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       ABSTRACT
This work explores the detailed study of Bangladeshi precipitation patterns, with a particular 
emphasis on modeling annual rainfall changes in six coastal cities using Markov chains. To 
create a robust Markov chain model with four distinct precipitation states and provide insight 
into the transition probabilities between these states, the study integrates historical rainfall data 
spanning nearly three decades (1994–2023). The stationary test statistic (χ²) was computed 
for a selected number of coastal stations, and transition probabilities between distinct rainfall 
states were predicted using this historical data. The findings reveal that the observed values 
of the test statistic, χ², are significant for all coastal stations, indicating a reliable model 
fit. These results underscore the importance of understanding the temporal evolution of 
precipitation patterns, which is crucial for effective water resource management, agricultural 
planning, and disaster preparedness in the region. The study highlights the dynamic nature 
of rainfall patterns and the necessity for adaptive strategies to mitigate the impacts of climate 
variability. Furthermore, this research emphasizes the interconnectedness of climate studies 
and the critical need for enhanced data-gathering methods and international collaboration to 
bridge knowledge gaps regarding climate variability. By referencing a comprehensive range 
of scholarly works on climate change, extreme rainfall events, and variability in precipitation 
patterns, the study provides a thorough overview of the current research landscape in this 
field. In conclusion, this study not only contributes to the understanding of precipitation 
dynamics in Bangladeshi coastal cities but also offers valuable insights for policymakers 
and stakeholders involved in climate adaptation and resilience planning. The integration 
of Markov chain models with extensive historical data sets serves as a powerful tool for 
predicting future rainfall trends and developing informed strategies to address the challenges 
posed by changing precipitation patterns.

INTRODUCTION

Bangladesh, located in South Asia, stands as the world’s 
largest deltaic nation, characterized by heavy precipitation 
owing to its distinctive geographical attributes. The climate 
is changing both the global (Lambert et al. 2003, Dore 
2005) and regional levels (Gemmer et al. 2004) as a result 
of global warming. In recent years, several research studies 
have examined precipitation patterns in Bangladesh. The 
majority of the studies focused on precipitation (Shahid 
2011), especially the regional and temporal distribution of 
monsoon rainfall (Das et al. 2024). The study also examined 
the fluctuations in yearly rainfall (Shamsuddin & Ahmed 
1974), as well as the timing of the entrance and withdrawal 
of the summer monsoon season (Ahmed & Karmakar 
1993), and the variations in rainfall within and between 

different areas of Bangladesh (Debsarma 2003). Das et al. 
(2022) carried out research to identify the temporal trends 
of rainfall in Bangladesh, revealing that the highest rainfall 
occurs during the monsoon months through nonparametric 
methodologies. Various probability models have been 
developed in several studies to depict the distribution of 
rainfall patterns. From 1989 to 2018, there’s been an annual 
average rainfall decline of 0.014 mm.y-1, with increased 
rainy season rainfall and decreased winter rainfall observed 
across multiple meteorological stations (Das & Zhang 2021). 
Most current research relies on analyzing patterns in extreme 
weather conditions (Khan et al. 2020). For instance, there are 
differences in the distribution and timing of rainfall along the 
southwest coast (Hossain et al. 2014) and in other regions of 
Bangladesh (Sarker & Bigg 2010). The majority of reports 
were derived from either anecdotal accounts or computer 
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models rather than direct observation. A significant challenge 
faced by academics is the absence of precise and extensive 
historical rainfall data from many locations worldwide, 
which would allow them to differentiate between localized 
or periodic fluctuations in rainfall trends (Ibeje et al. 2018). 

