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	       ABSTRACT
Globally, land degradation is becoming a grave concern. Over the years, conditions 
such as drought, extreme weather events, pollution, changes in land use land cover, and 
desertification have intensified and led to land degradation, affecting both ecological and 
economic processes. Equally, during the last two centuries, population and urbanization 
have amplified manifold and increased the demand for additional food and shelter, resulting 
in alteration in land use land cover, over-grazing, and over-cultivation, loss of nutrient-rich 
surface soil, greater runoff from the more impermeable subsoil, and reduced water availability. 
Geographically, Goa is a highly diversified state. It is sandwiched between the West Coast 
and the Western Ghats. The state is blessed with beaches, mangroves, backwaters, wetlands, 
wildlife sanctuaries, evergreen forests, barren lands, and other vital ecosystems. The State of 
Goa, on average, receives more than 3000 millimeters of rainfall annually with high surface 
runoff. Using both primary and secondary data, this study sought to investigate and quantify 
the state’s land degradation. Secondary data came from satellites and other sources, while 
primary data came from field observation and ground truthing. Land degradation factors 
related to soil loss and the spatial pattern of soil erosion are predicted and evaluated using 
the Revised Universal Soil Loss Equation (RUSLE) method. Landsat-8 OLI-TIRS images were 
utilized to decide land use and cover (C factor), while DEM information was utilized to assess 
(LS factor). A soil map and rainfall data were collected to acquire a better understanding of 
soil erodibility (K factor) and rainfall erosivity (R factor). The kriging interpolation technique 
was used to gain a deeper comprehension of land degradation.The purpose of this paper is to 
comprehend the concept of integrated land degradation and how it affects the environment of 
Goa. Using remote sensing data and geostatistical methods, the study creates a comprehensive 
map of land degradation in the region by identifying and analyzing the various forms of land 
degradation in Goa. The paper also looks at how rainfall and the amount of land cover affect 
the rate of soil erosion in Goa. According to the findings, intense rainfall makes the eastern 
part of Goa particularly susceptible to soil erosion, and bare soil has a greater potential for 
erosion than vegetated land. The paper concludes that comprehensive land degradation 
mapping can be a useful tool for developing efficient land management strategies to preserve 
soil and encourage sustainable development in the region.

INTRODUCTION

Land debasement is the crumbling of land’s quality and 
ability to support human and ecological frameworks. Over 
the years, it has become a critical environmental problem 
affecting the quality of soil, water, and air and threatens 
food security and economic development (El-Gammal et 
al. 2015, Ewunetu et al. 2021, Flores-Renteria et al. 2016, 
Kawy & Darwish 2019, Nkonya et al. 2016, Balasubramani 
et al. 2015, Odorico et al. 2011, Taylor & Millar 2009, Ravi 
et al. 2009).  Land degradation arises from various factors, 

including human activities, climate change, erosion, and 
deforestation (Yolanda & Mart 2021).

The phenomenon of Integrated Land Degradation 
is intricate and results from a blend of natural and 
anthropogenic variables. In recent times, there has been 
growing apprehension regarding the scale and intensity of 
land degradation and its repercussions on both ecological 
systems and human welfare (Prabhu Gaonkar et al. 2022). 
Land degradation affects billions of people worldwide, 
directly or indirectly. It can potentially harm rural livelihoods, 
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reduce ecosystem productivity, alter vegetation composition, 
and overuse soil resources (D’Odorico & Ravi 2023). 

Land degradation, desertification, and soil erosion pose 
a significant threat to sustainable development, particularly 
in regions with low rainfall, low soil fertility, and high 
poverty rates (IPCC 2019). Based on global land degradation 
patterns, roughly 24% of the world’s land area experiences 
moderate to high levels of degradation. The most severe 
levels of degradation are observed in Africa and Asia (Bai 
et al. 2008). India is the most severely affected by land 
degradation (Obalum et al. 2012, Almouctar et al. 2021). 

The United Nations Environment Programme (UNEP) 
emphasizes the significance of an integrated land degradation 
assessment to tackle the various causes and consequences 
of land degradation in a methodical and comprehensive 
approach, which considers the social, economic, and 
environmental dimensions of the problem (Vi & World 
1950). Integrated Land Degradation is a complex and 
multifaceted issue that requires a holistic and integrated 
approach to address

Since the 1930s, scientists have employed land 
degradation assessment to forecast and identify control 
erosion methods (Allafta & Opp 2021, Ayalew 2015, Dutta 
et al. 2015). At various levels, including global, regional, 
and local, numerous approaches have been employed to 
quantify land degradation (Allafta & Opp, 2021, Auerswald 
1992, Ayalew 2015, Dutta et al. 2015, Jarašiunas et al. 2020, 
Quiquampoix 2008, Thapa 2020, Wagari & Tamiru 2021). 
Numerous models have been created to estimate rates of soil 
loss to enhance comprehension (Amiya et al. 2019, Poesen 
et al. 2003). 

