energy cannot be harvested with state-of-the-art technology, 

but electricity can be harvested from ocean waves using 
WEC machines which have been the basis of the proposed 
work. Hoang & Baraille (2020) conducted the experiment 
for energy estimation of ocean currents using a simulated 
environment. Still, the proposed method uses large-scale 
data from real environments, making it more robust in the 
long run. Finally, Bergamasco et al. (2021) and Choi et al. 
(2020) used 2D and 3D images of the waves and estimated 
their power. This model has limited usage for large-scale 
continuous monitoring as this would require a large number 
of cameras at different locations, and a good amount of 
computational complexity is required for synchronizing all 
footage. But the proposed method doesn’t require much cost 
and complexity as only one satellite combined with a cloud 
server can deploy the model.

CONCLUSION

Oceans worldwide are potential sources of harvesting large 
amounts of renewable and green energy. Steady growth has 
been made to utilize this resource; however, a large amount 
of energy could be harvested from this abundant resource. 
Therefore, proper resource planning is required to use this 
large amount of resources. Remote sensing techniques 
could be utilized for remote regular monitoring of the ocean 
surface properties, and with the help of Big Data Analytics 
techniques, the processing could be accelerated. The paper 
presents a method to use reanalyzed remote sensing data with 
big data analytics techniques to estimate the total potential 
reserved energy generation capacity of the Indian Coastline 
using ocean and sea waves. The presented method is more 
precise than previously estimated results, mostly in-situ 
observations and approximations.

The experiment revealed that the conjunction area 
between the Indian Ocean and the Bay of Bengal shows 
promising areas to harvest the ocean wave energy. The 
theoretical limit for power generation capacity by ocean 
waves of the Indian Coastline was found to be 1.86 
GWh. However, practically the waves should be large 
enough to be harvested, and therefore 1.35 GWh could be  
practically generated. Considering only the most promising 
areas for power harvesting, 0.19 GWh could be produced, 
ensuring lower implementation costs. The method can be 
used to find optimal maritime transportation routes based 
on the turbulence of the oceanic waters. The model could 
be used to set up proper strategies to implement WEC  
machines, ensuring maximum efficiency. Further, the 
model could be improved by increasing the resolution and 
considering other techniques to produce electricity from 
ocean waves.
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