The Markov Chain was used to study the modeling and 
simulation of various weather phenomena (Gringorten 1996) 
as well as the development of lengthy time series of weather 
data (Racsko et al. 1991). The initial stochastic model of 
temporal precipitation, utilizing a two-state first-order 
Markov chain, was developed by (Gabriel & Neuman 1962). 
In 1981, Richardson utilized a first-order Markov chain 
combined with an exponential distribution to characterize the 
distribution of daily rainfall in the United States. Akaike 
(1974) employed a Markov chain model to simulate the daily 
incidence of rainfall. In addition, the work cited in reference 
(Sujatmoko & Bambang 2012) employed the methodology 
of “Statistical Modelling of Daily Rainfall Occurrence”. 
These investigations have demonstrated that by applying 
the Markov chain combined with an appropriate probability 
distribution, the produced data accurately maintains the 
seasonal and statistical properties of historical rainfall data. 
Several studies have shown that the Markov Chain model is 
suitable for generating rainfall time series data. A stochastic 
process is simply a probability process; that is, any process in 
nature whose evolution we can analyze successfully in terms 
of probability (Doob 1942). A stochastic process is said to 
incorporate a Markov chain if it satisfies the characteristics 
of Markov, often known as the Markovian property. The 
Markov properties imply that the probability of a future 
occurrence, given knowledge of past and current events, is 
independent of previous events and relies on present events 
(Tovler 2016). The Markov chain is often categorized into 
two types: The Markov chain with a discrete parameter index 
and the Markov chain with a continuous parameter index. 
A Markov chain is considered to have a discrete parameter 
index when the transition between states happens at specified, 
discrete time intervals. The Markov chain is said to have a 
continuous parameter index when the shift state happens 
within a continuous time interval (Ross 1996). Rainfall 
data is a temporal dataset that represents the progression of 
precipitation in a certain region across regular and distinct 
time intervals. 

This research examines a discrete-time four-state model 
to forecast yearly rainfall patterns and compare them among 
six coastal cities in Bangladesh. Estimating the probability 
of rainfall based on current time series data allows us to 
forecast statistical characteristics such as the mean, standard 
deviation, and first-order correlation coefficient of rainfall. 
Accurate assessment of transition probabilities between states 

at consecutive time occurrences is essential for constructing 
a model. Theoretical Weibull, Gamma, and Extreme Value 
Distribution functions are commonly employed in practice 
and for forecasting rainfall intensity (Villarini et al. 2010). 
When modeling accounting dependence in a time series, it 
is common to apply a first-order Markov Chain. Accurate 
forecasting of future precipitation is necessary to proactively 
prepare for prolonged periods of high rainfall intensity. In 
addition, it suggests that we must take into account other 
factors that might greatly contribute to the escalation of 
rainfall intensity (Hermawan et al. 2017). A finite Markov 
chain, a stochastic process with discrete time parameters, 
was employed in this study to model the yearly rainfall 
patterns in six coastal cities of Bangladesh. The Markov 
chain is characterized by the property that the future state 
of the system depends solely on the present state and is 
independent of the previous history. The number of states in 
the process, as defined by Bracken and Croke (2007), can be 
either limited or countably infinite. The daily precipitation 
data served as the foundational input for constructing the 
Markov model, which aimed to simulate the transition of 
rainfall intensity levels over time. Understanding the intricate 
variations in rainfall patterns is crucial for multiple sectors in 
Bangladesh, particularly in coastal areas where the ecology 
and way of life are significantly influenced by precipitation. 
Historical rainfall data spanning from 1994 to 2023 were 
collected for the six coastal cities under investigation: 
Chittagong, Barishal, Bhola, Cox’s Bazar, Khulna, and 
Patuakhali. The data were meticulously sourced from 
reputable meteorological databases, governmental archives, 
and scholarly publications to ensure accuracy and reliability. 
While previous studies have acknowledged the effectiveness 
of the Markov model in predicting rainfall, there is a scarcity 
of research comparing the results of forecasting rainfall using 
different rainfall states through Markov probability matrices 
with the outcomes of Markov chain models for future periods. 
To fill the gaps in past studies, this study establishes the 
following objectives: (1) To offer further elucidation on 
modifications in precipitation patterns; (2) To determine the 
duration required for obtaining limiting state probabilities 
in rain forecasting; (3) To predict and project rainfall in 
upcoming periods; (4) To demonstrate the application of 
the first-order Markov chain model in generating annual 
rainfall data for future instances. This study proposes an 
innovative approach for developing prediction models by 
using various rainfall states derived from the Markov model. 
The effectiveness of the Markov model in predicting and 
generating time series data is displayed. The technique 
employed in this study is transferable to other locations 
within coastal regions of Bangladesh, as well as to other 
countries. 
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MATERIALS AND METHODS