Several methodologies and equations for risk assessment 
or predictive evaluation of soil degradation are prevalent 
(Angima et al. 2003, Hoyos 2005, Peng & Shao 2009, 
Prasannakumar et al. 2011, Quarishi 2014, Zhao et al. 2012). 
Using old field-based approaches, meticulously mapping 
and monitoring the spatial distribution of soil loss across 
enormously large zones is a difficult, costly, and time-
consuming task (Allafta & Opp 2021, Prasannakumar et al. 
2011). On the contrary, at the regional scales, erosion models, 
such as USLE/RUSLE, SEMMED, WEPP, ANSWERS, 
EUROSEM, LISEM, SWAT, AGNPS, and SWRRB, have 
distinct characteristics and different applications (Blackley 
et al. 2015, Boggs et al. 2001, Dabral et al. 2008, Golijanin 
et al. 2022, Ismail & Ravichandran 2008, Jazouli et al. 2019, 
Lu & Li 2004).

Remote sensing technology linked with Geographic 
Information System (GIS) is widely used and recognized 
as a remarkable and effective method for analyzing 
land degradation (Anand et al. 2018, Ara et al. 2021, Chen 

et al. 2021, Jazouli et al. 2019, Selvakumar 2018).  Various 
models were developed to study land degradation, such as 
the Erosion potential method, the Modified Universal Soil 
Loss Equation, and the Revised Soil Loss Equation Model 
(Golijanin et al. 2022). Numerous current works and research 
studies have employed the RUSLE approach in conjunction 
with GIS (Tosic et al. 2011, Blackley et al. 2015, Kouli & 
Soupios 2009, Lanorte et al. 2019, Milentijević et al. 2021, 
Polykretis et al. 2020, Prasannakumar et al. 2011a, Swarnkar 
et al. 2017, Yuksel et al. 2008, Golijanin et al. 2022). 

The Revised Universal Soil Loss Equation (RUSLE) is 
a widely used model in Geographical Information Systems 
(GIS) for predicting soil erosion and assessing the impact 
of land use activities on soil loss (NSW 2021). The RUSLE 
model considers multiple factors that contribute to soil 
erosion, including slope gradient, soil type, land cover, 
climate, and land management practices. The model uses a 
set of algorithms to calculate the erosion risk for each cell 
in a given geographic area. 

Land degradation is a growing concern in the small 
coastal state of Goa in India. Goa is a global tourist 
destination that has been rapidly expanding in recent years, 
putting immense pressure on the land. In recent years, Goa 
has been facing multiple forms of land degradation that are 
threatening not only its environment but also its social and 
economic well-being. Urbanization, changes in land use, land 
cover, deforestation, and mining activities have led to soil 
erosion, loss of soil fertility, and depletion of groundwater 
resources. Hence, this chapter attempts to examine the extent 
of land degradation that has occurred in the State of Goa 
using the RUSLE model.

OBJECTIVES

The key objectives of this study include

	 1.	 To understand the concept of integrated land degradation 
and its impact on Goa’s environment.

	 2.	 To identify and analyze the different types of land 
degradation occurring in Goa using remote sensing data.

	 3.	 To apply geostatistical techniques to create a 
comprehensive map of land degradation in Goa.

	 4.	 To quantify the extent of land degradation in Goa and 
determine the spatial distribution of different types of 
land degradation.

AREA OF INVESTIGATION 

Goa is a small coastal state located on the west coast of 
India. Goa is known for its natural beauty, vibrant culture, 
and tourism industry. The eco-geography of Goa is unique, 
with a diverse range of ecosystems, flora, and fauna. The 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:zoologist.rehan@gmail.com
mailto:zoologist.rehan@gmail.com


297MAPPING AND QUANTIFYING INTEGRATED LAND DEGRADATION IN GOA 

Nature Environment and Pollution Technology • Vol. 23, No. 1, 2024This publication is licensed under a Creative 
Commons Attribution 4.0 International License

This publication is licensed under a Creative 
Commons Attribution 4.0 International License

state is blessed with numerous hills, sandy beaches, rocky 
cliffs, rivers, waterfalls, estuaries, mangroves, forests, and 
that attract millions of visitors from all over the world.

Mathematically, Goa extends amidst the parallels of 
1400’45°” to 1559’47°” North latitudes and 7354’40°” to 
7411’20°” east of meridians (Prabhu Gaonkar et al. 2022) 
(Fig. 1). It covers a geographical expanse of 3702 sq. km. 
It tolerates pressure of 1,458,545 persons (2011, Census). 
The State of Goa is 105 km long and 65 km wide. To the 
north, Goa is bordered by Maharashtra, while to the south 
lies Karnataka, and on the western side, it is surrounded by 
the blue waters of the Arabian Sea.

Goa’s territory has been classified into four physiographic 
divisions by the Geological Survey of India, which are:

1. Western Ghats Region (700-1000 Meters above Sea 
Level) 	

2. Foot Hill Region of Western Ghats (300-700 Meters 
above Sea Level)

3. Undulating Terrain	 (10-300 Meters above Sea Level)

4. Coastal Plains	 (0-10 Meters above Sea Level)

The eco-geography of Goa is under threat from 

various human activities, including mining, deforestation, 
urbanization, and tourism. Mining activities in the state have 
led to soil erosion, water pollution, and loss of biodiversity. 
Deforestation, primarily for commercial purposes, has led 
to soil degradation and loss of forest cover. Urbanization, 
particularly in the coastal areas, has led to the destruction 
of natural habitats and the loss of biodiversity. The tourism 
industry, which is a major source of revenue for the state, has 
also put pressure on the state’s natural resources, including 
water, land, and forests.

MATERIALS AND METHODS

This study is the result of primary and secondary data 
sources. Primary data were collected from field observations 
and ground-truthing, while the secondary data were derived 
from the following sources (Table 1).

There are several steps involved in the RUSLE model 
implementation methodology. The creation of the input 
parameter database is the first step. Using measurements 
taken in the field of the rates of soil erosion, the second step 
is to calibrate the model. The third step involves applying the 
equations to the database’s input parameters to determine the 

 
Fig. 1: Map of the study area: Goa. 
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The eco-geography of Goa is under threat from various human activities, including mining, deforestation, 
urbanization, and tourism. Mining activities in the state have led to soil erosion, water pollution, and loss of 
biodiversity. Deforestation, primarily for commercial purposes, has led to soil degradation and loss of forest 
cover. Urbanization, particularly in the coastal areas, has led to the destruction of natural habitats and the 
loss of biodiversity. The tourism industry, which is a major source of revenue for the state, has also put 
pressure on the state's natural resources, including water, land, and forests. 
 
MATERIALS AND METHODS 
 
This study is the result of primary and secondary data sources. Primary data were collected from field 
observations and ground-truthing, while the secondary data were derived from the following sources (Table 
1). 
 
Table 1: Databased used for RUSLE model. 

Sr. No. Data Type Description Sources 

1.  Satellite Data https://earthexplorer.usgs.gov  
 

LANSAT OLI for the year 2021 was 
grouped into 7 classes 

2.  Digital elevation 
model 

https://earthexplorer.usgs.gov 
 SRTM with 30m resolution 

Fig. 1: Map of the study area: Goa.
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risk of soil erosion for each cell. The fourth step is to look 
over the results and figure out where soil erosion is most 
likely. The development of management plans to lessen the 
likelihood of soil erosion in these locations is the final step 
(Fig. 2).

The RUSLE model employs a set of algorithms to 
calculate the erosion risk of each cell within a specific 
geographical area. By utilizing a GIS environment, the 
output of the RUSLE model can be showcased to exhibit 
the risk of soil erosion across a given landscape (Jarašiunas 
et al. 2020, Terranova et al. 2009). The RUSLE model uses 
five parameters to determine the average yearly soil loss 
measured in tons per hectare (Benavidez et al. 2018, Ganasri 

& Ramesh 2016, Ghosh et al. 2022, Kulimushi et al. 2021, 
Negese et al. 2021, Tayebi et al. 2019, Terranova et al. 2009, 
Thomas et al. 2018a).

	 A = R × K × LS × C × P 	 …(1)

Where A signifies the average soil loss, R stands for 
rainfall-runoff erosivity, K for soil erodibility, LS for 
slope length and slope steepness, C for cover management, 
and P for conservation practices (Abdul Rahaman et al. 
2015, Prasannakumar et al. 2012, Thomas et al. 2018b). 
Dimensionless parameters include LS, C, and P factors 
(Prasannakumar et al. 2011b). The data inputs for the 
RUSLE model used in this study were obtained from 

Table 1: Databased used for RUSLE model.

Sr. No. Data Type Description Sources

1. Satellite Data https://earthexplorer.usgs.gov LANSAT OLI for the year 2021 was grouped into 7 
classes

2. Digital elevation model https://earthexplorer.usgs.gov SRTM with 30m resolution

3. Rainfall Data Indian Meteorological Department, Goa-India Rainfall data from 12 rain gauge stations for 30 years

4. Soil Data Directorate of Mines and Geology, Goa-India The study area’s soil map is categorized into seven 
classes based on the texture of the soil.

3.  Rainfall Data Indian Meteorological 
Department, Goa-India 

Rainfall data from 12 rain gauge stations 
for 30 years 

4.  Soil Data Directorate of Mines and 
Geology, Goa-India 

The study area's soil map is categorized 
into seven classes based on the texture of 
the soil. 
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et al. 2015, Prasannakumar et al. 2012, Thomas et al. 2018b). Dimensionless parameters include LS, C, and 
P factors (Prasannakumar et al. 2011b). The data inputs for the RUSLE model used in this study were 
obtained from various sources. Rainfall data was sourced from the Indian Meteorological Department, while 
soil data was acquired from the Directorate of Mines and Geology in Goa. Landsat-8 OLI-TIRS data and 
elevation data were retrieved from the GLOVIS website to determine slope length, slope steepness, and 
conservation practices. To create a soil erosional map, the raster outputs of all parameters were processed 
using the "Raster Calculator" tool, found within the "Spatial Analyst tools" in the ArcGIS 10.8 edition. By 
incorporating information on rainfall, elevation, soil, and land use/land cover, the study was able to estimate 
soil loss within the state of Goa. 
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Fig. 2: Methodology chart.
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RESULTS AND DISCUSSION