Bangladesh is geographically located in the zone of 
subtropical climate with the eastern longitude from 88.68°E 
to 92.97°E and the northern latitude from 20.87°N to 
25.78°N (Fig. 1). The country is located in south Asia, 
which is bordered on the south by the Bay of Bengal, on 
the southeast by Myanmar, and the remaining by India. 
Bangladesh is a low plain land comprised of 64 districts. 
This country is almost entirely flat on a deltaic plain with 
low elevation and without some hills alongside the Burmese 
border. This country has a humid subtropical climate; 
throughout the year, the majority of the country’s monsoon 
weather prevails. As a result, the country’s river is, in many 
instances, flooded with the aid of the tropical cyclones off 
the Bay of Bengal and with the aid of tidal bores because 
of its location just south of the foothills of the Himalayas, 
where monsoon winds turn west, and northwest, the region 
of Sylhet in eastern Bangladesh receives the greatest average 
precipitation. From 1994 to 2023, annual rainfall in that 

region ranged between 3101 and 5944 millimeters per year. 
The average annual rainfall is 2200 mm. The southwest 
monsoon is the principal source of rainfall in the districts. 
About 80% of the total rainfall is received during the period 
from June to September. From year to year, the variation 
in the annual rainfall and temperature is not large. In the 
present study, a series of annual precipitations were analyzed. 
Most Bangladeshi coastal cities are on riverbanks in low-
lying tidal zones at 1.0–1.5 m above sea level. Different 
coastal regions of Bangladesh house these cities, offering 
a diversified geographical representation. Including cities 
from diverse places helps reflect coastal rainfall variability. 
Rainfall datasets from six weather stations covering the 
period 1994-2023 were obtained from the Bangladesh 
Meteorological Department (BMD) in Agargaon, Dhaka. 
Data is available for the coastal cities of Cox’s Bazar, 
Chittagong, Patuakhali, Bhola, Khulna, and Barishal. The 
geographical characteristics and locations of all 34 stations 
in Bangladesh are shown in Fig.  1.

 

Fig.1: Study region of rainfall stations in Bangladesh. 

 

Table 1: Statistics of the annual rainfall data for the six stations. 

Stations 
 

Descriptive Measure 

Maximum Minimum Mean CV[%] Skewness Kurtosis 

Chittagong 3833 2208 2953 16.79 0.178 -1.102 

Barisal 2858 1418 2057.581 18.23 0.156 -0.842 

Bhola 3080 1493 2156.453 17.704 0.296 -0.441 

Cox’s Bazar 4716 2483 3728.903 14.178 -0.268 -0.159 

Khulna 2594 1073 1806.226 19.578 -0.188 -0.196 

Patuakhali 3098 1847 2547.419 13.962 -0.499 -0.823 
 

Table 1 provides an analysis of annual rainfall data from six meteorological stations: Chittagong, Barishal, 

Bhola, Cox's Bazar, Khulna, and Patuakhali. Statistical summaries include maximum, minimum, and mean 

annual rainfall levels, coefficient of variation (CV %), skewness, and kurtosis for each station. For instance, 

Chittagong's maximum annual rainfall is 3833mm, with a mean of 2953mm and a coefficient of variation of 

16.79%. Barishal has a maximum of 2858mm, a mean of 2057.581mm, and a slightly higher coefficient of 

variation at 18.23%. These insights offer valuable data for meteorological and climate research. 
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Table 1 provides an analysis of annual rainfall data 
from six meteorological stations: Chittagong, Barishal, 
Bhola, Cox’s Bazar, Khulna, and Patuakhali. Statistical 
summaries include maximum, minimum, and mean annual 
rainfall levels, coefficient of variation (CV %), skewness, 
and kurtosis for each station. For instance, Chittagong’s 
maximum annual rainfall is 3833mm, with a mean of 
2953mm and a coefficient of variation of 16.79%. Barishal 
has a maximum of 2858mm, a mean of 2057.581mm, and 
a slightly higher coefficient of variation at 18.23%. These 
insights offer valuable data for meteorological and climate 
research.

Methodology

Markov Chain Modeling
The study’s methodology is rooted in the theoretical 
framework of Markov chains, with a focus on transition 
probabilities, steady-state probabilities, and limiting-state 
probabilities. The analysis relies on the following definitions, 
theorems, and equations:

A Markov chain is characterized as a random sequence 
(𝑋𝑋𝑛𝑛, 𝑛𝑛 Є 𝑁𝑁)   where each state X

n
 is dependent solely on the 

preceding state X
n–1. This Markov property asserts that the 

future state is conditionally independent of past states, given 
the present state.