Rainfall-Runoff Erosivity (R Factor)

A thorough evaluation of rainfall erosivity is essential to 
comprehend hydrological and geomorphological processes 
as it denotes the potential of rainfall to erode soil (Yassoglou 
et al. 2017). The computation of the R-factor is a challenging 
undertaking that heavily depends on multiple factors, 
including the length, volume, intensity, energy, and size of 
raindrops, as well as the precipitation pattern and ensuing 
runoff rates (Farhan & Nawaiseh 2015, Jarašiunas et al. 
2020). Rainfall probability can be determined using rainfall 

various sources. Rainfall data was sourced from the Indian 
Meteorological Department, while soil data was acquired 
from the Directorate of Mines and Geology in Goa. Landsat-8 
OLI-TIRS data and elevation data were retrieved from the 
GLOVIS website to determine slope length, slope steepness, 
and conservation practices. To create a soil erosional map, 
the raster outputs of all parameters were processed using 
the “Raster Calculator” tool, found within the “Spatial 
Analyst tools” in the ArcGIS 10.8 edition. By incorporating 
information on rainfall, elevation, soil, and land use/land 
cover, the study was able to estimate soil loss within the 
state of Goa.

 
Fig. 3: The study area map depicting R- Factor: Rainfall erosivity. 

 
The average annual rainfall in Goa is more than 3200 mm, with some variations depending on the region 
(Table 2). It is an observed fact that rainfall can have a significant impact on erosion. When it rains, water 
runs off the ground, causing soil erosion as it carries away topsoil, sediments, and other materials. The more 
intense the rainfall, the greater the potential for soil erosion. 
 
The R factor for Goa varies depending on the location and the season. Though the western parts of Goa, 
including the coastal areas, receive less rainfall than the eastern parts of the state, it experiences cyclones 
and intense storms during the monsoon season, which can increase the erosive power of rainfall.  
 
Table 2: Taluka-wise rainfall distribution, Goa. 

Station  Average of 
1971-2020 

Actual Rainfall 
in 2021 

Station  Average of 
1971-2020 

Actual Rainfall 
in 2021 

Tiswadi 
(Panaji) 

2904.6 3935.7 Sanguem 
(Sanguem) 

3687.9 4438.5 

Bardez 
(Mapusa) 

2990 4041.2 Dharbandora 
(Dharbandora) 

NA NA 

Fig. 3: The study area map depicting R- Factor: Rainfall erosivity.
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intensity (Amellah & el Morabiti, 2021). Multiple research 
papers have employed the average annual precipitation data 
to calculate the R-factor in the study area using the same 
methodology (Abdul Rahaman et al. 2015, Prasannakumar 
et al. 2011a, 2011b, Swarnkar et al. 2017, Taylor 2009, 
Thomas et al. 2018a).

	 𝑅𝑅 = 𝑃𝑃 ∗ 0.5 	 …(2)

The symbol R represents yearly precipitation data. To 
determine the precipitation levels for the year 2021, data 
was obtained from the Indian Meteorological Department, 
drawing from average data from 12 different locations. 
This data was subsequently converted into raster format 
using “multi-dimensional tools” and “Make NetCDF Raster 
layer” in ArcGIS 10.8. The modified raster layer was then 
transformed into points using “Conversion Tools.” Finally, 
a rainfall map of the study area was produced using the 
statistical tool “Kriging” found within the “Spatial Analyst 
Tools” in ArcGIS 10.8, utilizing the collected points (Allafta 
& Opp 2021, Jarašiunas et al. 2020). 

The coastal region of western India receives a significant 
amount of rainfall, making it one of the highest precipitation-
receiving areas in the country. During the monsoon season 
from June to September, over 90% of the annual rainfall 
is concentrated in this region (Nandargi & Gupta, 2018, 
Patwardhan & Asnani 2000). Study shows that there is a 
swift surge in precipitation along the Arabian Sea coast in 
close proximity to the Western Ghats’ maximum elevation 
line (Patwardhan & Asnani 2000). Our study also reveals 
the same (Fig. 3 & Table 3). 

The average annual rainfall in Goa is more than 
3200 mm, with some variations depending on the region  
(Table 2). It is an observed fact that rainfall can have a 
significant impact on erosion. When it rains, water runs off 
the ground, causing soil erosion as it carries away topsoil, 
sediments, and other materials. The more intense the rainfall, 
the greater the potential for soil erosion.

The R factor for Goa varies depending on the location 
and the season. Though the western parts of Goa, including 
the coastal areas, receive less rainfall than the eastern parts of 
the state, it experiences cyclones and intense storms during 
the monsoon season, which can increase the erosive power 
of rainfall. 

Rainfall erosivity is a critical factor in determining the 
potential for soil erosion. High rainfall erosivity leads to 
increased soil erosion rates, which can have negative impacts 
on soil fertility, water quality, and ecological health. As per 
the data presented in (Table 3), it is clear that almost half of 

Table 2: Taluka-wise rainfall distribution, Goa.