Transition probabilities: In a consistent Markov chain 
(𝐽𝐽𝑛𝑛, 𝑛𝑛 ≥  0),  transition probabilities from state i to state 
j are denoted as P

ij
. The transition matrix 𝑃𝑃 = [𝑃𝑃𝑖𝑖𝑖𝑖]  

encapsulates all transition probabilities between states i and j.

Steady-state transition probabilities: Steady-state transition 
probabilities are observed in the Markov process X when 
the n-step transition probability. 𝑃𝑃𝑖𝑖𝑖𝑖𝑛𝑛  satisfies the condition 
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Zeros in the probability matrix denote impossible transitions between certain rainfall states. For example, State 

4 doesn't transition directly to State 3 or State 1, reflecting the constraints of realistic rainfall patterns observed 

in coastal cities. These zeros shape the Markov model, ensuring meaningful state transitions based on observed 

rainfall characteristics. 

RESULTS AND DISCUSSION 

In this study, we analyze the patterns of rainfall distribution in key coastal cities of Bangladesh, namely 

Chittagong, Barishal, Bhola, Cox's Bazar, Khulna, and Patuakhali (Table 2). Utilizing data on rainfall 

measurements and frequency of occurrences, the study unveils distinctive precipitation trends across these urban 

centers. Findings indicate varying ranges of rainfall, with Chittagong experiencing a broad spectrum of 

precipitation, while Cox's Bazar demonstrates a more concentrated pattern. Barishal and Bhola exhibit similar 

rainfall tendencies, with notable peaks in specific ranges. Khulna showcases a diversified rainfall regime, 

reflecting its adaptive capacity, while Patuakhali witnesses substantial precipitation occurrences. These insights 

underscore the importance of tailored urban planning and disaster preparedness strategies to address climatic 

vulnerabilities in Bangladesh's coastal regions. 

Table 2: Frequency of annual rainfall in six coastal cities between 1994-2023. 
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Zeros in the probability matrix denote impossible 
transitions between certain rainfall states. For example, State 
4 doesn’t transition directly to State 3 or State 1, reflecting 
the constraints of realistic rainfall patterns observed in 
coastal cities. These zeros shape the Markov model, ensuring 
meaningful state transitions based on observed rainfall 
characteristics.

RESULTS AND DISCUSSION

In this study, we analyze the patterns of rainfall distribution 
in key coastal cities of Bangladesh, namely Chittagong, 
Barishal, Bhola, Cox’s Bazar, Khulna, and Patuakhali  
(Table 2). Utilizing data on rainfall measurements and 
frequency of occurrences, the study unveils distinctive 
precipitation trends across these urban centers. Findings 
indicate varying ranges of rainfall, with Chittagong 
experiencing a broad spectrum of precipitation, while Cox’s 
Bazar demonstrates a more concentrated pattern. Barishal 
and Bhola exhibit similar rainfall tendencies, with notable 
peaks in specific ranges. Khulna showcases a diversified 
rainfall regime, reflecting its adaptive capacity, while 
Patuakhali witnesses substantial precipitation occurrences. 
These insights underscore the importance of tailored urban 
planning and disaster preparedness strategies to address 
climatic vulnerabilities in Bangladesh’s coastal regions.
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Limiting State Probabilities

The Markov chain model provides a succinct and probabilistic 
framework for comprehending and perhaps forecasting 
rainfall patterns. To simulate more intricate rainfall dynamics 
and align with specific research goals, the model may be 
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Table 2: Frequency of annual rainfall in six coastal cities between 1994-2023.

State Chittagong Barishal Bhola Cox’s Bazar Khulna Patuakhali

Rainfall 
[mm]

Frequency Rainfall 
[mm]

Frequency Rainfall 
[mm]

Frequency Rainfall 
[mm]

Frequency Rainfall 
[mm]

Frequency Rainfall 
[mm]

Frequency

1 2200-
2745

13 1415-
1900

13 1490-
2025

14 2480-
3230

5 1130-
1620

10 2100-
2435

10

2 2746-
3290

6 1901-
2385

5 2026-
2560

6 3231-
3980

11 1621-
2111

10 2436-
2770

8

3 3291-
3845

8 2386-
2870

6 2561-
3095

4 3981-
4730

10 2112-
2602

3 2771-
3105

9

4 2746-
3290

3 1901-
2385

6 2026-
2560

6 3231-
3980

4 1621-
2111

7 2436-
2770

3
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In a Markov chain method, here, two successive iterations yield identical results, which signifies convergence 

toward the limiting state. This indicates stable probabilities of transitioning between states, suggesting further 
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stage probabilities. The resultant values show the 4 years annual probability distribution of rainfall. The odds for 

each state in the first year are spread as (0.39 0.23 0.19 0.19). A comparison study shows that the chance 
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of States 1 and 2 has increased. As a result, after ten years, 
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After n steps,  𝑃𝑃� receives the fixed value i.e., n ≥4  also obtains the four-stage limiting stage probability. The 

expression (0.44 0.23 0.14 0.19) is the solution to equation (4), which represents the yearly probability 

distribution of rainfall after four years. The probability in the first year is (0.44 0.23 0.14 0.19). When the 
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After the n steps,  𝑃𝑃� receives the fixed value, i.e., n ≥8, also obtains the four-stage limiting stage probability 

(0.13 0.42 0.35 0.1). The probability distribution (0.1334 0.4175 0.354 0.0951) for Cox's Bazar 
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When n is greater than or equal to 4, not only is the fixed 
value (7) reached after n steps, but the four-stage limiting 
stage probability. (0.34  0.26  0.3  0.1) is also acquired. 
Finally, solving equation (7) produces the probability 
distribution. (0.34  0.26  0.3  0.1) For Patuakhali s yearly 
rainfall over four years. A comparison analysis shows a 
consistent reduction in State 4, whereas States 1 and 3 see 
an increase in probability during the ten years. As a result, 
Patuakhali predicts that 34% of yearly rainfall will fall in 
State 1, 26% in State 2, 30% in State 3, and 10% in State 4.

Fig. 3 illustrates the probability distribution of each state 
(state-1, state-2, state-3, and state-4) among six distinct study 
areas. The likelihood of each state is depicted by distinct bars. 
By comparing the heights of these bars for each district, we 
may gain insight into the probability distribution of states in 
each coastal city. The graph illustrates four discrete situations 
of rainfall limitation, which may be classified according to 
the magnitude of rainfall. Let us designate them as State 
1, State 2, State 3, and State 4. The graph represents six 
districts: Chittagong, Barishal, Bhola, Cox’s Bazar, Khulna, 
and Patuakhali. These districts are probably coastal areas, as 
previously noted. The figures depicted in the graph denote 
the odds of transitioning between states within each district. 
Each row corresponds to a certain district, while each column 
represents an individual state. For instance, the number in the 
initial row and second column (State 2) represents the chance 

of moving from State 1 to State 2 in the Chittagong area. The 
percentages displayed in each cell of the graph indicate the 
probability of shifting from one state to another within a certain 
district. For example, examining the number in the third row 
and fourth column (State 4) reveals the chance of moving from 
State 3 to State 4, specifically in the Bhola area. The Markov 
chain model is applicable for the analysis and prediction of 
rainfall patterns in specified areas. By analyzing the transition 
probabilities, it is possible to determine the probability of 
distinct rainfall conditions happening in each district. This 
information holds significant value for many applications, 
including agricultural planning, water resource management, 
infrastructure building, and disaster preparedness. To 
summarize, the above graph depicts a Markov chain model 
that showcases the odds of transitioning between different 
states of rainfall limitation across six districts. It offers valuable 
information on the probability of distinct rainfall conditions 
happening in each district, assisting in decision-making 
processes for sectors affected by rainfall patterns.

In summary, this section elucidates the foundational 
principles of Markov chains, emphasizing the importance of 
transition probabilities, steady-state probabilities, and limiting-
state probabilities in analyzing the behavior and stability of 
dynamic systems. These theoretical constructs serve as the 
cornerstone for our subsequent application of Markov models 
in investigating complex processes and phenomena.

Stationary Test for Rainfall Occurrences 

Since satisfactory crop yields mainly depend on the pattern 
of rainfall occurrences, it is necessary to know whether the 
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state-4 10% 19% 19% 10% 23% 10%
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Fig. 3: Observed state probabilities for six coastal regions of Bangladesh.
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rainfall occurrences are stationary or not to estimate the crop 
yields for later periods. Thus the stationary test has been 
employed on rainfall data to test the null hypothesis that 
rainfall occurrences are stationary against the alternative 
that rainfall occurrences are not stationary.

 

and stability of dynamic systems. These theoretical constructs serve as the cornerstone for our subsequent 

application of Markov models in investigating complex processes and phenomena. 