Station Average of 
1971-2020

Actual Rainfall in 2021 Station Average of 1971-
2020

Actual Rainfall in 2021

Tiswadi
(Panaji)

2904.6 3935.7 Sanguem (Sanguem) 3687.9 4438.5

Bardez (Mapusa) 2990 4041.2 Dharbandora
(Dharbandora)

NA NA

Pernem
(Pernem)

NA 5247.6 Ponda
(Ponda)

3453.3 4361.6

Bicholim 
(Sanquelim)

NA 4304.3 Canacona
(Canacona)

NA 3836.6

Sattari (Valpoi) 4160.9 4499.3 Quepem 
(Quepem)

3617.1 4457.8

Salcete
(Margao)

3040 3242.8

Mormugao
(Mormugao)

2719.6 3206.6

North Goa 3351.8 4252.1 South Goa 3212.55 3768.2

Goa 3277.8 3995.1

Source: Indian Meteorological Department, Goa

Table 3: Area of R- R-Factor: Rainfall erosivity.

Sr. No Intensity Area in 
Sq. Km. 

Area 
in %

1. Very Low 327.70 8.85

2. Low 710.77 19.20

3. Moderate 839.20 22.66

4. High 323.83 8.74

5. Very High 1501.39 40.55

Total 3702.00 100.00
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Goa’s total geographical area (i.e., 50%) is categorized as 
having high and very high rainfall erosivity indicating that a 
significant portion of Eastern Goa is vulnerable to high levels 
of soil erosion due to intense rainfall. Additionally, around 
22.66% of the total area of Central Goa is under moderate 
erosivity, which experiences moderate rainfall, indicating 
moderate soil erosion, while roughly 28% of the area falls 
under the category of very low-to-low rainfall erosivity. This 
suggests that western Goa experiences less intense rainfall, 
resulting in lower levels of soil erosion.

Cover Management (C Factor)

The C-factors are critical parameters for crop management, as 
they are closely linked to land-use types and reduction factors 
in soil erosion (Jazouli et al. 2019, Nigel & Rughooputh 
2010, Rabia 2016). However, the majority of Indian crops 
lack C-factors, necessitating the use of values discovered by 
previous research (Almagro et al. 2019, Karaburun 2010, 
Solanky et al. 2018, Zhou 2009) to evaluate the impact of 
cropping and management strategies on soil erosion rates 
in agricultural regions. The C-factor is a dimensionless 

factor ranging from 0 to 1, with 0 indicating completely 
non-erodible conditions in areas with high green vegetation 
cover, while 1 indicates greater soil loss due to extensive 
tillage, leaving a smooth surface that generates significant 
runoff and makes the soil susceptible to erosion. NDVI 
spectral indices are calculated using the following equation:

	 NDVI = 𝑁𝑁𝑁𝑁𝑁𝑁−𝑅𝑅𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁+𝑅𝑅𝑅𝑅𝑅𝑅 	 …(3)

Where band 5 of OLI is the reflectance of near-infrared, 
while Red is the reflectance of the visible red band that 
is band 4 of OLI. The equation was used to compute the 
geographical distribution of the C factor (Chinthaparthi & 
Student 2007, Fathizad et al. 2014, Ganasri & Ramesh 2015, 
UNCCD 2017, Wischmeier 1959).

	 𝐶𝐶 = 𝑒𝑒𝑒𝑒𝑒𝑒 [−∝ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝛽𝛽 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁] 	 …(4)

Land Use Land Cover (LULC) influences soil erosion 
rates. Different land cover types have varying soil erodibility. 
For example, a field with bare soil has a higher C factor 
than a field with vegetation cover because bare soil is more 
susceptible to erosion. The study area consists of five main 

lowest value of 0 assigned to the waterbody class to the highest value of 1 assigned to the Vegetation, 
Flooded Vegetation, Built-up, and Barren land classes. The Agriculture class was assigned a C factor value 
of 0.5. 

 
Fig. 4: The study area map depicting C- Factor: Cover Management. 

 
It is evident from (Table 4) that the largest C factor class is "Very Low," covering almost half (46.86%) of 
the study area, followed by "Low" at 34.13%. These two classes indicate that the majority of the study area 
has a low susceptibility to soil erosion, which is a positive indication for sustainable land management 
practices. 

Table 4: Area of C- Factor: Cover Management. 
Classes Area in 

Sq. Km. 
Area in 

% 
Very Low 1734.75 46.86 
Low 1263.83 34.13 
Moderate 524.68 14.17 
High 101.38 2.73 
Very High 77.36 2.09 
Total 3702.00 100.00 

 
The "Moderate" class covers a smaller area of 14.17%, suggesting that some parts of the study area have 
moderate susceptibility to soil erosion. Meanwhile, the "High" and "Very High" classes have a combined 
area of only 4.82%, indicating that the study area has a relatively low susceptibility to severe soil erosion. 
 
Slope Steepness and Slope Length (LS Factor) 
 
The LS factor was computed in ArcGIS using a Digital Elevation Model (DEM) (Jarašiunas et al. 2020, 
Jazouli et al. 2019). It combines the effects of slope length (L) and steepness (S) on soil erosion in RUSLE. 
Steeper and longer slopes generate higher overland flow velocities, leading to greater runoff and increased 
potential for soil loss (Wagari & Tamiru 2021). The LS parameter, which is the product of L and S, quantifies 
the terrain's impact on erosion (Jarašiunas et al. 2020, Lastoria et al. 2008). As the slope steepness increases, 

Fig. 4: The study area map depicting C- Factor: Cover Management.
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LULC types, namely Vegetation, Flooded Vegetation, 
Agriculture, Built-up, and Barren land. Previous literature 

was consulted to determine the appropriate C factor values 
for each of these classes. The C factor values ranged 
from the lowest value of 0 assigned to the waterbody 
class to the highest value of 1 assigned to the Vegetation, 
Flooded Vegetation, Built-up, and Barren land classes. The 
Agriculture class was assigned a C factor value of 0.5.

It is evident from (Table 4) that the largest C factor 
class is “Very Low,” covering almost half (46.86%) of 
the study area, followed by “Low” at 34.13%. These two 
classes indicate that the majority of the study area has a low 
susceptibility to soil erosion, which is a positive indication 

Table 4: Area of C- Factor: Cover Management.

Classes Area in Sq. Km. Area in %

Very Low 1734.75 46.86

Low 1263.83 34.13

Moderate 524.68 14.17

High 101.38 2.73

Very High 77.36 2.09

Total 3702.00 100.00

the runoff velocity and erosivity also increase. The values for L and S were obtained using ArcGIS Spatial 
Analyst tools. Other studies computed the LS factor using the same method by collecting 30 M SRTM 
datasets (Fayas et al. 2019, Moore & Burch 1986, Prasannakumar et al. 2011, UNCCD 2017). This approach 
was also followed for the study region. 
 

𝐿𝐿𝐿𝐿 = (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 × 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/22.13)�.� × (𝑆𝑆𝑆𝑆𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/0.0896)�.�   …(5) 
The LS factor plays a crucial role in the RUSLE Model since it accounts for the impact of topography on 
soil erosion. By incorporating slope length and steepness, the LS factor can effectively pinpoint areas that 
are more susceptible to soil loss and prioritize conservation measures to mitigate erosion. 
 

 
 

Fig. 5: The study area map depicting LS- Factor: Soil slope length. 
 

Fig. 5: The study area map depicting LS- Factor: Soil slope length.
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for sustainable land management practices.

The “Moderate” class covers a smaller area of 14.17%, 
suggesting that some parts of the study area have moderate 
susceptibility to soil erosion. Meanwhile, the “High” 
and “Very High” classes have a combined area of only 
4.82%, indicating that the study area has a relatively low 
susceptibility to severe soil erosion.

Slope Steepness and Slope Length (LS Factor)

The LS factor was computed in ArcGIS using a Digital 
Elevation Model (DEM) (Jarašiunas et al. 2020, Jazouli et 
al. 2019). It combines the effects of slope length (L) and 
steepness (S) on soil erosion in RUSLE. Steeper and longer 
slopes generate higher overland flow velocities, leading to 
greater runoff and increased potential for soil loss (Wagari & 
Tamiru 2021). The LS parameter, which is the product of L 
and S, quantifies the terrain’s impact on erosion (Jarašiunas 
et al. 2020, Lastoria et al. 2008). As the slope steepness 
increases, the runoff velocity and erosivity also increase. 
The values for L and S were obtained using ArcGIS Spatial 
Analyst tools. Other studies computed the LS factor using 
the same method by collecting 30 M SRTM datasets (Fayas 
et al. 2019, Moore & Burch 1986, Prasannakumar et al. 
2011, UNCCD 2017). This approach was also followed for 
the study region.

𝐿𝐿𝐿𝐿 = (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 × 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/22.13)0.4 × (𝑆𝑆𝑆𝑆𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/0.0896)1.3   …(5) 

𝐿𝐿𝐿𝐿 = (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 × 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/22.13)0.4 × (𝑆𝑆𝑆𝑆𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/0.0896)1.3   …(5) 	 …(5)

The LS factor plays a crucial role in the RUSLE Model 
since it accounts for the impact of topography on soil erosion. 
By incorporating slope length and steepness, the LS factor 
can effectively pinpoint areas that are more susceptible to soil 
loss and prioritize conservation measures to mitigate erosion.

In the study area, the “Very Low” and “Low” LS-factor 
classes dominate, covering almost 70% and 21.67% of the 
area, respectively. These classes indicate that the majority 
of the study area comprises gentle slopes and short slope 
lengths, which are less prone to soil erosion.

The “Moderate” LS-factor class covers a relatively 
smaller area of 6.29%, suggesting that some parts of the 
study area have moderate slope steepness and length, which 
may increase the risk of soil erosion. Meanwhile, the “High” 
and “Very High” classes combined only occupy 2.25% of 
the study area, indicating that the number of steep and long 
slopes highly vulnerable to soil erosion is limited.