Stationary Test for Rainfall Occurrences  

Since satisfactory crop yields mainly depend on the pattern of rainfall occurrences, it is necessary to know 

whether the rainfall occurrences are stationary or not to estimate the crop yields for later periods. Thus the 

stationary test has been employed on rainfall data to test the null hypothesis that rainfall occurrences are 

stationary against the alternative that rainfall occurrences are not stationary. 

                                                            i.e.,  𝐻𝐻�: 𝑃𝑃��(𝑡𝑡)  =  𝑃𝑃�� 

𝐻𝐻�: 𝑃𝑃��(𝑡𝑡)  ≠ 𝑃𝑃�� 

For all selected stations, let us consider the transition probabilities. 𝑃𝑃��� and  𝑃𝑃���(𝑡𝑡) which are estimated from the 

rainfall data for 30 years (1994-2023). Using these probabilities, the values of stationary test statistic χ2 have 

been calculated for the selected stations, which are shown in Table 3. The χ2 values are found to be insignificant 

for coastal stations. Thus we may conclude that rainfall occurrences are stationary for all the stations.  

Table 3: Values of Stationary Test Statistic, χ2 for Selected Stations. 

 

 

 

 

 

 

 

The stationary test was conducted to examine the null hypothesis (𝐻𝐻�) that the rainfall occurrences are stationary 

against the alternative hypothesis (𝐻𝐻�) that the rainfall occurrences are not stationary. This test is crucial for 

estimating crop yields in later periods, as the pattern of rainfall occurrences is a key factor influencing 

agricultural productivity. The results show that the observed values of the test statistic, χ2, are found to be 

significant for all coastal stations except Barishal at a 5% level of significance with 7 degrees of freedom.  

CONCLUSIONS 

Stations Observed values 
of χ2 

Degrees of 
Freedom P value 

Chittagong 18.66** 9 0.028 

Barishal 16.91 9 0.050 

Bhola 20.76** 9 0.014 

Cox’s Bazar 19.98** 9 0.018 

Khulna 31.31** 9 0.00026 

Patuakhali 21.65** 9 0.01 

** Insignificant at 0.05 level. 
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the rainfall data for 30 years (1994-2023). Using these 
probabilities, the values of stationary test statistic χ2 have 
been calculated for the selected stations, which are shown in 
Table 3. The χ2 values are found to be insignificant for coastal 
stations. Thus we may conclude that rainfall occurrences are 
stationary for all the stations. 
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values of χ2

Degrees of 
Freedom

P value
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Cox’s Bazar 19.98** 9 0.018

Khulna 31.31** 9 0.00026
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The stationary test was conducted to examine the null 
hypothesis () that the rainfall occurrences are stationary 
against the alternative hypothesis () that the rainfall 
occurrences are not stationary. This test is crucial for 
estimating crop yields in later periods, as the pattern of 
rainfall occurrences is a key factor influencing agricultural 
productivity. The results show that the observed values of 
the test statistic, χ2, are found to be significant for all coastal 
stations except Barishal at a 5% level of significance with 
7 degrees of freedom. 

CONCLUSIONS

To sum up, the investigation of Bangladesh’s precipitation 
patterns using finite Markov chains has provided insight 
into the complicated mechanisms of the region’s rainfall 
variability. Through the use of advanced modeling tools 
and historical data, this work has yielded useful data about 
the temporal history of rainfall patterns, providing a detailed 
understanding of the fluctuations in precipitation that 
occur in various states and regions. The statistical studies 

carried out in this study highlight the complicated nature of 
Bangladesh’s rainfall patterns by identifying lighter-tailed 
distributions and leftward skewness in the data. The results 
of the stationary show that the observed values of the test 
statistic, χ2, are found to be significant for all coastal stations 
except Barishal. We conclude that the rainfall occurrences 
are stationary for Barishal stations and other stations; the 
rainfall occurrences are non-stationary.

By filling data gaps and fostering international 
collaborations, scientists can enhance predictive models, 
shedding light on how climate change will impact rainfall 
patterns. This study enhances understanding of Bangladeshi 
precipitation dynamics, underscoring the importance of data-
driven insights and advanced modeling in navigating climate 
complexity. With ongoing innovation and collaboration, we 
can pursue sustainable solutions, fostering a more adaptable 
and stable society amidst environmental shifts.
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