Overall, the distribution of LS-factor classes suggests that 
the study area is relatively less susceptible to soil erosion 
due to the preponderance of gentle slopes and short slope 
lengths. However, it is important to note that certain parts of 
the area with moderate slope steepness and length may still be 
at risk and require conservation measures to reduce soil loss.

Soil Erodibility (K Factor)

Soil erodibility (K) is a metric that indicates the vulnerability 
of soil or surface material to erosion, sediment transportability, 
and the volume and speed of runoff for a given amount of 
rainfall under typical conditions (Zhao et al. 2012). The K 
factor is determined based on the inherent characteristics 
of soil, including physical, chemical, and mineralogical 
properties, which all contribute to soil erosion (Franzluebbers 
2010, Fu et al. 2006, Pal & Chakrabortty 2019, Phinzi & 
Ngetar 2019). For instance, soils with a loamy texture, which 
are medium-grained and have a tendency to disintegrate and 
runoff, often exhibit high K values (Yuksel et al. 2008).

The K factor map was generated using the soil texture 
map obtained from the Directorate of Mines and Geology, 
Goa. The area of investigation was divided into six primary 
textural classifications of soils, and the corresponding K values 
were determined from different sources (Abdul Rahaman et al. 
2015, Polykretis et al. 2020, Wagari & Tamiru 2021).

The K value of soil is dependent on its location and 
texture. Clayey soil has low K values due to its high 
resistance to separation, while sandy soil, which is coarse-
grained, also has low K values and low runoff potentials. 
Conversely, loamy, fine loamy type, and fine mixed soils 
have high K values, as they are more prone to disintegration 

Table 5: Area of LS- Factor: Soil Slope Length.

Classes Area in
sq. km 

Area
in %

Very Low 2584.06 69.80

Low 802.04 21.66

Moderate 232.8 6.28

High 59.55 1.60

Very High 23.55 0.63

Total 3702.00 100.00

Table 6: Depicting K values.

Sr.No. Soil Texture Type K Values

1. Clayey 0.0402

2. Loamy 0.26

3. Fine Loamy 0.07

4. Fine Loamy Typic 0.39

5. Fine Mixed 0.43

6. Sandy 0.20
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and generate more runoff. In the study area, six major soil 
texture classes were identified, including clayey, loamy, fine 
loamy, fine loamy type, fine mixed, and sandy. 

The lowest K value is < 0.01, which is for the waterbody, 
while the highest K value (> 0.2) is located near the coastal 
belt to the mid-region of the study area. The fine mixed soil, 
which has a K value of 0.43 (Table 6), is classified as a very 
high class and is located in the eastern part of the state of Goa. 

Table 7 indicates that the majority of the study area falls 
under the “Low” K factor class, covering 56.76% of the total 
area. The “Very High” K factor class covers 30.22% of the 
study area, indicating that a significant portion of the area is 
prone to soil erosion due to its soil texture. The “Moderate” 
and “High” K factor classes cover relatively smaller areas, 
indicating that only a few parts of the study area have soil 
textures that are more susceptible to soil erosion.

Table 7: Showing the area of K- Factor: Soil Erodibility.

Classes Area in
sq. km 

Area
in %

Very Low 102.41 2.76

Low 2101.15 56.75

Moderate 325.47 8.79

High 54.20 1.46

Very High 1118.76 30.22

Total 3702.00 100

The lowest K value is < 0.01, which is for the waterbody, while the highest K value (> 0.2) is located near 
the coastal belt to the mid-region of the study area. The fine mixed soil, which has a K value of 0.43 (Table 
6), is classified as a very high class and is located in the eastern part of the state of Goa.  

 
Table 7: Showing the area of K- Factor: Soil Erodibility. 

 
Classes Area in 

sq. km  
Area 
in % 

Very Low 102.41 2.76 
Low 2101.15 56.75 
Moderate 325.47 8.79 
High 54.20 1.46 
Very High 1118.76 30.22 

Total 3702.00 100 
 
 

 
 

Fig.  6: The study area map depicting K- Factor: Soil erodibility. Fig. 6: The study area map depicting K- Factor: Soil erodibility.
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Conservation Practice (P Factor)

Erosion control measures, represented by the P factor (Naqvi 
et al. 2012), have an impact on the yearly soil loss in the 
research area. The support practice factor (Boggs et al. 
2001, Karydas & Sekuloska 2009, Lee 2004, Yassoglou et 
al. 2017) indicates the effectiveness of measures that reduce 
water runoff volume and pace, as well as soil erosion. The P 
factor ranges from 0 to 1, with values close to 0 indicating 
good conservation practices and values close to 1 indicating 
poor conservation practices (Mohan & Kumaraswamy 2015, 
Periyasamy 2017). Land-use land-cover classes are used 
to determine the P factor, and the same process was used 

to determine the study area’s P factor. No conservation 
activities receive the highest values, while the most effective 
conservation practices receive the lowest values.

The P factor is influenced by the terrain slope, with 
values ranging from 0 to 1. A value close to 0 indicates 
strong conservation behavior, while a value close to 1 

 
Table 7 indicates that the majority of the study area falls under the “Low” K factor class, covering 56.76% 
of the total area. The “Very High” K factor class covers 30.22% of the study area, indicating that a significant 
portion of the area is prone to soil erosion due to its soil texture. The “Moderate” and “High” K factor classes 
cover relatively smaller areas, indicating that only a few parts of the study area have soil textures that are 
more susceptible to soil erosion. 
 
Conservation Practice (P Factor) 
 
Erosion control measures, represented by the P factor (Naqvi et al. 2012), have an impact on the yearly soil 
loss in the research area. The support practice factor (Boggs et al. 2001, Karydas & Sekuloska 2009, Lee 
2004, Yassoglou et al. 2017) indicates the effectiveness of measures that reduce water runoff volume and 
pace, as well as soil erosion. The P factor ranges from 0 to 1, with values close to 0 indicating good 
conservation practices and values close to 1 indicating poor conservation practices (Mohan & Kumaraswamy 
2015, Periyasamy 2017). Land-use land-cover classes are used to determine the P factor, and the same 
process was used to determine the study area's P factor. No conservation activities receive the highest values, 
while the most effective conservation practices receive the lowest values. 
 
 

 

Fig. 7: The study area map depicting P- Factor: Conservation practice.

Table 8: The area of P- Factor: Conservation practice.

Sr. No. Area in sq. km Area in %

1. 204.52 5.52

2. 3497.48 94.47

Total 3702.00 100.00
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indicates poor conservation practice. Within the study area, 
a P factor value of 0.5 pertains solely to a limited number 
of patches distinguished by the yellow color, indicating 
good conservation practices. Conversely, patches marked in 
blue represent bad conservation practices. Only 5.524% of 
the area is classified as being under the good conservation 
category, while the remaining 94.475% falls under the bad 
conservation category (Table 8).

RUSLE-based Soil Erosion Rate Estimation 

The study area’s potential soil erosion was evaluated using 
five key parameters, namely Rainfall Erosivity (R factor), 
Slope Steepness and Slope Length (LS factor), Soil Erodi-
bility (K factor), Conservation Practice (P factor), and Cover 
Management (C factor). Figs. 3 to 7 illustrate the outputs of 
each parameter. The R factor indicates that higher rainfall 
intensity corresponds to higher erosion potential. The LS 
factor helps to understand slope steepness, where steeper 
slopes result in higher runoff and erosion. The C factor helps 
us understand the effects of Land Use Land Cover (LULC) 
on soil loss rates. The K factor describes soil’s vulnerability 
to the rate of runoff and erosion, with soils that generate large 
runoff having the highest K values.

Based on the RUSLE-based soil erosion rate estimated 
for the state of Goa (Fig. 8), the entire State is classified into 
five categories based on its erosion risk such as very low, 
low, moderate, high, and very high.

The largest area falls under the “very low” erosion risk 
category, which comprises 48.03 percent (1778.20 sq. km) 
of the total area. This is followed by the “very high” erosion 
risk category, which comprises 24.35 percent (901.69 sq. 
km) of the total area (Table 9).

The “low” and “moderate” erosion risk categories each 
comprise a smaller proportion of the total area, with 14.68 
percent (543.61 sq. km) and 8.81 percent (326.27 sq. km), 
respectively. The “high” erosion risk category is the smallest, 
comprising only 4.11 percent (152.20 sq. km) of the total 
area (Table 9).

CONCLUSION

Overall, the findings of this study provide valuable 
insights into the potential soil erosion in the state of Goa, 
which can be used to develop effective soil conservation 
strategies. By identifying the areas with the highest erosion 

 
 

Fig. 8: RUSLE-based soil erosion rate estimated for the state of Goa. 
 
Based on the RUSLE-based soil erosion rate estimated for the state of Goa (Fig. 8), the entire State is 
classified into five categories based on its erosion risk such as very low, low, moderate, high, and very high. 
 
The largest area falls under the "very low" erosion risk category, which comprises 48.03 percent (1778.20 
sq. km) of the total area. This is followed by the "very high" erosion risk category, which comprises 24.35 
percent (901.69 sq. km) of the total area (Table 9). 

 
Table 9: The area of potential soil erosion. 

 
Classes Area in sq. km   Area in % 

Very Low 1778.20 48.03 
Low 543.61 14.68 

Moderate 326.27 8.81 
High 152.20 4.11 

Very High 901.69 24.35 
Total 3702  100 

 

Fig. 8: RUSLE-based soil erosion rate estimated for the state of Goa.
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risk, policymakers can prioritize the implementation of 
conservation practices and cover management strategies to 
reduce soil loss rates. Additionally, these results can be used 
to inform land use planning decisions and ensure sustainable 
land use practices in the region.

It is important to note that the study’s results are based 
on modeling and estimation techniques and are subject to 
some degree of uncertainty. Therefore, further research is 
needed to validate these findings and assess the effectiveness 
of soil conservation measures in mitigating erosion rates. 
Nonetheless, the study provides a solid foundation for 
understanding the potential soil erosion in the state of Goa. 
It highlights the importance of sustainable land use practices 
to protect the region’s soil resources.
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